HOMEWORK \#2 - MA 504

PAULINHO TCHATCHATCHA

Chapter 1, problem 6. Fix $b>1$.
(a) If m, n, p, q are integers, $n>0, q>0$, and $r=m / n=p / q$, prove that

$$
\left(b^{m}\right)^{1 / n}=\left(b^{p}\right)^{1 / q} .
$$

Hence it makes sense to define $b^{r}=\left(b^{m}\right)^{1 / n}$.
(b) Prove that $b^{r+s}=b^{r} b^{s}$ if r and s are rational numbers.
(c) If x is real, define $B(x)$ to be the set of all numbers b^{t}, where t is rational and $t \leq x$. Prove that

$$
b^{r}=\sup B(r)
$$

when r is rational. Hence it makes sense to define

$$
b^{x}=\sup B(x)
$$

for every real x.
(d) Prove that $b^{x+y}=b^{x} b^{y}$ for all real x and y.

Solution.
(a) By theorem 1.21 there is one and only one positive real y such that $y^{n}=b^{m}$, and write $y=\left(b^{m}\right)^{1 / n}$. Similarly \exists ! (This symbol means "there exists one and only one") $z \in \mathbb{R}$ such that $z^{q}=b^{p}$, and write $z=\left(b^{p}\right)^{1 / q}$. We want to show that $z=y$. We have

$$
\left(y^{n}\right)^{p}=\left(b^{m}\right)^{p}=\underset{m \text { times }}{p \text { times }} \underset{m \text { times }}{(b \cdots b)} \cdots \underset{p \text { times }}{m \text { times }} \underset{p \text { times }}{(b \cdots b)}=\left(b^{p}\right)^{m}=\left(z^{q}\right)^{m} .
$$

Hence $y^{n p}=z^{q m}=x$. By hypothesis $n p=q m=d$. It follows by theorem 1.21 that $\exists!w \in \mathbb{R}$ s.t. $w^{d}=x$. Therefore, by uniqueness, $y=w=z$. Q.E.D.
(b) Let $r=m / n, s=a / c \in \mathbb{Q}, c, n>0$. We have then $r+s=\frac{m c+n a}{n c}$. We want to show that

$$
b^{r+s}=\left(b^{m c+n a}\right)^{\frac{1}{n c}}=\left(b^{m}\right)^{1 / n}\left(b^{a}\right)^{1 / c}=b^{r} b^{s} .
$$

As we showed in the previous item, by the uniqueness part of theorem 1.21, it sufficies to show that

$$
\left(b^{r+s}\right)^{n c}=\left(b^{r} b^{s}\right)^{n c}
$$

Similarly as we showed in the previous item, one can show $\left(b^{r+s}\right)^{n c}=b^{m c+n a}=b^{m c} b^{n a}$. We have by associativity that

$$
\left(b^{r} b^{s}\right)^{n c}=\underset{n c \text { times }}{b^{r} b^{s} \cdots b^{r} b^{s}}=\underset{n c \text { times }}{1}\left(b^{r} \cdots b^{r}\right)\left(b^{s} \cdots b^{s}\right)=\left(b^{r}\right)^{n c}\left(b^{s}\right)^{n c} .
$$

One can also show by similar methods that $\left(b^{r}\right)^{n c}=\left[\left(b^{r}\right)^{n}\right]^{c}=\left[\left(b^{r}\right)^{c}\right]^{n}$, and $\left(b^{s}\right)^{m a}=$ $\left[\left(b^{s}\right)^{m}\right]^{a}=\left[\left(b^{s}\right)^{a}\right]^{m}$.
By definition

$$
\left(b^{r}\right)^{n}=\left[\left(b^{m}\right)^{1 / n}\right]^{n}=b^{m}
$$

Similarly $\left(b^{s}\right)^{c}=b^{a}$. Then

$$
\left(b^{r} b^{s}\right)^{n c}=\left[\left(b^{r}\right)^{n}\right]^{c}\left[\left(b^{s}\right)^{c}\right]^{n}=\left(b^{m}\right)^{c}\left(b^{a}\right)^{n}=b^{m c} b^{n a}=b^{m c+n a}=\left(b^{r+s}\right)^{n c} \text {. Q.E.D. }
$$

(c) We want to show that

$$
b^{r}=\sup B(r)
$$

when r is rational. First of all, we have to show that b^{r} is an upper bound of $B(r)$. We have if $t \in \mathbb{Q}, t \leq r$, then $r=t+r-t$ and $r-t \geq 0$. So, by the previous item

$$
b^{r}=b^{t} b^{r-t}
$$

Now since $b>1$ and $r-t \geq 0, b^{r-t} \geq 1$. Indeed, write $r-t=k / j \in \mathbb{Q}, k \geq 0, j>0$, then $b^{r-t}=\left(b^{k}\right)^{1 / j}$. So if $b^{r-t}<1$, then

$$
\left(b^{r-t}\right)^{j}=\left[\left(b^{k}\right)^{1 / j}\right]^{j}=b^{k}<1,
$$

but this is a contradiction with $b>1, k \geq 0, k \in \mathbb{Z}$. Hence $b^{r-t} \geq 1$ and then $b^{r}=b^{r-t} b^{t} \geq b^{t}$. Since $t \leq r$ is arbitrary, we have that

$$
b^{r} \geq \sup B(r)
$$

Now since $b^{r} \in B(r)$, we have

$$
b^{r} \leq \sup B(r)
$$

so $b^{r}=\sup B(r)$. We then define

$$
b^{x}=\sup B(x), x \in \mathbb{R}
$$

(d) We want to show that $b^{x+y}=b^{x} b^{y}$, for any real x and y. We have

$$
b^{x+y}=\sup B(x+y)=\sup \left\{b^{t}: t \in \mathbb{Q}, t \leq x+y\right\}
$$

If $r, s \in \mathbb{Q}$ are such that $r \leq x, s \leq y$, then $r+s \in \mathbb{Q}$ and $r+s \leq x+y$. Then $b^{r+s} \in B(x+y)$, so

$$
b^{r} b^{s}=b^{r+s} \leq \sup B(x+y)
$$

Since $r \leq x$ is arbitrary, we can take the supremum over b^{r} on the left hand side and get

$$
(\sup B(x)) b^{s} \leq \sup B(x+y)
$$

Similarly, taking the supremum over b^{s}, we have

$$
(\sup B(x))(\sup B(y)) \leq \sup B(x+y),
$$

ie, $b^{x} b^{y} \leq b^{x+y}$.
Conversely, if $t \in \mathbb{Q}, t<x+y$, then $t-y<x$. By the discution given in section 1.22, we see that we can take $r \in \mathbb{Q}$ such that $t-y \leq r \leq x$, so $t-r \in \mathbb{Q}$ and $t-r \leq t-(t-y)=y$. Hence

$$
b^{t}=b^{r} b^{t-r} \leq(\sup B(x))(\sup B(y)) .
$$

Since $t<x+y$ is arbitrary, we have

$$
\sup B(x+y) \leq(\sup B(x))(\sup B(y))
$$

and then

$$
b^{x+y}=\sup B(x+y)=(\sup B(x))(\sup B(y))=b^{x} b^{y} . \quad \text { Q.E.D. }
$$

Chapter 1, problem 15. Under what conditions does equality hold in the Schwartz inequality?

Solution.

The Schwartz inequality (theorem 1.35) says that if a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n} are complex numbers, then

$$
\left|\sum_{j=1}^{n} a_{j} \bar{b}_{j}\right|^{2} \leq \sum_{j=1}^{n}\left|a_{j}\right|^{2} \sum_{j=1}^{n}\left|b_{j}\right|^{2}
$$

Let $x=\left(a_{1}, \ldots, a_{n}\right), y=\left(b_{1}, \ldots, b_{n}\right)$. We have,

$$
|x-y|^{2}=(x-y) \cdot(x-y)=x \cdot x-2 x \cdot y+y \cdot y=|x|^{2}-2 x \cdot y+|y|^{2} .
$$

So if the equality holds in the Schwartz inequality, we have $x \cdot y=|x||y|$, hence

$$
|x-y|^{2}=|x|^{2}-2|x||y|+|y|^{2}=(|x|-|y|)^{2} .
$$

Now we see that we may assume without loss of generality that $|x|=|y|=1$. Indeed, if $x=0$ or $y=0$, then $x \cdot y=0=|x||y|$, otherwise consider the vectors $x /|x|$ and $y /|y|$, note that $\left(\frac{x}{|x|}\right) \cdot\left(\frac{y}{|y|}\right)=\frac{1}{|x||y|}(x \cdot y)=\frac{1}{|x||y|}(|x||y|)=\left|\frac{x}{|x|}\right|\left|\frac{y}{|y|}\right|=1$. Then we have $|x-y|^{2}=(|x|-|y|)^{2}=0$, so $x=y$.
Therefore the equality holds in the Schwartz inequality if and only if $x=0$ or $y=0$ or $\frac{x}{|x|}=\frac{y}{|y|}$, i.e., $x=\lambda y, \lambda \in \mathbb{R}, x$ is parallel to y.
Chapter 1, problem 16. Suppose $k \geq 3, x, y \in \mathbb{R}^{k},|x-y|=d>0$, and $r>0$. Prove:
(a) If $2 r>d$, there are infinitely many $z \in \mathbb{R}^{k}$ such that

$$
|z-x|=|z-y|=r
$$

(b) If $2 r=d$, there exists one such z.
(c) If $2 r<d$, there exists no such z.

How must these statements be modified if k is 2 or 1 ?
Solution.
(a) First of all, let us have a geometric view of $|x-y| .|x-y|$ is the distance of x to y, so the points $z \in \mathbb{R}^{k}$ such that $|z-x|=r$ give the sphere of center x and radius r, call it $S_{r}(x)$. Hence $|z-x|=|z-y|=r$ gives the intersection of the spheres with centers x and
y, respectively, and radius r.
Let $\omega \in \mathbb{R}^{k},|\omega|=1$, and $\omega \perp(x-y)$, ie, $\omega \cdot(x-y)=0$. Let

$$
z=\frac{x+y}{2}+\left(\sqrt{r^{2}-\frac{d^{2}}{4}}\right) \omega
$$

Note that since $k \geq 3$, there are infinitely many $\omega \in \mathbb{R}^{k},|\omega|=1$, with $\omega \perp(x-y)$. Now since $\omega \perp(x-y)$

$$
\begin{equation*}
|z-x|^{2}=\left|\frac{x-y}{2}\right|^{2}+\left(r^{2}-\frac{d^{2}}{4}\right)|\omega|^{2}=\frac{d^{2}}{4}+r^{2}-\frac{d^{2}}{4}=r^{2} . \tag{0.1}
\end{equation*}
$$

Similarly one shows that $|z-y|=r$.
Therefore there are infinitely z s.t. $|z-x|=|z-y|=r$. Note that we strongly use that $2 r>d$, otherwise $r^{2}-\frac{d^{2}}{4} \leq 0$. Also, the equation above, (0.1), caractherizes all such points z.
(b) By theorem 1.37 (f), triangle inequality,

$$
d=|x-y| \leq|z-x|+|z-y|=2 r .
$$

Now note that $2 r=d$ implies that the equality holds, but the equality holds if and only if $z=\frac{x+y}{2}$. Therefore there is exactly one z s.t. $|z-x|=|z-y|=d / 2$, namely $z=(x+y) / 2$. (c) If $2 r<d$, then clearly by the triangle inequality, one can see that there is no z such that $|z-x|=|z-y|=r$.
Note that in the case $k=2$, if $2 r>d$ then there exists exactly two points, say $z_{1}, z_{2} \in \mathbb{R}^{k}$, such that $\left|z_{j}-x\right|=\left|z_{j}-y\right|=r, j=1,2$. If $k=2$ and $2 r=d$, then the conclusion is the same as before. If $k=1$, then if $2 r \neq d$, there is no such z, if $2 r=d$, then there is exactly one such z.

Chapter 1, problem 17. Prove that

$$
|x+y|^{2}+|x-y|^{2}=2|x|^{2}+2|y|^{2}
$$

if $x, y \in \mathbb{R}^{k}$. Interpret this geometrically, as a statement about parallelograms.
Solution.
Previously we showed

$$
\begin{aligned}
& |x-y|=|x|^{2}-2 x \cdot y+|y|^{2} \\
& |x+y|=|x|^{2}+2 x \cdot y+|y|^{2}
\end{aligned}
$$

Then clearly we have what is asked for, the so called Parallelogram law, which states that the sum of the squares of the lengths of the four sides of a parallelogram equals the sum of the squares of the lengths of the two diagonals.

Chapter 1, problem 18. If $k \geq 2$ and $x \in \mathbb{R}^{k}$, prove that there exists $y \in \mathbb{R}^{k}$ such that $y \neq 0$, but $x \cdot y=0$.

Solution.
Let $x=\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{R}^{k}$. Assume that $x \neq 0$, otherwise $x \cdot y=0$ for all $y \in \mathbb{R}^{k}$. Hence there exists at least one $x_{j}, j=1, \ldots, k$, such that $x_{j} \neq 0$. Now given any $k-1$ real numbers $y_{1}, y_{2}, \ldots, y_{j-1}, y_{j+1}, \ldots, y_{k}$, with at least one different from zero, consider

$$
y_{j}=-\frac{1}{x_{j}}\left(x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{j-1} y_{j-1}+x_{j+1} y_{j+1}+\ldots+x_{k} y_{k}\right) .
$$

By the choice of the $y_{l}^{\prime} \mathrm{s}, l=1, \ldots, k, y=\left(y_{1}, \ldots, y_{k}\right) \in \mathbb{R}^{k}, y \neq 0$ and $x \cdot y=0$. We say that y belongs to the $k-1$ dimensional hyperplane $x^{\perp}=\left\{z \in \mathbb{R}^{k}: x \cdot z=0\right\}$.

Chapter 2, problem 4. Is the set of irrational real numbers countable?

Solution.

The answer is no. Indeed if we assume that the set of irrational real numbers, say $\mathbb{R} \backslash \mathbb{Q}$, is countable, then the sets $[0,1] \cap(\mathbb{R} \backslash \mathbb{Q})$ and $[0,1] \cap \mathbb{Q}$ would be countable, since are subsets of countable sets, namely $\mathbb{R} \backslash \mathbb{Q}$ and \mathbb{Q}. Then

$$
[0,1]=([0,1] \cap(\mathbb{R} \backslash \mathbb{Q})) \cup([0,1] \cap \mathbb{Q})
$$

would be also countable, since it would be a union of two countable sets. But this is a contradiction with the corollary of theorem 2.43.

Chapter 2, problem 8. Is every point of every open set $E \subset \mathbb{R}^{2}$ a limit point of E ? Answer the same question for closed sets in \mathbb{R}^{2}.

Solution.
The answer is SIM! (SIM $=\mathrm{YES}$ in portuguese) Indeed If $E \subset \mathbb{R}^{2}$ is an open set, then every point $p \in E$ is an interior point of E, ie, there exists a neighborhood N of p such that $N \subset E$. Now given any neighborhood G of p, by theorem $2.24 G \cap N$ is open, so there exists a neighborhood H of p such that $H \subset G \cap N \subset N \subset E$. So for any $q \in H, q \neq p$, $q \in G \cap E$, hence, since G is arbitrary, p is a limit point of E. Note that this proof works for if E is a subset of a general topological space, in particular for metric spaces.
The same property does not hold for general closed sets. For instance $(0,1)$ is a point in the closed set $(0,1),(2,2),(3,1) \subset \mathbb{R}^{2}$ that is not a limit point.

Chapter 2, problem 9. Let E° denote the set of all interior points of E.
(a) Prove that E° is always open.
(b) Prove that E is open if and only if $E^{\circ}=E$.
(c) If $G \subset E$ and G is open, prove that $G \subset E^{\circ}$.

Solution.
(a) If $E^{\circ}=$, then it is clearly open, so assume $E^{\circ} \neq$. Let $p \in E^{\circ}$. Then p is an interior point of E, ie, there exists a neighborhood of p, say N, such that $N \subset E$. Since N is open, by definition, $N=N^{\circ}$ and clearly $N^{\circ} \subset E^{\circ}$. Therefore $N=N^{\circ} \subset E^{\circ}$ and since $p \in E^{\circ}$ is arbitrary, E° is open.
(b) Clearly if E is open, then by definition $E=E^{\circ}$. Conversely if $E=E^{\circ}$, then every point of E is interior, so E is open by definition.
(c) Let $G \subset E$ and G open. Then we have

$$
G=G^{\circ} \subset E^{\circ}
$$

