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PAULINHO TCHATCHATCHA

Chapter 1, problem 6. Fix b > 1.
(a) If m,n, p, q are integers, n > 0, q > 0, and r = m/n = p/q, prove that

(bm)1/n = (bp)1/q.

Hence it makes sense to define br = (bm)1/n.
(b) Prove that br+s = brbs if r and s are rational numbers.
(c) If x is real, define B(x) to be the set of all numbers bt, where t is rational and t ≤ x.
Prove that

br = supB(r)

when r is rational. Hence it makes sense to define

bx = supB(x)

for every real x.
(d) Prove that bx+y = bxby for all real x and y.

Solution.
(a) By theorem 1.21 there is one and only one positive real y such that yn = bm, and write
y = (bm)1/n. Similarly ∃! (This symbol means “there exists one and only one”) z ∈ R such
that zq = bp, and write z = (bp)1/q. We want to show that z = y. We have

(yn)p = (bm)p = (b · · · b)
m times

· · · (b · · · b)
m times

p times

= (b · · · b)
p times

· · · (b · · · b)
p times

m times

= (bp)m = (zq)m.

Hence ynp = zqm = x. By hypothesis np = qm = d. It follows by theorem 1.21 that ∃!w ∈ R
s.t. wd = x. Therefore, by uniqueness, y = w = z. Q.E.D.

(b) Let r = m/n, s = a/c ∈ Q, c, n > 0. We have then r + s =
mc+ na

nc
. We want to show

that

br+s = (bmc+na)
1

nc = (bm)1/n(ba)1/c = brbs.

As we showed in the previous item, by the uniqueness part of theorem 1.21, it sufficies to
show that

(br+s)nc = (brbs)nc.

Similarly as we showed in the previous item, one can show (br+s)nc = bmc+na = bmcbna. We
have by associativity that

(brbs)nc = brbs · · · brbs
nc times

= (br · · · br)
nc times

(bs · · · bs)
nc times

= (br)nc(bs)nc.
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One can also show by similar methods that (br)nc = [(br)n]c = [(br)c]n, and (bs)ma =
[(bs)m]a = [(bs)a]m.
By definition

(br)n = [(bm)1/n]n = bm.

Similarly (bs)c = ba. Then

(brbs)nc = [(br)n]c[(bs)c]n = (bm)c(ba)n = bmcbna = bmc+na = (br+s)nc. Q.E.D.

(c) We want to show that

br = supB(r)

when r is rational. First of all, we have to show that br is an upper bound of B(r). We
have if t ∈ Q, t ≤ r, then r = t+ r − t and r − t ≥ 0. So, by the previous item

br = btbr−t.

Now since b > 1 and r − t ≥ 0, br−t ≥ 1. Indeed, write r − t = k/j ∈ Q, k ≥ 0, j > 0, then
br−t = (bk)1/j. So if br−t < 1, then

(br−t)j = [(bk)1/j]j = bk < 1,

but this is a contradiction with b > 1, k ≥ 0, k ∈ Z. Hence br−t ≥ 1 and then br = br−tbt ≥ bt.
Since t ≤ r is arbitrary, we have that

br ≥ supB(r).

Now since br ∈ B(r), we have

br ≤ supB(r),

so br = supB(r). We then define

bx = supB(x), x ∈ R.

(d) We want to show that bx+y = bxby, for any real x and y. We have

bx+y = supB(x+ y) = sup{bt : t ∈ Q, t ≤ x+ y}.
If r, s ∈ Q are such that r ≤ x, s ≤ y, then r+s ∈ Q and r+s ≤ x+y. Then br+s ∈ B(x+y),
so

brbs = br+s ≤ supB(x+ y).

Since r ≤ x is arbitrary, we can take the supremum over br on the left hand side and get

(supB(x)) bs ≤ supB(x+ y).

Similarly, taking the supremum over bs, we have

(supB(x)) (supB(y)) ≤ supB(x+ y),

ie, bxby ≤ bx+y.
Conversely, if t ∈ Q, t < x + y, then t − y < x. By the discution given in section 1.22, we
see that we can take r ∈ Q such that t− y ≤ r ≤ x, so t− r ∈ Q and t− r ≤ t− (t− y) = y.
Hence

bt = brbt−r ≤ (supB(x)) (supB(y)) .
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Since t < x+ y is arbitrary, we have

supB(x+ y) ≤ (supB(x)) (supB(y)) ,

and then

bx+y = supB(x+ y) = (supB(x)) (supB(y)) = bxby. Q.E.D.

Chapter 1, problem 15. Under what conditions does equality hold in the Schwartz in-
equality?

Solution.
The Schwartz inequality (theorem 1.35) says that if a1, ..., an and b1, ..., bn are complex
numbers, then ∣∣∣∣∣

n∑
j=1

ajbj

∣∣∣∣∣
2

≤
n∑

j=1

|aj|2
n∑

j=1

|bj|2.

Let x = (a1, ..., an), y = (b1, ..., bn). We have,

|x− y|2 = (x− y) · (x− y) = x · x− 2x · y + y · y = |x|2 − 2x · y + |y|2.

So if the equality holds in the Schwartz inequality, we have x · y = |x||y|, hence

|x− y|2 = |x|2 − 2|x||y|+ |y|2 = (|x| − |y|)2.

Now we see that we may assume without loss of generality that |x| = |y| = 1. Indeed, if
x = 0 or y = 0, then x · y = 0 = |x||y|, otherwise consider the vectors x/|x| and y/|y|,

note that

(
x

|x|

)
·
(
y

|y|

)
=

1

|x||y|
(x · y) =

1

|x||y|
(|x||y|) =

∣∣∣∣ x|x|
∣∣∣∣ ∣∣∣∣ y|y|

∣∣∣∣ = 1. Then we have

|x− y|2 = (|x| − |y|)2 = 0, so x = y.
Therefore the equality holds in the Schwartz inequality if and only if x = 0 or y = 0 or
x

|x|
=

y

|y|
, i.e., x = λy, λ ∈ R, x is parallel to y.

Chapter 1, problem 16. Suppose k ≥ 3, x, y ∈ Rk, |x − y| = d > 0, and r > 0.
Prove:
(a) If 2r > d, there are infinitely many z ∈ Rk such that

|z − x| = |z − y| = r.

(b) If 2r = d, there exists one such z.
(c) If 2r < d, there exists no such z.
How must these statements be modified if k is 2 or 1?

Solution.
(a) First of all, let us have a geometric view of |x − y|. |x − y| is the distance of x to y,
so the points z ∈ Rk such that |z − x| = r give the sphere of center x and radius r, call it
Sr(x). Hence |z − x| = |z − y| = r gives the intersection of the spheres with centers x and
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y, respectively, and radius r.
Let ω ∈ Rk, |ω| = 1, and ω ⊥ (x− y), ie, ω · (x− y) = 0. Let

z =
x+ y

2
+

(√
r2 − d2

4

)
ω.

Note that since k ≥ 3, there are infinitely many ω ∈ Rk, |ω| = 1, with ω ⊥ (x − y). Now
since ω ⊥ (x− y)

(0.1) |z − x|2 =

∣∣∣∣x− y2

∣∣∣∣2 +

(
r2 − d2

4

)
|ω|2 =

d2

4
+ r2 − d2

4
= r2.

Similarly one shows that |z − y| = r.
Therefore there are infinitely z s.t. |z − x| = |z − y| = r. Note that we strongly use that

2r > d, otherwise r2− d2

4
≤ 0. Also, the equation above, (0.1), caractherizes all such points

z.
(b) By theorem 1.37 (f), triangle inequality,

d = |x− y| ≤ |z − x|+ |z − y| = 2r.

Now note that 2r = d implies that the equality holds, but the equality holds if and only if

z =
x+ y

2
. Therefore there is exactly one z s.t. |z−x| = |z−y| = d/2, namely z = (x+y)/2.

(c) If 2r < d, then clearly by the triangle inequality, one can see that there is no z such that
|z − x| = |z − y| = r.
Note that in the case k = 2, if 2r > d then there exists exactly two points, say z1, z2 ∈ Rk,
such that |zj − x| = |zj − y| = r, j = 1, 2. If k = 2 and 2r = d, then the conclusion is the
same as before. If k = 1, then if 2r 6= d, there is no such z, if 2r = d, then there is exactly
one such z.

Chapter 1, problem 17. Prove that

|x+ y|2 + |x− y|2 = 2|x|2 + 2|y|2

if x, y ∈ Rk. Interpret this geometrically, as a statement about parallelograms.

Solution.
Previously we showed

|x− y| = |x|2 − 2x · y + |y|2,
|x+ y| = |x|2 + 2x · y + |y|2.

Then clearly we have what is asked for, the so called Parallelogram law, which states that
the sum of the squares of the lengths of the four sides of a parallelogram equals the sum of
the squares of the lengths of the two diagonals.

Chapter 1, problem 18. If k ≥ 2 and x ∈ Rk, prove that there exists y ∈ Rk such
that y 6= 0, but x · y = 0.
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Solution.
Let x = (x1, ..., xk) ∈ Rk. Assume that x 6= 0, otherwise x · y = 0 for all y ∈ Rk. Hence
there exists at least one xj, j = 1, ..., k, such that xj 6= 0. Now given any k− 1 real numbers
y1, y2, ..., yj−1, yj+1, ..., yk, with at least one different from zero, consider

yj = − 1

xj

(x1y1 + x2y2 + ...+ xj−1yj−1 + xj+1yj+1 + ...+ xkyk).

By the choice of the y′ls, l = 1, ..., k, y = (y1, ..., yk) ∈ Rk, y 6= 0 and x · y = 0. We say that
y belongs to the k − 1 dimensional hyperplane x⊥ = {z ∈ Rk : x · z = 0}.

Chapter 2, problem 4. Is the set of irrational real numbers countable?

Solution.
The answer is no. Indeed if we assume that the set of irrational real numbers, say R \Q, is
countable, then the sets [0, 1]∩ (R \Q) and [0, 1]∩Q would be countable, since are subsets
of countable sets, namely R \Q and Q. Then

[0, 1] = ([0, 1] ∩ (R \Q)) ∪ ([0, 1] ∩Q)

would be also countable, since it would be a union of two countable sets. But this is a
contradiction with the corollary of theorem 2.43.

Chapter 2, problem 8. Is every point of every open set E ⊂ R2 a limit point of E?
Answer the same question for closed sets in R2.

Solution.
The answer is SIM! (SIM = YES in portuguese) Indeed If E ⊂ R2 is an open set, then
every point p ∈ E is an interior point of E, ie, there exists a neighborhood N of p such
that N ⊂ E. Now given any neighborhood G of p, by theorem 2.24 G∩N is open, so there
exists a neighborhood H of p such that H ⊂ G ∩ N ⊂ N ⊂ E. So for any q ∈ H, q 6= p,
q ∈ G ∩ E, hence, since G is arbitrary, p is a limit point of E. Note that this proof works
for if E is a subset of a general topological space, in particular for metric spaces.
The same property does not hold for general closed sets. For instance (0,1) is a point in the
closed set (0, 1), (2, 2), (3, 1) ⊂ R2 that is not a limit point.

Chapter 2, problem 9. Let E◦ denote the set of all interior points of E.
(a) Prove that E◦ is always open.
(b) Prove that E is open if and only if E◦ = E.
(c) If G ⊂ E and G is open, prove that G ⊂ E◦.

Solution.
(a) If E◦ =, then it is clearly open, so assume E◦ 6= . Let p ∈ E◦. Then p is an interior
point of E, ie, there exists a neighborhood of p, say N , such that N ⊂ E. Since N is open,
by definition, N = N◦ and clearly N◦ ⊂ E◦. Therefore N = N◦ ⊂ E◦ and since p ∈ E◦ is
arbitrary, E◦ is open.
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(b) Clearly if E is open, then by definition E = E◦. Conversely if E = E◦, then every point
of E is interior, so E is open by definition.
(c) Let G ⊂ E and G open. Then we have

G = G◦ ⊂ E◦.


