HOMEWORK #2 - MA 504

PAULINHO TCHATCHATCHA

Chapter 1, problem 6. Fix b > 1.
(a) If m,n, p,q are integers, n > 0,¢ > 0, and r = m/n = p/q, prove that

() = ()1,

Hence it makes sense to define b = (b™)'/".

(b) Prove that "5 = b"b° if r and s are rational numbers.
(c) If x is real, define B(z) to be the set of all numbers b*, where ¢ is rational and ¢ < x.
Prove that

b" = sup B(r)
when 7 is rational. Hence it makes sense to define
b* = sup B(x)

for every real x.
(d) Prove that b*1¥ = b*b? for all real x and y.

Solution.
(a) By theorem 1.21 there is one and only one positive real y such that y™ = b™, and write
y = (b™)Y/". Similarly 3! (This symbol means “there exists one and only one”) z € R such
that 27 = bP, and write z = (b*)"/9. We want to show that z = y. We have

(Y )P =0"P={B---b)---(b---b)=(b---b)-+-(b---b)=(b")" = (z))™.

m times m times p times p times
p times m times

Hence y"? = 29 = z. By hypothesis np = ¢m = d. It follows by theorem 1.21 that 3lw € R

s.t. w? = z. Therefore, by uniqueness, y = w = z. Q.E.D.

(b) Let r =m/n,s = a/c € Q,¢,n > 0. We have then r + s = mexna. We want to show

ne
that
prts — (bchrna)ﬁ — (bm)l/n(ba)l/c — bps.
As we showed in the previous item, by the uniqueness part of theorem 1.21, it sufficies to
show that
(br+s)nc — (brbs)nc.
Similarly as we showed in the previous item, one can show (b"7%)"¢ = p"t" = " We
have by associativity that
(brbs)nc — bTbS . b’f'bS — (bT . bT)(bS ... bS) — (bT’)’nc(bS)nc'

nc times nc times nc times
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One can also show by similar methods that (b")"¢ = [(b")"]¢ = [(b")¢]", and (b°)"* =
[(6%)™]* = [(b%)*]™.
By definition
(b7)" = [(b™) /)" = o™
Similarly (b°)¢ = b*. Then
(brbs>nc — [(br)n]c[(bs)c]n _ (bm)c(ba)n — pmepne — bmc+na — (bH—S)nc. QED
(c) We want to show that
b" = sup B(r)
when 7 is rational. First of all, we have to show that 0" is an upper bound of B(r). We
have if t € Q,t < r,thenr =t+4+r —t and r — ¢t > 0. So, by the previous item

b=
Now since b > 1 and r — ¢ > 0, b"* > 1. Indeed, write r —t = k/j € Q,k > 0,5 > 0, then
bt = ()9, So if "t < 1, then
O = [P =8 <1,

but this is a contradiction with b > 1,k > 0,k € Z. Hence b"* > 1 and then b" = 0"~'b! > 1.
Since t < r is arbitrary, we have that

b" > sup B(r).
Now since b" € B(r), we have

b" < sup B(r),
so " = sup B(r). We then define

b* =sup B(x),z € R.
(d) We want to show that b**¥ = b*b¥, for any real x and y. We have
V" =sup B(z +y) = sup{b’ : t € Q,t < x + y}.

Ifr,s € Qaresuch that r <z, s <y, thenr+s € Qand r+s < z+y. Then b € B(z+vy),
SO

b'b° = 0" < sup B(z + y).

Since r < x is arbitrary, we can take the supremum over " on the left hand side and get
(sup B(x))b* < sup B(z + y).

Similarly, taking the supremum over b°, we have

(sup B(z)) (sup B(y)) < sup B(z +y),
ie, b*bY < b* 1Y,
Conversely, if t € Q,t < x + y, then t — y < z. By the discution given in section 1.22, we
see that we can take r € Q such that t —y <r <z, sot—reQandt—r <t—(t—y) =y.
Hence

b = """ < (sup B(x)) (sup B(y)) .
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Since t < z + y is arbitrary, we have
sup B(z 4+ y) < (sup B(x)) (sup B(y)),

and then
b**Y = sup B(z + y) = (sup B(z)) (sup B(y)) = b"0Y. Q.E.D.

Chapter 1, problem 15. Under what conditions does equality hold in the Schwartz in-
equality?

Solution.

The Schwartz inequality (theorem 1.35) says that if aq,...,a, and by,...,b, are complex
numbers, then

n 2 n n
D ab| <D a0 bl
=1 j=1 j=1

Let x = (a1, ...,an),y = (b1, ..., b,). We have,

ey =(r—-y) -y =z-x-20-y+y-y=z[* =20 y+ [y
So if the equality holds in the Schwartz inequality, we have x - y = |z||y|, hence

@ —yl* = |2 = 2Jllyl + |yl* = (|=] — [y])*.

Now we see that we may assume without loss of generality that |z| = |y| = 1. Indeed, if
x =0ory=0,then x-y = 0 = |z||ly|, otherwise consider the vectors z/|z| and y/|y|,
1 1
note that (£> : (i> = (x-y) = ——(z|ly|) = ZIZ| = 1. Then we have
[/ \lyl) — l=llyl [1ly] 2| [yl

|z —y> = (Jz] — [y])* =0, s0 z = y.

Therefore the equality holds in the Schwartz inequality if and only if z = 0 or y = 0 or
ﬁ H ie, r = Ay, A € R, x is parallel to y.

x

Chapter 1, problem 16. Suppose k > 3,2,y € R¥ |[x —y| = d > 0, and r > 0.
Prove:

(a) If 2r > d, there are infinitely many 2z € R¥ such that
et = |z -yl =r

(b) If 2r = d, there exists one such z.
(c) If 2r < d, there exists no such z.
How must these statements be modified if £ is 2 or 17

Solution.

(a) First of all, let us have a geometric view of |z — y|. |z — y| is the distance of = to y,
so the points z € R* such that |z — x| = r give the sphere of center x and radius 7, call it
Sr(z). Hence |z — x| = |z — y| = r gives the intersection of the spheres with centers = and
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y, respectively, and radius 7.
Let w e R¥ |w| =1, and w L (z —y), ie, w- (z —y) = 0. Let

2
Z:x;—y+< TQ_Z>W'

Note that since k > 3, there are infinitely many w € R, |w| = 1, with w L (x — y). Now
since w L (z — y)

(0.1) |z — 2> = Y

Similarly one shows that |z — y| = 7.

Therefore there are infinitely z s.t. |z — x| = |z — y| = r. Note that we strongly use that
2

2r > d, otherwise r* — i < 0. Also, the equation above, (0.1), caractherizes all such points
zZ.
(b) By theorem 1.37 (f), triangle inequality,

d=|z—y| <|z—z[+ |z —y[=2r

Now note that 2r = d implies that the equality holds, but the equality holds if and only if
T+
z =

Y Therefore there is exactly one z s.t. |z—z| = |z—y| = d/2, namely z = (x+y)/2.

(c) If 2r < d, then clearly by the triangle inequality, one can see that there is no z such that
2—a| = |z -y .

Note that in the case k = 2, if 2r > d then there exists exactly two points, say 21,2, € R¥,
such that |z; — x| = |z; —y| =1r,j = 1,2. If k = 2 and 2r = d, then the conclusion is the
same as before. If k£ = 1, then if 2r # d, there is no such z, if 2r = d, then there is exactly
one such z.

Chapter 1, problem 17. Prove that
|z +y* + o — y|* = 2]2]* + 2[y|?

if 7,7 € R*. Interpret this geometrically, as a statement about parallelograms.

Solution.
Previously we showed
@ =yl = [|* — 22 -y + |yP*,
|z +yl = [|* + 22 -y + [yl
Then clearly we have what is asked for, the so called Parallelogram law, which states that

the sum of the squares of the lengths of the four sides of a parallelogram equals the sum of
the squares of the lengths of the two diagonals.

Chapter 1, problem 18. If k¥ > 2 and x € R¥, prove that there exists y € R¥ such
that y # 0, but z -y = 0.



HOMEWORK #2 - MA 504 5

Solution.
Let © = (21,...,7;) € R*. Assume that o # 0, otherwise z - y = 0 for all y € R*. Hence
there exists at least one x;,j = 1, ..., k, such that z; # 0. Now given any k — 1 real numbers
Y1,Y2, s Yj—1, Yj+1, ---» Yk, With at least one different from zero, consider

1

yj = —;(331% + Toyp + o+ T 1Y+ Ty e+ TRYR)-

j
By the choice of the yjs, [ =1,....k, y = (y1, ..., yx) € R¥, y # 0 and x - y = 0. We say that
y belongs to the k — 1 dimensional hyperplane 2+ = {z € R¥ : - 2 = 0}.

Chapter 2, problem 4. Is the set of irrational real numbers countable?

Solution.

The answer is no. Indeed if we assume that the set of irrational real numbers, say R\ Q, is
countable, then the sets [0, 1] N (R \ Q) and [0, 1] N Q would be countable, since are subsets
of countable sets, namely R\ Q and Q. Then

[07 1] = ([07 1] N (R \ Q)) U ([07 1] N Q)

would be also countable, since it would be a union of two countable sets. But this is a
contradiction with the corollary of theorem 2.43.

Chapter 2, problem 8. Is every point of every open set £ C R? a limit point of E?
Answer the same question for closed sets in R2.

Solution.

The answer is SIM! (SIM = YES in portuguese) Indeed If E C R? is an open set, then
every point p € F is an interior point of F, ie, there exists a neighborhood N of p such
that N C E. Now given any neighborhood G of p, by theorem 2.24 G N N is open, so there
exists a neighborhood H of p such that H C GNN C N C E. So for any q € H,q # p,
q € GN E, hence, since G is arbitrary, p is a limit point of E. Note that this proof works
for if F/ is a subset of a general topological space, in particular for metric spaces.

The same property does not hold for general closed sets. For instance (0,1) is a point in the
closed set (0,1),(2,2),(3,1) C R? that is not a limit point.

Chapter 2, problem 9. Let E° denote the set of all interior points of E.
(a) Prove that E° is always open.

(b) Prove that E' is open if and only if E° = F.

(¢) If G C FE and G is open, prove that G C E°.

Solution.

(a) If E° =, then it is clearly open, so assume E° # . Let p € E°. Then p is an interior
point of . ie, there exists a neighborhood of p, say N, such that N C E. Since N is open,
by definition, N = N° and clearly N° C E°. Therefore N = N° C E° and since p € E° is
arbitrary, £° is open.
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(b) Clearly if F is open, then by definition £ = E°. Conversely if E = E°, then every point
of E' is interior, so E is open by definition.

(c) Let G C E and G open. Then we have
G=G°CE".



