HOMEWORK #2 - MA 504

PAULINHO TCHATCHATCHA

Chapter 1, problem 6. Fix b > 1.

(a) If m, n, p, q are integers, n > 0, q > 0, and r = m/n = p/q, prove that

$$(b^m)^{1/n} = (b^p)^{1/q}.$$

Hence it makes sense to define $b^r = (b^m)^{1/n}$.

(b) Prove that $b^{r+s} = b^r b^s$ if r and s are rational numbers.

(c) If x is real, define B(x) to be the set of all numbers b^t , where t is rational and $t \leq x$. Prove that

 $b^r = \sup B(r)$

when r is rational. Hence it makes sense to define

 $b^x = \sup B(x)$

for every real x.

(d) Prove that $b^{x+y} = b^x b^y$ for all real x and y.

Solution.

(a) By theorem 1.21 there is one and only one positive real y such that $y^n = b^m$, and write $y = (b^m)^{1/n}$. Similarly $\exists!$ (This symbol means "there exists one and only one") $z \in \mathbb{R}$ such that $z^q = b^p$, and write $z = (b^p)^{1/q}$. We want to show that z = y. We have

$$(y^n)^p = (b^m)^p = (b \cdots b) \cdots (b \cdots b) = (b \cdots b) \cdots (b \cdots b) = (b^p)^m = (z^q)^m.$$

$$m \text{ times}$$

$$p \text{ times}$$

$$m \text{ times}$$

$$m \text{ times}$$

Hence $y^{np} = z^{qm} = x$. By hypothesis np = qm = d. It follows by theorem 1.21 that $\exists ! w \in \mathbb{R}$ s.t. $w^d = x$. Therefore, by uniqueness, y = w = z. Q.E.D.

(b) Let $r = m/n, s = a/c \in \mathbb{Q}, c, n > 0$. We have then $r + s = \frac{mc + na}{nc}$. We want to show that

$$b^{r+s} = (b^{mc+na})^{\frac{1}{nc}} = (b^m)^{1/n} (b^a)^{1/c} = b^r b^s.$$

As we showed in the previous item, by the uniqueness part of theorem 1.21, it sufficies to show that

$$(b^{r+s})^{nc} = (b^r b^s)^{nc}.$$

Similarly as we showed in the previous item, one can show $(b^{r+s})^{nc} = b^{mc+na} = b^{mc}b^{na}$. We have by associativity that

$$(b^r b^s)^{nc} = b^r b^s \cdots b^r b^s = (b^r \cdots b^r)(b^s \cdots b^s) = (b^r)^{nc} (b^s)^{nc}.$$

One can also show by similar methods that $(b^r)^{nc} = [(b^r)^n]^c = [(b^r)^c]^n$, and $(b^s)^{ma} = [(b^s)^m]^a = [(b^s)^a]^m$. By definition

$$(b^r)^n = [(b^m)^{1/n}]^n = b^m.$$

Similarly $(b^s)^c = b^a$. Then

$$(b^r b^s)^{nc} = [(b^r)^n]^c [(b^s)^c]^n = (b^m)^c (b^a)^n = b^{mc} b^{na} = b^{mc+na} = (b^{r+s})^{nc}.$$
 Q.E.D.

(c) We want to show that

$$b^r = \sup B(r)$$

when r is rational. First of all, we have to show that b^r is an upper bound of B(r). We have if $t \in \mathbb{Q}, t \leq r$, then r = t + r - t and $r - t \geq 0$. So, by the previous item

$$b^r = b^t b^{r-t}$$

Now since b > 1 and $r - t \ge 0$, $b^{r-t} \ge 1$. Indeed, write $r - t = k/j \in \mathbb{Q}, k \ge 0, j > 0$, then $b^{r-t} = (b^k)^{1/j}$. So if $b^{r-t} < 1$, then

$$(b^{r-t})^j = [(b^k)^{1/j}]^j = b^k < 1,$$

but this is a contradiction with $b > 1, k \ge 0, k \in \mathbb{Z}$. Hence $b^{r-t} \ge 1$ and then $b^r = b^{r-t}b^t \ge b^t$. Since $t \le r$ is arbitrary, we have that

$$b^r \ge \sup B(r).$$

Now since $b^r \in B(r)$, we have

$$b^r \leq \sup B(r),$$

so $b^r = \sup B(r)$. We then define

$$b^x = \sup B(x), x \in \mathbb{R}.$$

(d) We want to show that $b^{x+y} = b^x b^y$, for any real x and y. We have

$$^{x+y} = \sup B(x+y) = \sup\{b^t : t \in \mathbb{Q}, t \le x+y\}$$

If $r, s \in \mathbb{Q}$ are such that $r \leq x, s \leq y$, then $r+s \in \mathbb{Q}$ and $r+s \leq x+y$. Then $b^{r+s} \in B(x+y)$, so

$$b^r b^s = b^{r+s} \le \sup B(x+y).$$

Since $r \leq x$ is arbitrary, we can take the supremum over b^r on the left hand side and get

 $(\sup B(x)) b^s \le \sup B(x+y).$

Similarly, taking the supremum over b^s , we have

 b^{i}

$$(\sup B(x)) (\sup B(y)) \le \sup B(x+y),$$

ie, $b^x b^y < b^{x+y}$.

Conversely, if $t \in \mathbb{Q}$, t < x + y, then t - y < x. By the discution given in section 1.22, we see that we can take $r \in \mathbb{Q}$ such that $t - y \leq r \leq x$, so $t - r \in \mathbb{Q}$ and $t - r \leq t - (t - y) = y$. Hence

$$b^{t} = b^{r}b^{t-r} \le (\sup B(x)) (\sup B(y))$$

Since t < x + y is arbitrary, we have

$$\sup B(x+y) \le \left(\sup B(x)\right) \left(\sup B(y)\right),$$

and then

$$b^{x+y} = \sup B(x+y) = (\sup B(x)) (\sup B(y)) = b^x b^y$$
. Q.E.D.

Chapter 1, problem 15. Under what conditions does equality hold in the Schwartz inequality?

Solution.

The Schwartz inequality (theorem 1.35) says that if $a_1, ..., a_n$ and $b_1, ..., b_n$ are complex numbers, then

$$\left|\sum_{j=1}^{n} a_j \bar{b}_j\right|^2 \le \sum_{j=1}^{n} |a_j|^2 \sum_{j=1}^{n} |b_j|^2.$$

Let $x = (a_1, ..., a_n), y = (b_1, ..., b_n)$. We have,

$$|x - y|^{2} = (x - y) \cdot (x - y) = x \cdot x - 2x \cdot y + y \cdot y = |x|^{2} - 2x \cdot y + |y|^{2}$$

So if the equality holds in the Schwartz inequality, we have $x \cdot y = |x||y|$, hence

$$|x - y|^2 = |x|^2 - 2|x||y| + |y|^2 = (|x| - |y|)^2$$

Now we see that we may assume without loss of generality that |x| = |y| = 1. Indeed, if x = 0 or y = 0, then $x \cdot y = 0 = |x||y|$, otherwise consider the vectors x/|x| and y/|y|, note that $\left(\frac{x}{|x|}\right) \cdot \left(\frac{y}{|y|}\right) = \frac{1}{|x||y|}(x \cdot y) = \frac{1}{|x||y|}(|x||y|) = \left|\frac{x}{|x|}\right| \left|\frac{y}{|y|}\right| = 1$. Then we have $|x - y|^2 = (|x| - |y|)^2 = 0$, so x = y. Therefore the equality holds in the Schwartz inequality if and only if x = 0 or y = 0 or y = 0 or

 $\frac{x}{|x|} = \frac{y}{|y|}$, i.e., $x = \lambda y, \lambda \in \mathbb{R}$, x is parallel to y.

Chapter 1, problem 16. Suppose $k \ge 3, x, y \in \mathbb{R}^k, |x - y| = d > 0$, and r > 0. Prove:

(a) If 2r > d, there are infinitely many $z \in \mathbb{R}^k$ such that

$$|z - x| = |z - y| = r.$$

(b) If 2r = d, there exists one such z.

(c) If 2r < d, there exists no such z.

How must these statements be modified if k is 2 or 1?

Solution.

(a) First of all, let us have a geometric view of |x - y|. |x - y| is the distance of x to y, so the points $z \in \mathbb{R}^k$ such that |z - x| = r give the sphere of center x and radius r, call it $S_r(x)$. Hence |z-x| = |z-y| = r gives the intersection of the spheres with centers x and y, respectively, and radius r.

Let $\omega \in \mathbb{R}^k, |\omega| = 1$, and $\omega \perp (x - y)$, ie, $\omega \cdot (x - y) = 0$. Let $x + y = \left(\sqrt{-\frac{d^2}{d^2}} \right)$

$$z = \frac{x+y}{2} + \left(\sqrt{r^2 - \frac{d^2}{4}}\right)\omega.$$

Note that since $k \ge 3$, there are infinitely many $\omega \in \mathbb{R}^k$, $|\omega| = 1$, with $\omega \perp (x - y)$. Now since $\omega \perp (x - y)$

(0.1)
$$|z-x|^2 = \left|\frac{x-y}{2}\right|^2 + \left(r^2 - \frac{d^2}{4}\right)|\omega|^2 = \frac{d^2}{4} + r^2 - \frac{d^2}{4} = r^2.$$

Similarly one shows that |z - y| = r.

Therefore there are infinitely z s.t. |z - x| = |z - y| = r. Note that we strongly use that 2r > d, otherwise $r^2 - \frac{d^2}{4} \le 0$. Also, the equation above, (0.1), caractherizes all such points z.

(b) By theorem 1.37 (f), triangle inequality,

$$d = |x - y| \le |z - x| + |z - y| = 2r.$$

Now note that 2r = d implies that the equality holds, but the equality holds if and only if $z = \frac{x+y}{2}$. Therefore there is exactly one z s.t. |z-x| = |z-y| = d/2, namely z = (x+y)/2. (c) If 2r < d, then clearly by the triangle inequality, one can see that there is no z such that |z-x| = |z-y| = r.

Note that in the case k = 2, if 2r > d then there exists exactly two points, say $z_1, z_2 \in \mathbb{R}^k$, such that $|z_j - x| = |z_j - y| = r, j = 1, 2$. If k = 2 and 2r = d, then the conclusion is the same as before. If k = 1, then if $2r \neq d$, there is no such z, if 2r = d, then there is exactly one such z.

Chapter 1, problem 17. Prove that

$$|x+y|^2 + |x-y|^2 = 2|x|^2 + 2|y|^2$$

if $x, y \in \mathbb{R}^k$. Interpret this geometrically, as a statement about parallelograms.

Solution. Previously we showed

$$|x - y| = |x|^{2} - 2x \cdot y + |y|^{2},$$

$$|x + y| = |x|^{2} + 2x \cdot y + |y|^{2}.$$

Then clearly we have what is asked for, the so called Parallelogram law, which states that the sum of the squares of the lengths of the four sides of a parallelogram equals the sum of the squares of the lengths of the two diagonals.

Chapter 1, problem 18. If $k \ge 2$ and $x \in \mathbb{R}^k$, prove that there exists $y \in \mathbb{R}^k$ such that $y \ne 0$, but $x \cdot y = 0$.

Solution.

Let $x = (x_1, ..., x_k) \in \mathbb{R}^k$. Assume that $x \neq 0$, otherwise $x \cdot y = 0$ for all $y \in \mathbb{R}^k$. Hence there exists at least one $x_j, j = 1, ..., k$, such that $x_j \neq 0$. Now given any k - 1 real numbers $y_1, y_2, ..., y_{j-1}, y_{j+1}, ..., y_k$, with at least one different from zero, consider

$$y_j = -\frac{1}{x_j}(x_1y_1 + x_2y_2 + \dots + x_{j-1}y_{j-1} + x_{j+1}y_{j+1} + \dots + x_ky_k).$$

By the choice of the y'_l s, l = 1, ..., k, $y = (y_1, ..., y_k) \in \mathbb{R}^k$, $y \neq 0$ and $x \cdot y = 0$. We say that y belongs to the k - 1 dimensional hyperplane $x^{\perp} = \{z \in \mathbb{R}^k : x \cdot z = 0\}$.

Chapter 2, problem 4. Is the set of irrational real numbers countable?

Solution.

The answer is no. Indeed if we assume that the set of irrational real numbers, say $\mathbb{R} \setminus \mathbb{Q}$, is countable, then the sets $[0,1] \cap (\mathbb{R} \setminus \mathbb{Q})$ and $[0,1] \cap \mathbb{Q}$ would be countable, since are subsets of countable sets, namely $\mathbb{R} \setminus \mathbb{Q}$ and \mathbb{Q} . Then

$$[0,1] = ([0,1] \cap (\mathbb{R} \setminus \mathbb{Q})) \cup ([0,1] \cap \mathbb{Q})$$

would be also countable, since it would be a union of two countable sets. But this is a contradiction with the corollary of theorem 2.43.

Chapter 2, problem 8. Is every point of every open set $E \subset \mathbb{R}^2$ a limit point of E? Answer the same question for closed sets in \mathbb{R}^2 .

Solution.

The answer is SIM! (SIM = YES in portuguese) Indeed If $E \subset \mathbb{R}^2$ is an open set, then every point $p \in E$ is an interior point of E, ie, there exists a neighborhood N of p such that $N \subset E$. Now given any neighborhood G of p, by theorem 2.24 $G \cap N$ is open, so there exists a neighborhood H of p such that $H \subset G \cap N \subset N \subset E$. So for any $q \in H, q \neq p$, $q \in G \cap E$, hence, since G is arbitrary, p is a limit point of E. Note that this proof works for if E is a subset of a general topological space, in particular for metric spaces.

The same property does not hold for general closed sets. For instance (0,1) is a point in the closed set $(0,1), (2,2), (3,1) \subset \mathbb{R}^2$ that is not a limit point.

Chapter 2, problem 9. Let E° denote the set of all interior points of E.

(a) Prove that E° is always open.

(b) Prove that E is open if and only if $E^{\circ} = E$.

(c) If $G \subset E$ and G is open, prove that $G \subset E^{\circ}$.

Solution.

(a) If $E^{\circ} =$, then it is clearly open, so assume $E^{\circ} \neq .$ Let $p \in E^{\circ}$. Then p is an interior point of E, ie, there exists a neighborhood of p, say N, such that $N \subset E$. Since N is open, by definition, $N = N^{\circ}$ and clearly $N^{\circ} \subset E^{\circ}$. Therefore $N = N^{\circ} \subset E^{\circ}$ and since $p \in E^{\circ}$ is arbitrary, E° is open.

(b) Clearly if E is open, then by definition $E = E^{\circ}$. Conversely if $E = E^{\circ}$, then every point of E is interior, so E is open by definition.

(c) Let $G \subset E$ and G open. Then we have

$$G = G^{\circ} \subset E^{\circ}.$$