New New Directions in Cryptography

Nick Egbert

Student Colloquium Talk

20 Februrary 2019

Overview

- Cryptography overview
 - The general problem
 - Classical Diffie-Hellman
- Elliptic curve basics
 - Definition
 - Group structure
- Elliptic curves in cryptography
 - How they're used today
 - Advantages and potential doom
- Post-quantum cryptography
 - Supersingular elliptic curves
 - Isogenies
 - Ideal class group

2 / 37

• There are two basic types of encryption: symmetric and asymmetric.

- There are two basic types of encryption: symmetric and asymmetric.
- In symmetric encryption, both parties have the same key for encrypting and decrypting.

- There are two basic types of encryption: symmetric and asymmetric.
- In symmetric encryption, both parties have the same key for encrypting and decrypting.
- Asymmetric encryption is not symmetric.

- There are two basic types of encryption: symmetric and asymmetric.
- In symmetric encryption, both parties have the same key for encrypting and decrypting.
- Asymmetric encryption is not symmetric.
- Asymmetric encryption is generally used to establish a shared key.

5 / 37

Discrete log problem (DLP)

Let p be a prime number, and let $a, b \in \mathbb{Z}$ such that $a, b \not\equiv 0 \mod p$. Suppose we know there exists $k \in \mathbb{Z}$ such that

$$a^k \equiv b \pmod{p}$$
.

The (classical) discrete log problem is to find k.

Discrete log problem (DLP)

Let p be a prime number, and let $a, b \in \mathbb{Z}$ such that $a, b \not\equiv 0 \mod p$. Suppose we know there exists $k \in \mathbb{Z}$ such that

$$a^k \equiv b \pmod{p}$$
.

The (classical) discrete log problem is to find k. More generally, if G is a group and $a,b\in G$, and given

$$a^k=b,$$

the discrete log problem is to find k.

- Alice and Bob publicly agree upon a prime p and a generator $g \in G = \mathbb{F}_p^{\times}$.
- Alice picks a random integer $a \in \{2, ..., p-2\}$ and computes $A = g^a \mod p$.
- Bob picks a random integer $b \in \{2, ..., p-2\}$ and computes $B = g^b \mod p$.
- The integers a, b are kept secret, and Alice and Bob transmit A and B publicly.
- They compute a shared secret $K = B^a = g^{ba} = g^{ab} = A^b$.
- Security relies upon the DLP.

- Alice and Bob publicly agree upon a prime p and a generator $g \in G = \mathbb{F}_p^{\times}$.
- Alice picks a random integer $a \in \{2, \dots, p-2\}$ and computes $A = g^a \mod p$.
- Bob picks a random integer $b \in \{2, ..., p-2\}$ and computes $B = g^b \mod p$.
- The integers a, b are kept secret, and Alice and Bob transmit A and B publicly.
- They compute a shared secret $K = B^a = g^{ba} = g^{ab} = A^b$.
- Security relies upon the DLP.

- Alice and Bob publicly agree upon a prime p and a generator $g \in G = \mathbb{F}_p^{\times}$.
- Alice picks a random integer $a \in \{2, \dots, p-2\}$ and computes $A = g^a \mod p$.
- Bob picks a random integer $b \in \{2, ..., p-2\}$ and computes $B = g^b \mod p$.
- The integers a, b are kept secret, and Alice and Bob transmit A and B publicly.
- They compute a shared secret $K = B^a = g^{ba} = g^{ab} = A^b$.
- Security relies upon the DLP.

7 / 37

- Alice and Bob publicly agree upon a prime p and a generator $g \in G = \mathbb{F}_p^{\times}$.
- Alice picks a random integer $a \in \{2, ..., p-2\}$ and computes $A = g^a \mod p$.
- Bob picks a random integer $b \in \{2, ..., p-2\}$ and computes $B = g^b \mod p$.
- The integers a, b are kept secret, and Alice and Bob transmit A and B publicly.
- They compute a shared secret $K = B^a = g^{ba} = g^{ab} = A^b$.
- Security relies upon the DLP.

◆□▶ ◆□▶ ◆豊▶ ◆豊▶ ・豊 める◆

7 / 37

Nick Egbert Cryptomania 20 Februrary 2019

Public parameters:

g, p

◆ロト ◆個ト ◆差ト ◆差ト 差 めらゆ

Issues with DH

- When $G = \mathbb{F}_q^{\times}$, the DLP can be solved in subexponential time.
- This requires larger keys.
- In the 1980s, Victor Miller and Neal Koblitz independently suggested using elliptic curves for cryptography.

What is an elliptic curve?

• An elliptic curve E is the graph of an equation of the form

$$y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$

with coefficients in some field K.

• If $char K \neq 2,3$, then via a change of variables, we may assume E has the form

$$y^2 = x^3 + Ax + B.$$

• To be considered an elliptic curve, we require that $4A^3 + 27B^2 \neq 0$, so that $x^3 + Ax + B$ does not have any repeated roots.

What is an elliptic curve?

• An elliptic curve E is the graph of an equation of the form

$$y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$

with coefficients in some field K.

• If ${\sf char} {\it K} \neq 2,3,$ then via a change of variables, we may assume ${\it E}$ has the form

$$y^2 = x^3 + Ax + B.$$

• To be considered an elliptic curve, we require that $4A^3 + 27B^2 \neq 0$, so that $x^3 + Ax + B$ does not have any repeated roots.

What is an elliptic curve?

• An elliptic curve E is the graph of an equation of the form

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

with coefficients in some field K.

• If $char K \neq 2,3$, then via a change of variables, we may assume E has the form

$$y^2 = x^3 + Ax + B.$$

• To be considered an elliptic curve, we require that $4A^3 + 27B^2 \neq 0$, so that $x^3 + Ax + B$ does not have any repeated roots.

◆ロト ◆部ト ◆差ト ◆差ト 差 めなべ

Examples

E1:
$$y^2 = x^3 - x$$

$$E_2$$
: $y^2 = x^3 + x$

Nick Egbert Cryptomania

Examples

 E_1 : $y^2 = x^3 - x \pmod{683}$

Examples

 E_1 : $y^2 = x^3 - x \pmod{683}$

Group structure

•
$$E(K) = \{(x, y) \in K \times K \mid y^2 = x^3 + Ax + B\} \cup \{\infty\}$$

• Rational points plus the point at infinity form a group, where addition law is given by "chord-and-tangent" method

Adding points

 $E \colon y^2 = x^3 - 24003 * x + 1296702$

- For $q = p^n$, where p is prime, we consider only $E(\mathbb{F}_q)$.
- We will assume that $\operatorname{char} K \neq 2,3$ and that $E: y^2 = x^3 + Ax + B$.
- Later, we will want to write E in the form $y^2 = x^3 + Ax^2 + x$, referred to as a Montgomery curve.
- ullet We define the *j*-invariant of E to be

$$j(E) = 1728 \frac{4A^3}{4A^3 + 27B^2}$$

• Fact: E_1, E_2 are isomorphic over $\overline{\mathbb{F}}_q$ if and only if $j(E_1) = j(E_2)$.

16 / 37

Nick Egbert Cryptomania 20 Februrary 2019

- For $q = p^n$, where p is prime, we consider only $E(\mathbb{F}_q)$.
- We will assume that $\operatorname{char} K \neq 2,3$ and that $E: y^2 = x^3 + Ax + B$.
- Later, we will want to write E in the form $y^2 = x^3 + Ax^2 + x$, referred to as a Montgomery curve.
- We define the *j*-invariant of *E* to be

$$j(E) = 1728 \frac{4A^3}{4A^3 + 27B^2}$$

• Fact: E_1, E_2 are isomorphic over $\overline{\mathbb{F}}_q$ if and only if $j(E_1) = j(E_2)$.

- For $q = p^n$, where p is prime, we consider only $E(\mathbb{F}_q)$.
- We will assume that $\operatorname{char} K \neq 2,3$ and that $E: y^2 = x^3 + Ax + B$.
- Later, we will want to write E in the form $y^2 = x^3 + Ax^2 + x$, referred to as a Montgomery curve.
- ullet We define the j-invariant of E to be

$$j(E) = 1728 \frac{4A^3}{4A^3 + 27B^2}$$

• Fact: E_1, E_2 are isomorphic over $\overline{\mathbb{F}}_q$ if and only if $j(E_1) = j(E_2)$.

16 / 37

Nick Egbert Cryptomania 20 Februrary 2019

- For $q = p^n$, where p is prime, we consider only $E(\mathbb{F}_q)$.
- We will assume that $\operatorname{char} K \neq 2,3$ and that $E: y^2 = x^3 + Ax + B$.
- Later, we will want to write E in the form $y^2 = x^3 + Ax^2 + x$, referred to as a Montgomery curve.
- ullet We define the j-invariant of E to be

$$j(E) = 1728 \frac{4A^3}{4A^3 + 27B^2}$$

• Fact: E_1 , E_2 are isomorphic over $\overline{\mathbb{F}}_q$ if and only if $j(E_1) = j(E_2)$.

16 / 37

Nick Egbert Cryptomania 20 Februrary 2019

- For $q = p^n$, where p is prime, we consider only $E(\mathbb{F}_q)$.
- We will assume that $\operatorname{char} K \neq 2,3$ and that $E: y^2 = x^3 + Ax + B$.
- Later, we will want to write E in the form $y^2 = x^3 + Ax^2 + x$, referred to as a Montgomery curve.
- ullet We define the j-invariant of E to be

$$j(E) = 1728 \frac{4A^3}{4A^3 + 27B^2}$$

• Fact: E_1, E_2 are isomorphic over $\overline{\mathbb{F}}_q$ if and only if $j(E_1) = j(E_2)$.

ECDH

- ECDH = "Elliptic Curve Diffie-Hellman"
- Alice and Bob agree on an elliptic curve E and a field \mathbb{F}_q such that the DLP is hard for $E(\mathbb{F}_q)$.
- They agree on a point $P \in E(\mathbb{F}_q)$ of large (usually prime) order.

Public parameters:

$$E(\mathbb{F}_q)$$
, P

Advantages of ECDH

- Using elliptic curves allows for much smaller key sizes: an RSA 4096-bit key provides the same level of security as a 313-bit EC key.
- The group law for elliptic curves can be performed efficiently.

Nick Egbert Cryptomania 20 Februrary 2019 19 / 37

- In 1994, Peter Shor published an algorithm that solves the DLP (and factoring large numbers) in polynomial time.
- This effectively breaks any cryptosystem based on the hardness of these two problems.
- Is cryptography broken in a post-quantum world?

Nick Egbert Cryptomania 20 Februrary 2019 20 / 37

- In 1994, Peter Shor published an algorithm that solves the DLP (and factoring large numbers) in polynomial time.
- This effectively breaks any cryptosystem based on the hardness of these two problems.
- Is cryptography broken in a post-quantum world?
 - Fear not.

20 / 37

- In 1994, Peter Shor published an algorithm that solves the DLP (and factoring large numbers) in polynomial time.
- This effectively breaks any cryptosystem based on the hardness of these two problems.
- Is cryptography broken in a post-quantum world?
 - Fear not.
 - There have been several major developments in the past ten years.

- In 1994, Peter Shor published an algorithm that solves the DLP (and factoring large numbers) in polynomial time.
- This effectively breaks any cryptosystem based on the hardness of these two problems.
- Is cryptography broken in a post-quantum world?
 - Fear not.
 - There have been several major developments in the past ten years.
 - Many of them use isogeny graphs of supersingular elliptic curves.

Definition

Let E be an elliptic curve over \mathbb{F}_q . We define the n-torsion subgroup to be

$$E[n] = \{ P \in E(\overline{\mathbb{F}}_q) \mid nP = \infty \}.$$

Nick Egbert Cryptomania 20 Februrary 2019 21 / 37

Definition

Let E be an elliptic curve over \mathbb{F}_q . We define the n-torsion subgroup to be

$$E[n] = \{ P \in E(\overline{\mathbb{F}}_q) \mid nP = \infty \}.$$

Remark

E[n] is a subgroup of $E(\overline{\mathbb{F}}_q)$. In general, we can't expect that $E[n] \subset E(\mathbb{F}_q)$.

21 / 37

Definition

Let E be an elliptic curve over \mathbb{F}_q . We define the n-torsion subgroup to be

$$E[n] = \{ P \in E(\overline{\mathbb{F}}_q) \mid nP = \infty \}.$$

Remark

E[n] is a subgroup of $E(\overline{\mathbb{F}}_q)$. In general, we can't expect that $E[n] \subset E(\mathbb{F}_q)$.

Theorem

Let $p = \operatorname{char} \mathbb{F}_q$. If p does not divide n, then

$$E[n] \cong \mathbb{Z}_n \oplus \mathbb{Z}_n$$
.

Nick Egbert Cryptomania 20 Februrary 2019 21 / 37

Definition

An elliptic curve E/\mathbb{F}_q is called **supersingular** if $E[p] = {\infty}$, where p is the characteristic of \mathbb{F}_q .

Theorem

Let E/\mathbb{F}_q be an elliptic curve, where $q=p^n$. Let $t=q+1-\#E(\mathbb{F}_q)$. Then E is supersingular if and only if

$$t \equiv 0 \pmod{p}$$
.

Nick Egbert Cryptomania 20 Februrary 2019 22 / 37

Isogenies

Definition

Let E_1, E_2 be elliptic curves over \mathbb{F}_q . An **isogeny** from E_1 to E_2 is a nonconstant homomorphism

$$\alpha \colon E_1(\overline{\mathbb{F}}_q) \to E_2(\overline{\mathbb{F}}_q)$$

given by rational maps.

Definition

We may write $\alpha(x,y)=(r_1(x),yr_2(x))$, where r_1,r_2 are rational functions. Writing $r_1(x)=\frac{p(x)}{q(x)}$, the **degree** of α is

$$\deg \alpha = \max(\deg p, \deg q).$$

23 / 37

Endomorphisms of elliptic curves

Definition

An **endomorphism** of E is an isogeny from E to itself.

24 / 37

Endomorphisms of elliptic curves

Definition

An **endomorphism** of E is an isogeny from E to itself.

Example

The multiplication by n map:

$$[n]: E \to E$$
$$(x,y) \mapsto n(x,y)$$

24 / 37

Endomorphisms of elliptic curves

Definition

An **endomorphism** of E is an isogeny from E to itself.

Example

The multiplication by n map:

$$[n] \colon E \to E$$
$$(x, y) \mapsto n(x, y)$$

Example

The Frobenius endomorphism:

$$\pi: E \to E$$

 $(x,y) \mapsto (x^p, y^p)$

• Let $K = \mathbb{Q}(\sqrt{-p})$. Let \mathcal{O}_K denote the **ring of integers** of K, i.e., $\{\alpha \in K \mid f(\alpha) = 0 \text{ for some monic } f \in \mathbb{Z}[x]\}$.

- An order $\mathcal{O} \in K$ is a ring such that $\mathbb{Z} \subsetneq \mathcal{O} \subseteq \mathcal{O}_K$.
- A fractional ideal of \mathcal{O} is of the form $\alpha\mathfrak{a}$, where $\alpha \in K^{\times}$ and \mathfrak{a} is an \mathcal{O} -ideal. A principal fractional ideal is of the form $\alpha\mathcal{O}$.
- We say a fractional ideal \mathfrak{a} is **invertible** if $\exists \mathfrak{b}$ such that $\mathfrak{a}\mathfrak{b} = \mathcal{O}$.

Nick Egbert Cryptomania 20 Februrary 2019 25 / 37

• Let $K = \mathbb{Q}(\sqrt{-p})$. Let \mathcal{O}_K denote the **ring of integers** of K, i.e., $\{\alpha \in K \mid f(\alpha) = 0 \text{ for some monic } f \in \mathbb{Z}[x]\}$.

- An **order** $\mathcal{O} \in K$ is a ring such that $\mathbb{Z} \subsetneq \mathcal{O} \subseteq \mathcal{O}_K$.
- A fractional ideal of \mathcal{O} is of the form $\alpha\mathfrak{a}$, where $\alpha \in K^{\times}$ and \mathfrak{a} is an \mathcal{O} -ideal. A principal fractional ideal is of the form $\alpha\mathcal{O}$.
- We say a fractional ideal \mathfrak{a} is **invertible** if $\exists \mathfrak{b}$ such that $\mathfrak{a}\mathfrak{b} = \mathcal{O}$.

25 / 37

• Let $K = \mathbb{Q}(\sqrt{-p})$. Let \mathcal{O}_K denote the **ring of integers** of K, i.e., $\{\alpha \in K \mid f(\alpha) = 0 \text{ for some monic } f \in \mathbb{Z}[x]\}$.

- An **order** $\mathcal{O} \in K$ is a ring such that $\mathbb{Z} \subsetneq \mathcal{O} \subseteq \mathcal{O}_K$.
- A fractional ideal of \mathcal{O} is of the form $\alpha \mathfrak{a}$, where $\alpha \in K^{\times}$ and \mathfrak{a} is an \mathcal{O} -ideal. A principal fractional ideal is of the form $\alpha \mathcal{O}$.
- We say a fractional ideal \mathfrak{a} is **invertible** if $\exists \mathfrak{b}$ such that $\mathfrak{a}\mathfrak{b} = \mathcal{O}$.

Nick Egbert Cryptomania 20 Februrary 2019 25 / 37

• Let $K = \mathbb{Q}(\sqrt{-p})$. Let \mathcal{O}_K denote the **ring of integers** of K, i.e., $\{\alpha \in K \mid f(\alpha) = 0 \text{ for some monic } f \in \mathbb{Z}[x]\}$.

- An **order** $\mathcal{O} \in K$ is a ring such that $\mathbb{Z} \subsetneq \mathcal{O} \subseteq \mathcal{O}_K$.
- A fractional ideal of \mathcal{O} is of the form $\alpha \mathfrak{a}$, where $\alpha \in K^{\times}$ and \mathfrak{a} is an \mathcal{O} -ideal. A principal fractional ideal is of the form $\alpha \mathcal{O}$.
- We say a fractional ideal $\mathfrak a$ is **invertible** if $\exists \mathfrak b$ such that $\mathfrak a\mathfrak b = \mathcal O$.

Nick Egbert Cryptomania 20 Februrary 2019 25 / 37

Ideal class group

- By construction, the set of invertible fractional ideals $I(\mathcal{O})$ forms an abelian group under multiplication of ideals.
- The set of principal ideals $P(\mathcal{O})$ is a (normal) subgroup, so we may consider the **ideal class group** of \mathcal{O}

$$cl(\mathcal{O}) = I(\mathcal{O})/P(\mathcal{O}).$$

• Let E/\mathbb{F}_p be a supersingular elliptic curve. Then $\operatorname{End}_{\mathbb{F}_p}(E) \cong \mathcal{O}$, where \mathcal{O} is an order in an imaginary quadratic field.

Nick Egbert Cryptomania 20 Februrary 2019 26 / 37

Ideal class group

- By construction, the set of invertible fractional ideals $I(\mathcal{O})$ forms an abelian group under multiplication of ideals.
- The set of principal ideals $P(\mathcal{O})$ is a (normal) subgroup, so we may consider the **ideal class group** of \mathcal{O}

$$cl(\mathcal{O}) = I(\mathcal{O})/P(\mathcal{O}).$$

• Let E/\mathbb{F}_p be a supersingular elliptic curve. Then $\operatorname{End}_{\mathbb{F}_p}(E) \cong \mathcal{O}$, where \mathcal{O} is an order in an imaginary quadratic field.

Nick Egbert Cryptomania 20 Februrary 2019 26 / 37

Ideal class group

- By construction, the set of invertible fractional ideals $I(\mathcal{O})$ forms an abelian group under multiplication of ideals.
- The set of principal ideals $P(\mathcal{O})$ is a (normal) subgroup, so we may consider the **ideal class group** of \mathcal{O}

$$cl(\mathcal{O}) = I(\mathcal{O})/P(\mathcal{O}).$$

• Let E/\mathbb{F}_p be a supersingular elliptic curve. Then $\operatorname{End}_{\mathbb{F}_p}(E) \cong \mathcal{O}$, where \mathcal{O} is an order in an imaginary quadratic field.

Nick Egbert Cryptomania 20 Februrary 2019 26 / 37

• Let E/\mathbb{F}_p be an elliptic curve. Define

$$E[\mathfrak{a}] = \left\{ P \in E(\overline{\mathbb{F}}_p) \mid \alpha(P) = 0 \,\, \forall \alpha \in \mathfrak{a} \right\}.$$

• We can define the action of the \mathcal{O} -ideal \mathfrak{a} on E as the image E' under the isogeny

$$\phi \colon E \to E'$$

whose kernel is $E[\mathfrak{a}]$. We denote $E' = \mathfrak{a} * E$.

 Fact: an isogeny is uniquely determined by its kernel (up to isomorphism).

Nick Egbert Cryptomania 20 Februrary 2019 27 / 37

• Let E/\mathbb{F}_p be an elliptic curve. Define

$$E[\mathfrak{a}] = \left\{ P \in E(\overline{\mathbb{F}}_p) \mid \alpha(P) = 0 \,\, \forall \alpha \in \mathfrak{a} \right\}.$$

• We can define the action of the \mathcal{O} -ideal $\mathfrak a$ on E as the image E' under the isogeny

$$\phi \colon E \to E'$$

whose kernel is $E[\mathfrak{a}]$. We denote $E' = \mathfrak{a} * E$.

 Fact: an isogeny is uniquely determined by its kernel (up to isomorphism).

Nick Egbert Cryptomania 20 Februrary 2019 27 / 37

• Let E/\mathbb{F}_p be an elliptic curve. Define

$$E[\mathfrak{a}] = \left\{ P \in E(\overline{\mathbb{F}}_p) \mid \alpha(P) = 0 \,\, \forall \alpha \in \mathfrak{a} \right\}.$$

• We can define the action of the \mathcal{O} -ideal $\mathfrak a$ on E as the image E' under the isogeny

$$\phi \colon E \to E'$$

whose kernel is $E[\mathfrak{a}]$. We denote $E' = \mathfrak{a} * E$.

 Fact: an isogeny is uniquely determined by its kernel (up to isomorphism).

◆ロト ◆部ト ◆差ト ◆差ト 差 めなべ

27 / 37

- Let S be the set of supersingular elliptic curves E_A/\mathbb{F}_p : $y^2 = x^3 + Ax^2 + x$, where $p \ge 5$ and $p \equiv 3 \pmod{8}$.
- In this case, $\operatorname{End}_{\mathbb{F}_p}(E_A) \cong \mathbb{Z}[\sqrt{-p}].$
- $\mathfrak{a} * E_A$ is an ℓ -isogeny if and only if $\mathfrak{a} = \langle [\ell], \pi \pm 1 \rangle$

Nick Egbert Cryptomania 20 Februrary 2019 28 / 37

- Let S be the set of supersingular elliptic curves E_A/\mathbb{F}_p : $y^2 = x^3 + Ax^2 + x$, where $p \ge 5$ and $p \equiv 3 \pmod{8}$.
- In this case, $\operatorname{End}_{\mathbb{F}_p}(E_A) \cong \mathbb{Z}[\sqrt{-p}].$
- $\mathfrak{a} * E_A$ is an ℓ -isogeny if and only if $\mathfrak{a} = \langle [\ell], \pi \pm 1 \rangle$

Nick Egbert Cryptomania 20 Februrary 2019 28 / 37

- Let S be the set of supersingular elliptic curves E_A/\mathbb{F}_p : $y^2 = x^3 + Ax^2 + x$, where $p \ge 5$ and $p \equiv 3 \pmod{8}$.
- In this case, $\operatorname{End}_{\mathbb{F}_p}(E_A) \cong \mathbb{Z}[\sqrt{-p}].$
- $\mathfrak{a} * E_A$ is an ℓ -isogeny if and only if $\mathfrak{a} = \langle [\ell], \pi \pm 1 \rangle$

Nick Egbert Cryptomania 20 Februrary 2019 28 / 37

CSIDH

- In November 2018, Castryck, Lange, Martindale, Panny and Renes published a paper on their algorithm CSIDH, which stands for Commutative Supersingular Isogeny Diffie-Hellman.
- CSIDH is thought to be a suitable post-quantum replacement for ECDH.
- Key sizes are extremely small.

29 / 37

CSIDH

- In November 2018, Castryck, Lange, Martindale, Panny and Renes published a paper on their algorithm CSIDH, which stands for Commutative Supersingular Isogeny Diffie-Hellman.
- CSIDH is thought to be a suitable post-quantum replacement for ECDH.
- Key sizes are extremely small.

29 / 37

CSIDH

- In November 2018, Castryck, Lange, Martindale, Panny and Renes published a paper on their algorithm CSIDH, which stands for Commutative Supersingular Isogeny Diffie-Hellman.
- CSIDH is thought to be a suitable post-quantum replacement for ECDH.
- Key sizes are extremely small.

29 / 37

Isogeny graphs

- Let p,ℓ be distinct primes. The isogeny graph G_ℓ over \mathbb{F}_p has
 - Vertices: Elliptic curves $E_A \in S$ with $\operatorname{End}(E_A) \cong \mathbb{Z}[\sqrt{-p}]$
 - Edges: (E_A, E_B) , where there is an ℓ -isogeny between E_A and E_B
- For illustration we will fix p = 419.
- In general, the CSIDH authors pick $p=4\ell_1\cdots\ell_n-1$, where ℓ_1,\ldots,ℓ_n are distinct odd primes.

Nick Egbert Cryptomania 20 Februrary 2019 30 / 37

Isogeny graphs

- Let p,ℓ be distinct primes. The isogeny graph G_ℓ over \mathbb{F}_p has
 - Vertices: Elliptic curves $E_A \in S$ with $\operatorname{End}(E_A) \cong \mathbb{Z}[\sqrt{-p}]$
 - Edges: (E_A, E_B) , where there is an ℓ -isogeny between E_A and E_B
- For illustration we will fix p = 419.
- In general, the CSIDH authors pick $p=4\ell_1\cdots\ell_n-1$, where ℓ_1,\ldots,ℓ_n are distinct odd primes.

Nick Egbert Cryptomania 20 Februrary 2019 30 / 37

Isogeny graphs

- Let p, ℓ be distinct primes. The isogeny graph G_{ℓ} over \mathbb{F}_p has
 - Vertices: Elliptic curves $E_A \in S$ with $\operatorname{End}(E_A) \cong \mathbb{Z}[\sqrt{-p}]$
 - Edges: (E_A, E_B) , where there is an ℓ -isogeny between E_A and E_B
- For illustration we will fix p = 419.
- In general, the CSIDH authors pick $p=4\ell_1\cdots\ell_n-1$, where ℓ_1,\ldots,ℓ_n are distinct odd primes.

Nick Egbert Cryptomania 20 Februrary 2019 30 / 37

Isogeny graph G₃

Isogeny graph G₅

Nick Egbert Cryptomania 20 Februrary 2019 32 / 37

Isogeny graph G₅

Nick Egbert Cryptomania 20 Februrary 2019 32 / 37

Isogeny graph G₅

Isogeny graph G₅

Isogeny graph G₇

CSIDH

- CSIDH stands for Commutative Supersingular Isogeny Diffie-Hellman.
- It is proposed as a post-quantum drop-in replacement for (EC)DH.
- They use the action of the ideal class group and the supersingular isogeny graph to establish keys.

Isogeny graph used in CSIDH

Isogeny graph used in CSIDH

Isogeny graph used in CSIDH

$$E_{158} = \langle 3, \pi - 1 \rangle * E_0$$

$$L/5 - \langle I, I - I \rangle + L_0$$

$$E_{295} = \langle 5, \pi + 1 \rangle * E_{158}$$

$$E_{40} = \langle 5, \pi - 1 \rangle * E_{75}$$

$$E_{275} = \langle 7, \pi - 1 \rangle * E_{295}$$

$$E_6 = \langle 3, \pi - 1 \rangle * E_{245}$$

$$E_{228} = \langle 3, \pi + 1 \rangle * E_{275}$$

$$E_{144} = \langle 5, \pi + 1 \rangle * E_6$$

Alice and Bob trade

$$E_{191} = \langle 3, \pi - 1 \rangle * E_{144}$$

$$E_{344} = \langle 5, \pi + 1 \rangle * E_{191}$$

$$E_0 = \langle 7, \pi - 1 \rangle * E_{344}$$

$$E_{261} = \langle 3, \pi + 1 \rangle * E_0$$

The shared secret key is E_{261}

Thank you!