New New Directions in Cryptography

Nick Egbert
Student Colloquium Talk
20 Februrary 2019

Overview

(1) Cryptography overview

- The general problem
- Classical Diffie-Hellman
(2) Elliptic curve basics
- Definition
- Group structure
(3) Elliptic curves in cryptography
- How they're used today
- Advantages and potential doom

4) Post-quantum cryptography

- Supersingular elliptic curves
- Isogenies
- Ideal class group

The problem

ㅇ
Alice

ㅇ
Bob

The problem

Message \longrightarrow

Alice
$\underset{x}{ }$
Bob

The problem

The problem

Secure channel

Eve

The problem

Trusted courier

Secure channel

Eve

The problem

Trusted courier

The solution

- There are two basic types of encryption: symmetric and asymmetric.

The solution

- There are two basic types of encryption: symmetric and asymmetric.
- In symmetric encryption, both parties have the same key for encrypting and decrypting.

The solution

- There are two basic types of encryption: symmetric and asymmetric.
- In symmetric encryption, both parties have the same key for encrypting and decrypting.
- Asymmetric encryption is not symmetric.

The solution

- There are two basic types of encryption: symmetric and asymmetric.
- In symmetric encryption, both parties have the same key for encrypting and decrypting.
- Asymmetric encryption is not symmetric.
- Asymmetric encryption is generally used to establish a shared key.

The solution

Trusted courier

The solution

Trusted courier

Secure channel

Eve

Discrete log problem (DLP)

Let p be a prime number, and let $a, b \in \mathbb{Z}$ such that $a, b \not \equiv 0 \bmod p$. Suppose we know there exists $k \in \mathbb{Z}$ such that

$$
a^{k} \equiv b \quad(\bmod p)
$$

The (classical) discrete log problem is to find k.

Discrete log problem (DLP)

Let p be a prime number, and let $a, b \in \mathbb{Z}$ such that $a, b \not \equiv 0 \bmod p$. Suppose we know there exists $k \in \mathbb{Z}$ such that

$$
a^{k} \equiv b \quad(\bmod p)
$$

The (classical) discrete log problem is to find k. More generally, if G is a group and $a, b \in G$, and given

$$
a^{k}=b,
$$

the discrete log problem is to find k.

Diffie-Hellman Key Exchange (1976)

- Alice and Bob publicly agree upon a prime p and a generator $g \in G=\mathbb{F}_{p}^{\times}$.
- Alice picks a random integer $a \in\{2, \ldots, p-2\}$ and computes $A=g^{a} \bmod p$.
- Bob picks a random integer $b \in\{2, \ldots, p-2\}$ and computes $B=g^{b} \bmod p$.
- The integers a, b are kept secret, and Alice and Bob transmit A and B publicly.
- They compute a shared secret $K=B^{a}=g^{b a}=g^{a b}=A^{b}$.
- Security relies upon the DLP.

Diffie-Hellman Key Exchange (1976)

- Alice and Bob publicly agree upon a prime p and a generator $g \in G=\mathbb{F}_{p}^{\times}$.
- Alice picks a random integer $a \in\{2, \ldots, p-2\}$ and computes $A=g^{a} \bmod p$.
- Bob picks a random integer $b \in\{2, \ldots, p-2\}$ and computes $B=g^{b} \bmod p$.
- The integers a, b are kept secret, and Alice and Bob transmit A and B publicly.
- They compute a shared secret $K=B^{a}=g^{b a}=g^{a b}=A^{b}$.
- Security relies upon the DLP.

Diffie-Hellman Key Exchange (1976)

- Alice and Bob publicly agree upon a prime p and a generator $g \in G=\mathbb{F}_{p}^{\times}$.
- Alice picks a random integer $a \in\{2, \ldots, p-2\}$ and computes $A=g^{a} \bmod p$.
- Bob picks a random integer $b \in\{2, \ldots, p-2\}$ and computes $B=g^{b} \bmod p$.
- The integers a, b are kept secret, and Alice and Bob transmit A and B publicly.
- They compute a shared secret $K=B^{a}=g^{b a}=g^{a b}=A^{b}$.
- Security relies upon the DLP.

Diffie-Hellman Key Exchange (1976)

- Alice and Bob publicly agree upon a prime p and a generator $g \in G=\mathbb{F}_{p}^{\times}$.
- Alice picks a random integer $a \in\{2, \ldots, p-2\}$ and computes $A=g^{a} \bmod p$.
- Bob picks a random integer $b \in\{2, \ldots, p-2\}$ and computes $B=g^{b} \bmod p$.
- The integers a, b are kept secret, and Alice and Bob transmit A and B publicly.
- They compute a shared secret $K=B^{a}=g^{b a}=g^{a b}=A^{b}$.
- Security relies upon the DLP.

Diffie-Hellman Key Exchange (1976)

Public parameters:
g, p

Issues with DH

- When $G=\mathbb{F}_{q}^{\times}$, the DLP can be solved in subexponential time.
- This requires larger keys.
- In the 1980s, Victor Miller and Neal Koblitz independently suggested using elliptic curves for cryptography.

What is an elliptic curve?

- An elliptic curve E is the graph of an equation of the form

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

with coefficients in some field K.

- If char $K \neq 2,3$, then via a change of variables, we may assume E has the form

$$
y^{2}=x^{3}+A x+B
$$

- To be considered an elliptic curve, we require that $4 A^{3}+27 B^{2} \neq 0$, so that $x^{3}+A x+B$ does not have any repeated roots.

What is an elliptic curve?

- An elliptic curve E is the graph of an equation of the form

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

with coefficients in some field K.

- If char $K \neq 2,3$, then via a change of variables, we may assume E has the form

$$
y^{2}=x^{3}+A x+B
$$

- To be considered an elliptic curve, we require that $4 A^{3}+27 B^{2} \neq 0$, so that $x^{3}+A x+B$ does not have any repeated roots.

What is an elliptic curve?

- An elliptic curve E is the graph of an equation of the form

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

with coefficients in some field K.

- If char $K \neq 2,3$, then via a change of variables, we may assume E has the form

$$
y^{2}=x^{3}+A x+B
$$

- To be considered an elliptic curve, we require that $4 A^{3}+27 B^{2} \neq 0$, so that $x^{3}+A x+B$ does not have any repeated roots.

Examples

$E 1: y^{2}=x^{3}-x$
$E_{2}: y^{2}=x^{3}+x$

Examples

Examples

Group structure

- $E(K)=\left\{(x, y) \in K \times K \mid y^{2}=x^{3}+A x+B\right\} \cup\{\infty\}$
- Rational points plus the point at infinity form a group, where addition law is given by "chord-and-tangent" method

Adding points

$E: y^{2}=x^{3}-24003 * x+1296702$

Assumptions

- For $q=p^{n}$, where p is prime, we consider only $E\left(\mathbb{F}_{q}\right)$.
- We will assume that char $K \neq 2,3$ and that $E: y^{2}=x^{3}+A x+B$.
- Later, we will want to write E in the form $y^{2}=x^{3}+A x^{2}+x$, referred to as a Montgomery curve.
- We define the j-invariant of E to be

$$
j(E)=1728 \frac{4 A^{3}}{4 A^{3}+27 B^{2}}
$$

- Fact: E_{1}, E_{2} are isomorphic over $\overline{\mathbb{F}}_{q}$ if and only if $j\left(E_{1}\right)=j\left(E_{2}\right)$.

Assumptions

- For $q=p^{n}$, where p is prime, we consider only $E\left(\mathbb{F}_{q}\right)$.
- We will assume that char $K \neq 2,3$ and that $E: y^{2}=x^{3}+A x+B$.
- Later, we will want to write E in the form $y^{2}=x^{3}+A x^{2}+x$, referred to as a Montgomery curve.
- We define the i-invariant of E to be

$$
j(E)=1728 \frac{4 A^{3}}{4 A^{3}+27 B^{2}}
$$

- Fact: E_{1}, E_{2} are isomorphic over $\overline{\mathbb{F}}_{q}$ if and only if $j\left(E_{1}\right)=j\left(E_{2}\right)$.

Assumptions

- For $q=p^{n}$, where p is prime, we consider only $E\left(\mathbb{F}_{q}\right)$.
- We will assume that char $K \neq 2,3$ and that $E: y^{2}=x^{3}+A x+B$.
- Later, we will want to write E in the form $y^{2}=x^{3}+A x^{2}+x$, referred to as a Montgomery curve.
- We define the j-invariant of E to be

- Fact: E_{1}, E_{2} are isomorphic over $\overline{\mathbb{F}}_{q}$ if and only if $j\left(E_{1}\right)=j\left(E_{2}\right)$.

Assumptions

- For $q=p^{n}$, where p is prime, we consider only $E\left(\mathbb{F}_{q}\right)$.
- We will assume that char $K \neq 2,3$ and that $E: y^{2}=x^{3}+A x+B$.
- Later, we will want to write E in the form $y^{2}=x^{3}+A x^{2}+x$, referred to as a Montgomery curve.
- We define the j-invariant of E to be

$$
j(E)=1728 \frac{4 A^{3}}{4 A^{3}+27 B^{2}}
$$

- Fact: E_{1}, E_{2} are isomorphic over $\overline{\mathbb{F}}_{q}$ if and only if $j\left(E_{1}\right)=j\left(E_{2}\right)$.

Assumptions

- For $q=p^{n}$, where p is prime, we consider only $E\left(\mathbb{F}_{q}\right)$.
- We will assume that char $K \neq 2,3$ and that $E: y^{2}=x^{3}+A x+B$.
- Later, we will want to write E in the form $y^{2}=x^{3}+A x^{2}+x$, referred to as a Montgomery curve.
- We define the j-invariant of E to be

$$
j(E)=1728 \frac{4 A^{3}}{4 A^{3}+27 B^{2}}
$$

- Fact: E_{1}, E_{2} are isomorphic over $\overline{\mathbb{F}}_{q}$ if and only if $j\left(E_{1}\right)=j\left(E_{2}\right)$.

ECDH

- ECDH = "Elliptic Curve Diffie-Hellman"
- Alice and Bob agree on an elliptic curve E and a field \mathbb{F}_{q} such that the DLP is hard for $E\left(\mathbb{F}_{q}\right)$.
- They agree on a point $P \in E\left(\mathbb{F}_{q}\right)$ of large (usually prime) order.

ECDH

Public parameters:
$E\left(\mathbb{F}_{q}\right), P$

Advantages of ECDH

- Using elliptic curves allows for much smaller key sizes: an RSA 4096-bit key provides the same level of security as a 313-bit EC key.
- The group law for elliptic curves can be performed efficiently.

Post-quantum cryptography

- In 1994, Peter Shor published an algorithm that solves the DLP (and factoring large numbers) in polynomial time.
- This effectively breaks any cryptosystem based on the hardness of these two problems.
- Is cryptography broken in a post-quantum world?

Post-quantum cryptography

- In 1994, Peter Shor published an algorithm that solves the DLP (and factoring large numbers) in polynomial time.
- This effectively breaks any cryptosystem based on the hardness of these two problems.
- Is cryptography broken in a post-quantum world?
- Fear not.

Post-quantum cryptography

- In 1994, Peter Shor published an algorithm that solves the DLP (and factoring large numbers) in polynomial time.
- This effectively breaks any cryptosystem based on the hardness of these two problems.
- Is cryptography broken in a post-quantum world?
- Fear not.
- There have been several major developments in the past ten years.

Post-quantum cryptography

- In 1994, Peter Shor published an algorithm that solves the DLP (and factoring large numbers) in polynomial time.
- This effectively breaks any cryptosystem based on the hardness of these two problems.
- Is cryptography broken in a post-quantum world?
- Fear not.
- There have been several major developments in the past ten years.
- Many of them use isogeny graphs of supersingular elliptic curves.

Supersingular elliptic curves

Definition

Let E be an elliptic curve over \mathbb{F}_{q}. We define the n-torsion subgroup to be

$$
E[n]=\left\{P \in E\left(\overline{\mathbb{F}}_{q}\right) \mid n P=\infty\right\} .
$$

Supersingular elliptic curves

Definition

Let E be an elliptic curve over \mathbb{F}_{q}. We define the n-torsion subgroup to be

$$
E[n]=\left\{P \in E\left(\overline{\mathbb{F}}_{q}\right) \mid n P=\infty\right\} .
$$

Remark

$E[n]$ is a subgroup of $E\left(\overline{\mathbb{F}}_{q}\right)$. In general, we can't expect that $E[n] \subset E\left(\mathbb{F}_{q}\right)$.

Supersingular elliptic curves

Definition

Let E be an elliptic curve over \mathbb{F}_{q}. We define the n-torsion subgroup to be

$$
E[n]=\left\{P \in E\left(\overline{\mathbb{F}}_{q}\right) \mid n P=\infty\right\}
$$

Remark

$E[n]$ is a subgroup of $E\left(\overline{\mathbb{F}}_{q}\right)$. In general, we can't expect that $E[n] \subset E\left(\mathbb{F}_{q}\right)$.

Theorem

Let $p=\operatorname{char} \mathbb{F}_{q}$. If p does not divide n, then

$$
E[n] \cong \mathbb{Z}_{n} \oplus \mathbb{Z}_{n}
$$

Supersingular elliptic curves

Definition

An elliptic curve E / \mathbb{F}_{q} is called supersingular if $E[p]=\{\infty\}$, where p is the characteristic of \mathbb{F}_{q}.

Theorem

Let E / \mathbb{F}_{q} be an elliptic curve, where $q=p^{n}$. Let $t=q+1-\# E\left(\mathbb{F}_{q}\right)$. Then E is supersingular if and only if

$$
t \equiv 0 \quad(\bmod p)
$$

Isogenies

Definition

Let E_{1}, E_{2} be elliptic curves over \mathbb{F}_{q}. An isogeny from E_{1} to E_{2} is a nonconstant homomorphism

$$
\alpha: E_{1}\left(\overline{\mathbb{F}}_{q}\right) \rightarrow E_{2}\left(\overline{\mathbb{F}}_{q}\right)
$$

given by rational maps.

Definition

We may write $\alpha(x, y)=\left(r_{1}(x), y r_{2}(x)\right)$, where r_{1}, r_{2} are rational functions. Writing $r_{1}(x)=\frac{p(x)}{q(x)}$, the degree of α is

$$
\operatorname{deg} \alpha=\max (\operatorname{deg} p, \operatorname{deg} q)
$$

Endomorphisms of elliptic curves

Definition

An endomorphism of E is an isogeny from E to itself.

Endomorphisms of elliptic curves

Definition

An endomorphism of E is an isogeny from E to itself.

Example

The multiplication by n map:

$$
\begin{aligned}
{[n]: E } & \rightarrow E \\
(x, y) & \mapsto n(x, y)
\end{aligned}
$$

Endomorphisms of elliptic curves

Definition

An endomorphism of E is an isogeny from E to itself.

Example

The multiplication by n map:

$$
\begin{aligned}
{[n]: E } & \rightarrow E \\
(x, y) & \mapsto n(x, y)
\end{aligned}
$$

Example

The Frobenius endomorphism:

$$
\begin{aligned}
\pi: E & \rightarrow E \\
(x, y) & \mapsto\left(x^{p}, y^{p}\right)
\end{aligned}
$$

Quick aside on ANT

- Let $K=\mathbb{Q}(\sqrt{-p})$. Let \mathcal{O}_{K} denote the ring of integers of K, i.e.,

$$
\{\alpha \in K \mid f(\alpha)=0 \text { for some monic } f \in \mathbb{Z}[x]\}
$$

- An order $\mathcal{O} \in K$ is a ring such that $\mathbb{Z} \subsetneq \mathcal{O} \subseteq \mathcal{O}_{K}$.
- A fractional ideal of \mathcal{O} is of the form $\alpha \mathfrak{a}$, where $\alpha \in K^{\times}$and \mathfrak{a} is an \mathcal{O}-ideal. A principal fractional ideal is of the form $\alpha \mathcal{O}$.
- We say a fractional ideal \mathfrak{a} is invertible if $\exists \mathfrak{b}$ such that $\mathfrak{a b}=\mathcal{O}$.

Quick aside on ANT

- Let $K=\mathbb{Q}(\sqrt{-p})$. Let \mathcal{O}_{K} denote the ring of integers of K, i.e.,

$$
\{\alpha \in K \mid f(\alpha)=0 \text { for some monic } f \in \mathbb{Z}[x]\}
$$

- An order $\mathcal{O} \in K$ is a ring such that $\mathbb{Z} \subsetneq \mathcal{O} \subseteq \mathcal{O}_{K}$.
- A fractional ideal of \mathcal{O} is of the form αa, where $\alpha \in K^{\times}$and \mathfrak{a} is an \mathcal{O}-ideal. A principal fractional ideal is of the form $\alpha \mathcal{O}$.
- We say a fractional ideal \mathfrak{a} is invertible if $\exists \mathfrak{b}$ such that $\mathfrak{a b}=0$

Quick aside on ANT

- Let $K=\mathbb{Q}(\sqrt{-p})$. Let \mathcal{O}_{K} denote the ring of integers of K, i.e.,

$$
\{\alpha \in K \mid f(\alpha)=0 \text { for some monic } f \in \mathbb{Z}[x]\}
$$

- An order $\mathcal{O} \in K$ is a ring such that $\mathbb{Z} \subsetneq \mathcal{O} \subseteq \mathcal{O}_{K}$.
- A fractional ideal of \mathcal{O} is of the form $\alpha \mathfrak{a}$, where $\alpha \in K^{\times}$and \mathfrak{a} is an \mathcal{O}-ideal. A principal fractional ideal is of the form $\alpha \mathcal{O}$.
- We say a fractional ideal \mathfrak{a} is invertible if $\exists \mathfrak{b}$ such that $\mathfrak{a b}=\mathcal{O}$.

Quick aside on ANT

- Let $K=\mathbb{Q}(\sqrt{-p})$. Let \mathcal{O}_{K} denote the ring of integers of K, i.e.,

$$
\{\alpha \in K \mid f(\alpha)=0 \text { for some monic } f \in \mathbb{Z}[x]\}
$$

- An order $\mathcal{O} \in K$ is a ring such that $\mathbb{Z} \subsetneq \mathcal{O} \subseteq \mathcal{O}_{K}$.
- A fractional ideal of \mathcal{O} is of the form $\alpha \mathfrak{a}$, where $\alpha \in K^{\times}$and \mathfrak{a} is an \mathcal{O}-ideal. A principal fractional ideal is of the form $\alpha \mathcal{O}$.
- We say a fractional ideal \mathfrak{a} is invertible if $\exists \mathfrak{b}$ such that $\mathfrak{a b}=\mathcal{O}$.

Ideal class group

- By construction, the set of invertible fractional ideals $I(\mathcal{O})$ forms an abelian group under multiplication of ideals.
- The set of principal ideals $P(\mathcal{O})$ is a (normal) subgroup, so we may consider the ideal class group of \mathcal{O}

$$
\mathrm{cl}(0)=I(O) / P(O)
$$

- Let E / \mathbb{F}_{p} be a supersingular elliptic curve. Then $\operatorname{End}_{\mathbb{F}_{p}}(E) \cong \mathcal{O}$, where \mathcal{O} is an order in an imaginary quadratic field.

Ideal class group

- By construction, the set of invertible fractional ideals $I(\mathcal{O})$ forms an abelian group under multiplication of ideals.
- The set of principal ideals $P(\mathcal{O})$ is a (normal) subgroup, so we may consider the ideal class group of \mathcal{O}

$$
\operatorname{cl}(\mathcal{O})=I(\mathcal{O}) / P(\mathcal{O})
$$

- Let E / \mathbb{F}_{p} be a supersingular elliptic curve. Then $\operatorname{End}_{\mathbb{F}_{p}}(E) \cong \mathcal{O}$, where \mathcal{O} is an order in an imaginary quadratic field.

Ideal class group

- By construction, the set of invertible fractional ideals $I(\mathcal{O})$ forms an abelian group under multiplication of ideals.
- The set of principal ideals $P(\mathcal{O})$ is a (normal) subgroup, so we may consider the ideal class group of \mathcal{O}

$$
\operatorname{cl}(\mathcal{O})=I(\mathcal{O}) / P(\mathcal{O})
$$

- Let E / \mathbb{F}_{p} be a supersingular elliptic curve. Then $\operatorname{End}_{\mathbb{F}_{p}}(E) \cong \mathcal{O}$, where \mathcal{O} is an order in an imaginary quadratic field.

Class group action

- Let E / \mathbb{F}_{p} be an elliptic curve. Define

$$
E[\mathfrak{a}]=\left\{P \in E\left(\overline{\mathbb{F}}_{p}\right) \mid \alpha(P)=0 \forall \alpha \in \mathfrak{a}\right\} .
$$

- We can define the action of the \mathcal{O}-ideal \mathfrak{a} on E as the image E^{\prime} under the isogeny

$$
\phi: E \rightarrow E^{\prime}
$$

whose kernel is $E[\mathfrak{a}]$. We denote $E^{\prime}=\mathfrak{a} * E$.

- Fact: an isogeny is uniquely determined by its kernel (up to isomorphism).

Class group action

- Let E / \mathbb{F}_{p} be an elliptic curve. Define

$$
E[\mathfrak{a}]=\left\{P \in E\left(\overline{\mathbb{F}}_{p}\right) \mid \alpha(P)=0 \forall \alpha \in \mathfrak{a}\right\} .
$$

- We can define the action of the \mathcal{O}-ideal \mathfrak{a} on E as the image E^{\prime} under the isogeny

$$
\phi: E \rightarrow E^{\prime}
$$

whose kernel is $E[\mathfrak{a}]$. We denote $E^{\prime}=\mathfrak{a} * E$.

- Fact: an isogeny is uniquely determined by its kernel (up to isomorphism).

Class group action

- Let E / \mathbb{F}_{p} be an elliptic curve. Define

$$
E[\mathfrak{a}]=\left\{P \in E\left(\overline{\mathbb{F}}_{p}\right) \mid \alpha(P)=0 \forall \alpha \in \mathfrak{a}\right\}
$$

- We can define the action of the \mathcal{O}-ideal \mathfrak{a} on E as the image E^{\prime} under the isogeny

$$
\phi: E \rightarrow E^{\prime}
$$

whose kernel is $E[\mathfrak{a}]$. We denote $E^{\prime}=\mathfrak{a} * E$.

- Fact: an isogeny is uniquely determined by its kernel (up to isomorphism).

Class group action

- Let S be the set of supersingular elliptic curves $E_{A} / \mathbb{F}_{p}: y^{2}=x^{3}+A x^{2}+x$, where $p \geq 5$ and $p \equiv 3(\bmod 8)$.
- In this case, $\operatorname{End}_{\mathbb{F}_{p}}\left(E_{A}\right) \cong \mathbb{Z}[\sqrt{-p}]$.
- $\mathfrak{a} * E_{A}$ is an ℓ-isogeny if and only if $\mathfrak{a}=\langle[\ell], \pi \pm 1\rangle$

Class group action

- Let S be the set of supersingular elliptic curves $E_{A} / \mathbb{F}_{p}: y^{2}=x^{3}+A x^{2}+x$, where $p \geq 5$ and $p \equiv 3(\bmod 8)$.
- In this case, $\operatorname{End}_{\mathbb{F}_{p}}\left(E_{A}\right) \cong \mathbb{Z}[\sqrt{-p}]$.
- $\mathfrak{a} * E_{A}$ is an ℓ-isogeny if and only if $\mathfrak{a}=\langle[\ell], \pi \pm 1\rangle$

Class group action

- Let S be the set of supersingular elliptic curves $E_{A} / \mathbb{F}_{p}: y^{2}=x^{3}+A x^{2}+x$, where $p \geq 5$ and $p \equiv 3(\bmod 8)$.
- In this case, $\operatorname{End}_{\mathbb{F}_{p}}\left(E_{A}\right) \cong \mathbb{Z}[\sqrt{-p}]$.
- $\mathfrak{a} * E_{A}$ is an ℓ-isogeny if and only if $\mathfrak{a}=\langle[\ell], \pi \pm 1\rangle$

CSIDH

- In November 2018, Castryck, Lange, Martindale, Panny and Renes published a paper on their algorithm CSIDH, which stands for Commutative Supersingular Isogeny Diffie-Hellman.
- CSIDH is thought to be a suitable post-quantum replacement for ECDH.
- Key sizes are extremely small.

CSIDH

- In November 2018, Castryck, Lange, Martindale, Panny and Renes published a paper on their algorithm CSIDH, which stands for Commutative Supersingular Isogeny Diffie-Hellman.
- CSIDH is thought to be a suitable post-quantum replacement for ECDH.
- Key sizes are extremely small.

CSIDH

- In November 2018, Castryck, Lange, Martindale, Panny and Renes published a paper on their algorithm CSIDH, which stands for Commutative Supersingular Isogeny Diffie-Hellman.
- CSIDH is thought to be a suitable post-quantum replacement for ECDH.
- Key sizes are extremely small.

Isogeny graphs

- Let p, ℓ be distinct primes. The isogeny graph G_{ℓ} over \mathbb{F}_{p} has
- Vertices: Elliptic curves $E_{A} \in S$ with $\operatorname{End}\left(E_{A}\right) \cong \mathbb{Z}[\sqrt{-p}]$
- Edges: $\left(E_{A}, E_{B}\right)$, where there is an ℓ-isogeny between E_{A} and E_{B}
- For illustration we will fix $p=419$.
- In general, the CSIDH authors pick $p=4 \ell_{1} \cdots \ell_{n}-1$, where $\ell_{1}, \ldots, \ell_{n}$ are distinct odd primes.

Isogeny graphs

- Let p, ℓ be distinct primes. The isogeny graph G_{ℓ} over \mathbb{F}_{p} has
- Vertices: Elliptic curves $E_{A} \in S$ with $\operatorname{End}\left(E_{A}\right) \cong \mathbb{Z}[\sqrt{-p}]$
- Edges: $\left(E_{A}, E_{B}\right)$, where there is an ℓ-isogeny between E_{A} and E_{B}
- For illustration we will fix $p=419$.
- In general, the CSIDH authors pick $p=4 \ell_{1} \cdots \ell_{n}-1$, where $\ell_{1}, \ldots, \ell_{n}$ are distinct odd primes.

Isogeny graphs

- Let p, ℓ be distinct primes. The isogeny graph G_{ℓ} over \mathbb{F}_{p} has
- Vertices: Elliptic curves $E_{A} \in S$ with $\operatorname{End}\left(E_{A}\right) \cong \mathbb{Z}[\sqrt{-p}]$
- Edges: $\left(E_{A}, E_{B}\right)$, where there is an ℓ-isogeny between E_{A} and E_{B}
- For illustration we will fix $p=419$.
- In general, the CSIDH authors pick $p=4 \ell_{1} \cdots \ell_{n}-1$, where $\ell_{1}, \ldots, \ell_{n}$ are distinct odd primes.

Isogeny graph G_{3}

Isogeny graph G_{5}

Isogeny graph G_{5}

Isogeny graph G_{5}

Isogeny graph G_{5}

Isogeny graph G_{7}

CSIDH

- CSIDH stands for Commutative Supersingular Isogeny Diffie-Hellman.
- It is proposed as a post-quantum drop-in replacement for (EC)DH.
- They use the action of the ideal class group and the supersingular isogeny graph to establish keys.

Isogeny graph used in CSIDH

G3

Isogeny graph used in CSIDH

$$
G_{3} \cup G_{5}
$$

Isogeny graph used in CSIDH

$$
G_{3} \cup G_{5} \cup G_{7}
$$

Diffie-Hellman with CSIDH

Bob

$$
b=[+,+,+,-]
$$

Diffie-Hellman with CSIDH

Bob

$$
b=[+,+,+,-]
$$

$E_{75}=\langle 7, \pi-1\rangle * E_{0}$

Diffie-Hellman with CSIDH

$E_{295}=\langle 5, \pi+1\rangle * E_{158}$

Bob

$$
b=[+, \underset{\uparrow}{+},+,-]
$$

$$
E_{40}=\langle 5, \pi-1\rangle * E_{75}
$$

Diffie-Hellman with CSIDH

Alice

$$
a=[+,-, \underset{\uparrow}{+},-]
$$

$E_{275}=\langle 7, \pi-1\rangle * E_{295}$

Bob

$$
b=[+,+, \underset{\uparrow}{+},-]
$$

$$
E_{6}=\langle 3, \pi-1\rangle * E_{245}
$$

Diffie-Hellman with CSIDH

Bob

$$
b=[+,+,+, \underset{\uparrow}{-}]
$$

$$
E_{144}=\langle 5, \pi+1\rangle * E_{6}
$$

Diffie-Hellman with CSIDH

Alice
$a=[+,-,+,-]$

Bob

$$
b=[+,+,+,-]
$$

Alice and Bob trade

Diffie-Hellman with CSIDH

Alice
$a=[+,-,+,-]$

$E_{191}=\langle 3, \pi-1\rangle * E_{144}$

Bob

$$
b=[+,+,+,-]
$$

$$
E_{9}=\langle 7, \pi-1\rangle * E_{228}
$$

Diffie-Hellman with CSIDH

Bob

$$
b=[+, \underset{\uparrow}{+},+,-]
$$

$E_{379}=\langle 5, \pi-1\rangle * E_{9}$

Diffie-Hellman with CSIDH

Alice
$a=[+,-,+,-]$

$$
E_{0}=\langle 7, \pi-1\rangle * E_{344}
$$

Bob

$$
b=[+,+, \underset{\uparrow}{+},-]
$$

$$
E_{124}=\langle 3, \pi-1\rangle * E_{379}
$$

Diffie-Hellman with CSIDH

Bob

$$
b=[+,+,+, \underset{\uparrow}{-}]
$$

$$
E_{261}=\langle 5, \pi+1\rangle * E_{124}
$$

Diffie-Hellman with CSIDH

Alice

$$
a=[+,-,+,-]
$$

Bob

$$
b=[+,+,+,-]
$$

The shared secret key is E_{261}

Thank you!

