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Let F : V → V be a linear operator on a vector space V . When V
is finite-dimensional, we know how to represent F by a matrix. For this we
need a basis v1,v2, . . . ,vn. We apply our operator to each vector of the basis,
and expand the result in the same basis. The matrix A of F consists of the
coefficients (ai,j) of this expansion, namely the element ai,j is the coefficient
at vi of F (vj):

F (vj) =
n∑

i=1

ai,jvi.

So A is a square matrix n × n where n = dimV . For a given operator, the
matrix A depends on the choice of basis, and the question we are going to
address, is how to choose a basis for a given operator, so that the matrix has
the simplest form. This will allow us to better understand the action of a
linear operator.

Let us look for vectors, on which F acts in the simplest possible way:

F (v) = λv, v ̸= 0, (1)

where λ is a number. Such vectors are called eigenvectors, and corresponding
λ is an eigenvalue. We will discuss the eigenvalue-eigenvector problem: how
to find all eigenvalues and eigenvectors of a given operator. When V = Rn we
can choose the standard basis and assume that F (x) = Ax, so our problem
is for a given square matrix to find all numbers λ and vectors v which satisfy

Av = λv, v ̸= 0. (2)

definition is always satisfied by v = 0 with any λ. So eigenvector cannot be
0 by definition, but λ = 0 is fine, as any other number.

1



To approach this problem, we rewrite our equation as

(A− λI)v = 0 (3)

This means that the homogeneous equation with matrix A − λI has a non-
trivial solution. We know a criterion for this:

det(A− λI) = 0. (4)

Notice, that by using the determinant we split the problem: in (4) there is no
v, this is an equation in λ which allows us in principle to find all eigenvalues
of A. Once an eigenvalue λ is known, the rest of the task is solving (3) for
v, and this is simple, and we know how to do this. Notice that the set of
all eigenvectors corresponding to a fixed λ is a vector space N(A− λI); it is
called the eigenspace corresponding to λ.

For example, the unit matrix has one eigenvalue, namely 1, and the
eigenspace corresponding to this eigenvalue is the whole space.

Now we address the equation (4), which is the hard part of the business.
It has a name: the characteristic equation of A.

First we notice that this is a polynomial equation with respect to λ, since
the determinant of a matrix is a polynomial of its entries. Let us write it in
the extended form:∣∣∣∣∣∣∣∣∣

a1,1 − λ a1,2 . . . a1,n
a2,1 a2,2 − λ . . . a2,n
. . . . . . . . . . . .
an,1 an,2 . . . an,n − λ

∣∣∣∣∣∣∣∣∣ = 0.

Now recall the formula for the determinant: it is an alternating sum of
products, each product contains n multiples: one element from each row and
one from each column. It follows that only one of these products can contain
λn and λn−1, namely the product

(a1,1 − λ)(a2,2 − λ) . . . (an,n − λ)

Multiplication gives

det(A− λI) = (−1)nλn + (−1)n−1(a1,1 + . . .+ an,n + . . . .

Therefore:
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1. det(A − λI) is a polynomial of degree exactly n, with the coefficient at
the top degree (−1)n.

2. the coefficient at λn−1 is (−1)n−1 times the sum of the elements of the
main diagonal of A.

It is also easy to see what the constant term of this polynomial is; for this
we just plug λ = 0 to (4). So

3. The constant term of the characteristic polynomial is det(A).

The coefficient mentioned in statement 2 has a name, it is called the trace
of the matrix,

tr(A) = a1,1 + . . .+ an,n.

Like the determinant, the trace has some nice and useful properties, which
will be discussed later. Especially simple expression we obtain for 2 × 2
matrices:

det(A− λI) = λ2 − tr(A)λ+ det(A).

So we have the problem of solving a polynomial equation. This is easy for
n = 2 case, since there is a simple explicit formula. For n = 3, 4 such formulas
also exist but unfortunately they are complicated, and really almost useless.
For n ≥ 5 no general algebraic formula exists.

Therefore, it remains to do the following:

a) Use numerical methods to obtain approximations of eigenvalues,

b) study their properties qualitatively(we will see how their qualitative prop-
erties are reflected in the meaningful and important properties of the linear
operator).

c) Look for special important matrices which arise in applications and whose
eigenvalues can be explicitly found.

All three directions are actually big areas of research in mathematics.
Let us recall the main facts about polynomial equations. Let P (λ) be a

polynomial of degree exactly n. If we know one root λ1 then the polynomial
is divisible by (λ− λ1) that is

P (λ) = (λ− λ1)P1(λ), degP1 = n− 1.

(In general, when we multiply polynomials, their degrees are added). The
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devision is performed by a simple algorithm which you probably studied in
high school. Now we have the

Fundamental Theorem of Algebra. Every polynomial (with real or com-
plex coefficients) of degree ≥ 1 has a complex root.

This means that when we are using complex numbers, every polynomial
of degree n factors into factors of degree 1:

P (λ) = c(λ− λ1) . . . (λ− λn),

where c is a constant (the coefficient at λn). Even when the polynomial
has real coefficients, the roots can be complex (non-real), this explains why
we need to use complex numbers, even when solving problems about real
matrices.

The roots λj are not necessarily distinct; grouping the equal multiples we
obtain

P (λ) = c(λ− λ1)
m1(λ− λ2)

m2 . . . (λ− λk)
mk m1 + . . .+mk = n.

These integers mk are called multiplicities of roots. Once you know a root,
it is easy to find its multiplicity: if λ1 is a root of multiplicity m, then

f(λ1) = f ′(λ1) = . . . = f (m−1)(λ1) = 0 but f (m)(λ1) ̸= 0.

We are frequently interested in real matrices; their characteristic polynomi-
als are real (have real coefficients), and for such polynomials, the following
observation is useful: If λ1 is a root of multiplicity m of a real polynomial P
then the complex conjugate λ1 is also a root of multiplicity m. So non-real
roots of real polynomial come in complex conjugate pairs.

Exercise. Show that the product of eigenvalues (taken with multiplicities
that is an eigenvalue of multiplicity m participates m times in this product)
equals to the determinant, and the sum of eigenvalues (also with multiplici-
ties) is (−1)n−1 times the trace.

Examples.

1. For the matrix

A =

(
1 2
2 1

)
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the characteristic polynomial is

λ2 − tr(A)λ+ det(A) = λ2 − 2λ− 3 = (λ− 3)(λ+ 1).

so the eigenvalues are λ1 = 3 and λ1 = −1. Eigenvectors v for λ1 satisfy

0 = (A− λ1I)v =

(
−2 2
2 −2

)
v,

whose general solution is (t, t)T , so the eigenspace is one-dimensional, and
its basis can be taken as (1, 1)T .

Eigenvector v for λ2 satisfy

0 = (A− λ2I)v =

(
2 2
2 2

)
v,

so the eigenspace is also one-dimensional and a basis is (−1, 1)T . Notice that
(1, 1) and (−1, 1) are linearly independent, so they form a basis of R2.

2. Suppose that A = diag(d1, d2, . . . , dn) and all dj are distinct. Then the
eigenvalues are d1, . . . , dn, each eigenspace is one-dimensional and a basis
consists of e1, . . . , en, the standard basis in Rn. If there is a group of m equal
dj, then the corresponding eigenspace will have dimension m.

3. For the unit matrix, the only eigenvalue is 1, it is the root of the charac-
teristic polynomial of multiplicity n. The eigenspace is n-dimensional and it
is equal to Rn.

Control question: what are the eigenvalues and eigenvectors of the matrix 5?

The following general observations show that Example 1 is typical in
some sense: for a generic n× n matrix we expect n distinct eigenvalues, and
each eigenspace is one-dimensional. Indeed, for a generic polynomial one can
expect n distinct roots (of multiplicity 1), so we have n distinct eigenvalues.
Now we have

Theorem 1. Eigenvectors corresponding to distinct eigenvalues are linearly
independent.

Proof. Let v1, . . . , be eigenvectors with eigenvalues λ1, . . . , λk, respec-
tively, and suppose that all λj are distinct. Suppose that vj are linearly
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dependent, and consider the shortest non-trivial linear combination of them
which is equal to 0 Suppose that it is

c1v1 + . . .+ ckvk = 0, (5)

then all cj ̸= 0. Now apply A to (3). We obtain

c1λ1v1 + . . .+ ckλkvk = 0. (6)

Now multiply (5) by λ1 and subtract from (6):

c2(λ2 − λ1)v2 + . . .+ ck(λk − λ1)vk = 0

This is a non-trivial linear combination since λ1 ̸= λj for j ≥ 2. But it is
shorter than the original linear combination (3). This contradiction proves
the Theorem.

So in the case of n = dimRn distinct eigenvalues, all eigenspaces are of
dimension 1, and we can construct a basis v1, . . . ,vn consisting of eigenvec-
tors. Suppose that the corresponding eigenvalues are λ1, . . . , λn. Consider
the matrix B = [v1, v2, . . . , vn] consisting of eigenvectors as columns. Then

AB = [Av1, Av2, . . . , Avn] = [λ1v1, λ2v2, . . . , λnvn] = BΛ,

where Λ = diag(λ1, . . . , λn). Since B is non-singular (its columns are linearly
independent), this can be rewritten as

A = BΛB−1, (7)

or
Λ = B−1AB.

Now recall that A represents the linear operator, F (x) = Ax, and Λ is the
matrix of this linear operator in the basis v1, . . . ,vn. So we completed our
task: we found a basis in which the matrix of the given operator is especially
simple, namely diagonal. This is possible when there exists a basis of the
whole space composed of eigenvectors of our operator.

For this it is sufficient (but not necessary!) that the operator F has n
distinct eigenvalues.

Compare with the content of the lecture on Linear transformation, where
we derived a rule of the change of the basis.

6



Operators (and matrices) for which (7) holds are called diagonalizable.
These are exactly those operators for which there exists a basis of the whole
space consisting of eigenvectors. In general, two square matrices A and C
are called similar if there exists a non-singular matrix B such that A =
B−1CB. Such two matrices can be thought as representing the same operator
in two different bases. Notice that the characteristic polynomial det(A−λI)
is invariant under similarity: similar matrices have the same characteristic
polynomial. This follows from the properties of determinants:

det(B−1AB − λI) = det(B−1(A− λI)B) = det(A− λI).

As a consequence we obtain that trace, determinant and eigenvalues are in-
variant under similarity: similar matrices have the same characteristic poly-
nomial, same trace, same determinant and same eigenvalues (including mul-
tiplicity).

Unfortunately, not all operators (matrices) are diagonalizable. Here is
the simplest example (

c 1
0 c

)
.

the characteristic equation is (c−λ)2 = 0, so the only eigenvalue is λ = c, so
the equation for eigenvectors is(

0 1
0 0

)
v = 0,

and the eigenspace is one-dimensional, with basis (1, 0). So this matrix is
not diagonalizable.

One important application of diagonalization is finding all powers of a
matrix explicitly. If we know the representation (7) then evidently

Ak = B−1ΛkB, where Λk = diag(λk
1, . . . , λ

k
n).

Even if we do not know the diagonalization explicitly, we can sometimes make
important conclusions. For example, if we know somehow that all eigenvalues
of a diagonalizable matrix satisfy |λj| < 1, then we can deduce that Ak → 0
as k → ∞.

Applications.

Linear difference equations with constant coefficients.
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The sequence
0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

is the well known Fibonacci sequence. It is defined by a recurrent relation

an+2 = an+1 + an, a0 = 0, a1 = 1.

How to produce a closed form formula for an?
Consider the vectors an = (an+1, an)

T . Then

an+1 = Aan, a0 = (1, 0)T ,

where

A =

(
1 1
1 0

)
.

And an = Ana0. So one only has to find An explicitly. The characteristic
equation is

λ2 − λ− 1 = 0,

so the eigenvalues are

λ1,2 =
1±

√
5

2
.

Notice that
λ1 + λ2 = 1, λ1 − λ2 =

√
5, λ1λ2 = −1.

Solving for eigenvectors, we obtain two linearly independent eigenvectors:

v1 = (λ1, 1)
T , v2 = (λ2, 1)

T .

So the diagonalizing matrix is

B =

(
λ1 λ2

1 1

)
, and B−1 =

1√
5

(
1 −λ2

−1 λ1

)
.
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