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A linear system is a system of equations of the form

a1,1x1 + a1,2x2 + . . .+ a1,nxn = b1,

a2,1x1 + a2,2x2 + . . .+ a2,nxn = b2,

. . . = . . .

am,1x1 + am,2x2 + . . .+ am,nxn = bm.

Here m,n are positive integers, ai,j are given numbers; they are called coef-
ficients of the system, bi are given numbers; they are called right hand sides,
and xj are unknown numbers to find. So we have m equations with n un-
knowns. A solution of the system is an ordered set of numbers (x1, . . . , xn)
which satisfy all equations of the system.

When writing the system we align it so that each entry xj occupy certain
column. If some ai,j = 0 we can leave the empty space in this column. When
the number n of unknowns is ≤ 3 we usually denote them by x, y, z instead
of x1, x2, x3.

When m = n = 1 we have
ax = b.

Three cases may occur:

1. a ̸= 0. Then the equation has a unique solution x = b/a.

2. a = 0 but b ̸= 0. Then the equation has no solutions.

3. a = b = 0. Then the equation has infinitely many solutions, namely every
number x is a solution.

We will see that this pattern persists in the general case: there are only
three possibilities: a unique solution, no solutions or infinitely many.
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To solve an arbitrary system of linear equations we will use an algorithm
the main part of which will consist of applying three kinds of operations:

Operation 1. Replace an equation by the sum of this equation and a mul-
tiple of another one.

Operation 2. Interchange two equations.

Operation 3. Multiply an equation by a non-zero number.

A new system obtained as a result of applying these operations is equivalent to
the original one, in the sense that these two systems have the same solutions.

Example 1.

x+ y = 3,

2x− y = 1

Apply Operation 1: replace the second equation by its sum with the first one
multiplied by −2. This will eliminate x from the second equation:

x+ y = 3,

−3y = −5.

Now apply Operation 3: multiply the second equation by −1/3. We obtain
y = 5/3.

Once we know y, x is obtained from the first equation: x = 3−5/3 = 4/3.
Thus we obtained the unique solution (x, y) = (5/3, 4/9).

The same method works in general. Consider the generic case first.
Suppose first that a1,1 ̸= 0. Then we leave the first equation unchanged,

and add to each equation beginning from the second one a multiple of the
first equation, to eliminate x1 from all equations except the first one. In
other words, for i ≥ 2 replace the i-th equation by its sum with the first
equation multiplied by −ai,1/a1,1. This a1,1 is called the first pivot.

In the new system, suppose that a2,2 ̸= 0. Then we leave the first two
equations unchanged, and eliminate x2 from the rest, by replacing each equa-
tion beginning from the third one by its sum with a multiple of the second
equation. This a2,2 is the second pivot.

Then continue this procedure until the system acquires the row echelon
form (REF): the left-most non-zero coefficient moves to the right as we move
down. These left-most non-zero coefficients in each row are called pivots.
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When the system is brought to this form, it is easy to solve: if there
are unknowns in the columns which do not contain pivots, assign arbitrary
values to them. These unknowns are called free variables. Then determine
the rest of the unknowns, starting from the last one and moving upward.
When doing this, one has to divide by pivots, which is permissible because
they are non-zero by definition.

It may happen that one of the equations of the row echelon form is 0x1+
0x2 + . . .+0xn = bk, where bk ̸= 0. Then the system has no solutions. In all
other cases the system has a solution. The solution is unique if each column
of xj contains a pivot, so there are no free variables. Otherwise we have some
free variables, and there are infinitely many solutions.

Example 2.

x+ y + z = 4

x+ 2y − z = 2

2x+ 3y = 6

The row echelon form is

x+ y + z = 4

y − 2z = −2

0 = 0

Here z is a free variable (columns of x and y contain pivots, each equal
to 1). Assign z = t, where t is arbitrary. Then from the second equation
y = −2 + 2t, and from the first equation

x = 4− y − z = 4− (−2 + 2t)− t = 6− 3t.

So the general solution is

(x, y, z) = (6− 3t,−2 + 2t, t), (1)

where t is an arbitrary number.
If in the original system the right hand side of the third equation is

replaced by 5, then the last equation of the REF will be 0 = −1, and the
system will have no solutions.
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Matrix notation. In our calculations we only process certain rectangular
arrays of numbers, the unknowns xj are only needed to align the columns.
So we can dispose of them by keeping the alignment.

A matrix is a rectangular array of numbers. The set of all matrices with
m rows and n columns is denoted by Mat(m× n). Sometimes an indication
is necessary what number system is used, so, for example MatR(m× n) will
stand for the set of all matrices with real entries. To a system of linear
equations as above we associate two matrices: the matrix of coefficients

A =

 a1,1 . . . a1,n
. . . . . . . . .
am,1 . . . am,n


and the augmented matrix of size m× (n+ 1):

[A, b] =

 a1,1 . . . a1,n b1
. . . . . . . . . . . .
am,1 . . . am,n bm

 .

To solve the system we perform row operations on the augmented matrix to
reduce it to the a row echelon form. A solution exists if and only if the last
column does not contain a pivot. If this is so, we assign free variables, if
necessary, and solve for the rest of the variables.

Our algorithm as described uses only Operation 1, but it assumes that the
matrix is generic, that is certain elements are not zero. So next we describe
the algorithm in the general form.

a) Consider the left-most column which contains a non-zero element. If this
non-zero element is in the first row, then this is the first pivot. If this element
stands in some other row, make this row first by a row exchange (Operation
2). The first pivot is the left-most non-zero element of this new first row.

b) Add appropriate multiples of the first row to other rows to make all
elements directly under the pivot zero.

c) Leave the first row unchanged, and repeat this procedure to the matrix
consisting of rows 2 to m, then to the matrix consisting of rows 3 to m and
so on.

This is the first step of the algorithm. The result is a matrix in the REF.
In this matrix, if there is a row which has zeros at all places except the last
one, and the last element is not zero, then the system has no solutions.
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Otherwise, consider the free variables: xj is free if its column contains
no pivot. Assign to the free variables arbitrary values, and solve for the
rest of the variables, beginning from the last non-zero equation, and moving
upwards step by step. This second step of the algorithm is called the the
back substitution

Column vectors. A column vector of size n is a matrix n× 1:

x =


x1

x2
...
xn

 .

By default, we call them simply “vectors”. In the future we will introduce a
more general notion of a vector. The set of all column vectors of size n with
real entries is denoted by Rn

Similarly, a row vector is a matrix 1× n.
Vectors of the same size can be multiplied on numbers and added (entry-

wise). If a1, a2, . . . , ak are column vectors of the same size, then the expres-
sion

c1a1 + c2a2 + . . .+ ckak

with numbers cj is called a linear combination of a1, . . . ak. These numbers
cj are called coefficients of the linear combination.

The general solution of a system of linear equations can be always writ-
ten as a linear combination of some vectors where some coefficients may be
arbitrary. For example, the solution (1) of the system in Example 2 can be
written as a column vector

x =

 6
−2
0

+ t

 −3
2
1

 .

We will always write the unknowns and solutions of linear systems as column
vectors (not row vectors as we did in (1).

Geometric interpretation. Consider a system with two equations and two
unknowns, like in Example 1. Pairs (x, y) can be interpreted as coordinates
of a point in the plane. Then two equations in Example 1 represent two
lines which can be plotted in the plane, for example by using their intercepts
with the coordinate axes. Solutions are those pairs (x, y) which satisfy both
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equations, so they are represented by the points which belong to both lines.
Two lines can intersect at one point. In Example 1, they intersect at the
single point (5/3, 4/9).

In general, two lines can be parallel. This corresponds to the case when
the system has no solutions.

Two lines can also coincide. Then all points on this line represent in-
finitely many solutions. In this case we say that the set of solutions is a
line.

Finally, one more case is possible: both equations can be of the form
0x+ 0y = 0. Then each point (x, y) in the plane is a solution.

So we see geometrically that a system of two equations can have a unique
solution, no solutions or infinitely many. But in the last case we have two
possibilities: the solutions can form a line or the whole plane.

There is a second way to view a system of linear equations geometrically.
Write Example 1 in the form

x

(
1
2

)
+ y

(
2
−1

)
=

(
3
1

)
.

This suggests that we are looking for a linear combination of two given vec-
tors which is equal to some third given vector. We can plot these two given
vectors, their multiples will have the same directions and the lengths multi-
plied by x and y (opposite directions if x and/or y is negative) and the sum
is determined by the parallelogram rule.

So we have two geometric interpretations of a system of two equations
with two unknowns:

a) finding intersection of two lines, and

b) finding a linear combination of two given vectors which is equal to the
third given vector.

As in the first interpretation, we can see geometrically when the problem
has a unique solution, or no solutions or infinitely many. The solution is
unique if the two given vectors are not collinear. When they are collinear,
the system has infinitely many solutions when the third vector is on the same
line, and no solutions if it is not on the same line as the first two.

Similar interpretations can be given to systems of three equations with
three unknowns. A single linear equation in three variables represents a plane
in the space. A sketch of this plane can be made by plotting intercepts with

6



the co-ordinate axes. First interpretation is finding the intersections of three
planes. Several cases may occur:

a) Three planes intersect at one point. This point represents a unique solu-
tion.

b) Two of the three planes are parallel (and the third is arbitrary). There
are no solutions in this case.

c) Three planes may have a common line. This line represents infinitely many
solutions.

d) Two planes can coincide. The third plane can be parallel to these two
(no solutions). Or the third plane can intersect the coinciding two by a line
(infinitely many solutions forming a line). Or all three planes can coincide
(infinitely many solutions forming a plane). Finally, all three equations can
be of the form 0 = 0, in which case the set of solutions is represented by the
whole space.

The second geometric interpretation is obtained if we write the system as
a linear combination of columns of the coefficient matrix. For example, the
system from Example 2 can be written as

x

 1
1
2

+ y

 1
2
3

+ z

 1
−1
0

 =

 4
2
6

 .

So the problem is to find a representation of a given vector as a linear com-
bination of three given vectors.

With larger number of variables, the geometric intuition does not work
so well, and we have to resort to algebra. Still intuition in dimensions 2 and
3 helps, and many statements become clearer when formulated in geometric
terms.

Some general statements about linear systems.

Consider the REF of come matrix A. The number of non-zero rows (which
is equal to the number of pivots, since every non-zero row contains exactly
one pivot) is called the rank of the matrix; it is denoted by r(A). We will
later prove that the rank does not depend on how we obtain the REF, it is
defined by the original matrix.
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Now consider the system with coefficient matrix A and the right hand
side b, so that the augmented matrix of this system is [A,b]. and state some
general results on the existence and uniqueness of solutions.

Theorem 1. Let A be an m × n matrix, and b ∈ Rm. If r(A) < r([A, b])
then the system has no solutions.

If r(A) = r([A, b]) then the system has at least one solution.
The solution is unique if the REF of A has n pivots, in other words, there

is a pivot in each column of the REF of [A,b] except the last one.

An important special case is b = 0, where 0 is the zero-vector (a column
consisting of zeros). Such systems are called homogeneous. A homogeneous
system always has at least one solution, namely x = 0. This solution is called
trivial and all other solutions are called non-trivial.

Theorem 2. If A is of size m × n with n > m (the width is greater than
the height), then the homogeneous system with this matrix has a non-trivial
solution.

Proof. Since n > m, there is at least one column in the REF correspond-
ing to a free variable. So we have infinitely many solutions.
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