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In this section, all vector spaces are real and of finite dimension. Let U
be a subspace of a vector space V .

For every x ∈ V we define the projection of x onto U as the vector y ∈ U
which minimizes the distance ∥x− y∥.

Theorem 1. In a space of finite dimension, a projection of a vector x onto
a subspace U exists and is unique.

This theorem is proved using Calculus.
Proof. Let δ = infu∈U ∥x−u∥. This means that there is a sequence un ∈ U

such that
∥x− un∥ → δ. (1)

Then the distance from x to the middle of the segment [um,un] satisfies

∥x− (um + un)/2∥ ≤ 1

2
∥x− um|+

1

2
∥x− un∥,

by the triangle inequality. On the other hand,

∥x− (um + un)/2∥ ≥ δ

by definition of δ. Therefore

lim sup
m,n,→∞

∥x− (um + un)/2∥ = δ.

Now we use the polarization identity from the previous lecture:

∥un − um∥2 = 2∥x− um∥2 + 2∥x− un∥2 − 4∥x− (um + un)/2∥2,
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and conclude that the LHS tends to 0. Therefore (un) is a Cauchy sequence
and must have a limit u. This limit belongs to U since U is a closed set, and
by passing to the limit in (1) we obtain

∥x− u∥ = δ.

Now we prove the uniqueness. Suppose that some x has two projections
w1,w2 in U . Then the triangle (x,w1,w2) is a plane isosceles triangle with
equal sides [x,w1] and [x,w2], and the height of such triangle (which is
∥x − (w1 + w2)/2∥ is evidently shorter then the sides. This shows that we
must have w1 = w2.

Our goal is to find an explicit formula for projections. From this formula
the theorem can be also derived.

Proposition 1. If y is the projection of x on U then y ∈ U and (x−y,u) = 0
for all u ∈ U .

Proof. Let y be the projection of x on U , and consider the distance from
x to y − tu, where u is an arbitrary vector in U and t is a real number.
Since y, by definition, is the closest to x vector in U , and y− tu is in U , the
function

∥x− (y− tu)∥2 = ∥(x− y) + tu∥2 = (x− y,x− y) + 2t(x− y,u) + t2(u,u),

considered as a function of t must attain the minimum for t = 0. This
function is a quadratic polynomial, and the minimum is attained at t = 0 if
and only if (x− y,u) = 0, as claimed.

This proposition allows us to derive the formula for the projection. We
choose to describe U as the column space of some n × m matrix A. (The
dimension of our space is n). Our condition that (x−y,u) = 0 for all u ∈ U
translates to

x− y ∈ U⊥, (2)

by definition of U⊥. We have U = C(A), and in the previous lecture we
described the orthogonal complement of the column space: it is the null
space of AT . So (2) is equivalent to

AT (x− y) = 0.
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now we have y ∈ U = C(A) which means that y is a linear combination of
columns of A, in other words, y = Aw for some w ∈ Rm. Thus

ATx = ATAw, for some w ∈ Rm. (3)

Since the projection exists, this equation must have a solution w. Using this
solution, we obtain the formula for the projection

y = Aw. (4)

So the recipe to find the projection y of x onto the column space of A is
to solve (3) and plug it to (4).

The formula simplifies we choose A smartly, namely with linearly inde-
pendent columns, that is r(A) = m.

Proposition 2. If the columns of A are linearly independent then ATA is
invertible.

So for this case, (3) and (4) give this projection formula

y = A(ATA)−1ATx. (5)

One immediate conclusion is that projection is a linear operator, and the
matrix of this operator is

A(ATA)−1AT ,

where A is a matrix whose columns make a basis of the subspace onto which
we project.

Proof of Proposition 2. If A is n×m then ATA is m×m, One necessary
and sufficient condition for invertibility of a square matrix its nullspace is
trivial. So we want to prove that the equation ATAx = 0 has only trivial
solution. Let y = Ax. Then y ∈ C(A) and also y ∈ N(AT ). But these two
spaces are orthogonal complements of each other (see the previous lecture)
therefore y = 0. Finally x = 0 since columns of A are linearly independent.

Example. Projection on a line. Let this line be spanned by some vector a.
In our terminology, this line is the column space of the n× 1 matrix a. Then
by (5) the projection y of x is

y = a(aTa)−1aTx.

3



Now aTa = ∥a∥2 and aTx is (a,x), so

y = a
(a,x)

∥a∥2

the formula which is probably familiar to you; it simplifies when a is a unit
vector, ∥a∥ = 1. Using (a,x) = ∥a∥∥x∥ cosα, where α is the angle between
x and a we obtain

y = a(a, x) = a∥x∥ cosα, when ∥a∥ = 1.

Exercise. Compare our general formula for the projection matrix with the
special case that we earlier derived for projection on a line in R2 and show
that they give the same result.

Exercise. Show that every projection matrix P = A(AAT )−1AT is a) orthog-
onal, (P T = P ) and b) satisfies P 2 = I, as we checked earlier for projections
on lines in the plane.

Actually these two properties characterize projections.
In the previous lecture, we discussed orthogonal complement, and proved

that for every subspace U of a vector space V equipped with an inner product,
and every vector x ∈ V , we have the orthogonal decomposition

x = u+w, where u ∈ U and w ∈ U⊥.

It is easy to see that this u is nothing but projection of x onto U . Indeed,
u ∈ U and w = x−u is orthogonal to every vector in U by definition of U⊥.
So the criterion in Theorem 1 is satisfied. Similarly, w is the projection of x
onto U⊥.

Method of Least Squares. Suppose we have a system

Ax = y

with m × n matrix A which has no solution, the most interesting case is
that m > n and r(A) = n, so A has linearly independent columns. In
practical applications the absence of solutions may be due to the errors in
the experimental data. Then we may want to find “the best guess” for x,
based on these data. A typical example is a set of points (tk, yk), 1 ≤ k ≤ m,
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in the plane, which are supposed to lie on a line. But they do not lie on a
line (because yk are the results of some measurements which are prone to
various errors). We want to find a line y = at+ b which fits the experimental
data best. So we want to find a and b. For them we have a system of m
equations:

atk + b = yk, 1 ≤ k ≤ m

with matrix

A =


t1 1
t2 1
. . . . . .
tm 1

 .

If all tk are distinct, which is natural to assume, then the columns of A are
linearly independent. The Least Square Solution is, by definition such x̂ that
Ax̂ is the projection of y onto the columns space of A. In other words, it
minimizes the distance

∥Ax− y∥

instead of solving the system Ax = y exactly.
According to the previous theory, it is obtained in the following way:

Compute ATA and ATy, and solve ATAx̂ = ATy. This always has a
solution x̂. If columns of A are linearly independent this solution is

x̂ = (ATA)−1ATy.

In the case of fitting a line at+ b this system ATAx = y is 2× 2.
Remark. In practice, solving ATAx̂ = ATb by row operations is easier

than inverting ATA.
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