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An inner product, also known as dot product or scalar product is an
operation on vectors of a vector space which from any two vectors x and y
produces a number which we denote by (x,y). In this lecture, all vector
spaces are defined over real numbers. The operation is described by
the following three properties:

(x,y) = (y,x), (1)

(c1x1 + c2x2,y) = c1(x1,y) + c2(x2,y), (2)

that is the operation is linear with respect to the first argument. From (1)
and (2) follows that it is also linear with respect to the second argument:

(x, c1y1 + c2y2) = c1(x,y1) + c2(x, y2).

The final property is

(x,x) ≥ 0, and (x,x) = 0 only when x = 0. (3)

Examples of dot products. There can be many different inner products

on a given vector space. Our primary example is the standard dot product
on Rn:

(x,y) = xTy = x1y1 + x2y2 + . . .+ xnyn.

Check that is has the three required properties (1)–(3). For another example,
let us fix some positive numbers a1, . . . , an and define the dot product by

(x,y) = a1x1y2 + . . .+ anxnyn. (4)
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Again all three properties (1)–(3) hold.
Now we consider examples on spaces of functions. We recall that a func-

tion defined on an interval [a, b] is called piecewise-continuous if there are
points a = t0 < t1 < t2 < tn = b such that the function is continuous on each
interval (tk, tk+1) and the one-sided limits at each tk exist (from both sides
of tk). It is easy to see that the set of all such functions is a vector space.
We will call it PC(a, b). A dot product on this space can be defined as

(f, g) =
∫ b

a
f(x)g(x)dx.

Check that properties (1)-(3) are satisfied. A generalization similar to (4)
can be obtained if we fix a strictly positive continuous function w, and define

(f, g) =
∫ b

a
f(x)g(x)w(x)dx.

From now we assume that some dot product is fixed on a vector space V .
The length of a vector x is defined as the positive square root

∥x∥ =
√
(x,x).

Let us compute:

∥x+ y∥2 = (x− y,x− y) = (x,x) + (y,y) + 2(x,y), (5)

and, switching the sign of y:

∥x− y∥2 = (x,x) + (y,y)− 2(x,y). (6)

Adding (5) and (6) we obtain the polarization identity

∥x+ y∥2 + ∥x− y|2 = 2∥x∥2 + 2∥y∥2. (7)

In words: the sum of the squares of diagonals of a parallelogram is equal to
the sum of the squares of the sides. Then we have

Cauchy–Schwarz inequality. |(x,y)| ≤ ∥x∥∥y∥. The equality can hold
only if x and y are collinear.

Proof. Let t be a number, and consider

(x+ ty,x+ ty) = (x,x) + 2t(x,y) + t2(y,y),
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where we used (1), (3). By (3), this must be non-negative for all real t.
But this is a quadratic polynomial in t, ands since (y,y) is non-negative,
this quadratic polynomial is non-negative if and only if the discriminant is
non-positive:

(x,y)− (x,x)(y,y) ≤ 0.

This gives our inequality. Suppose now that we have equality, so our dis-
criminant equals to zero. Then the quadratic polynomial has a root t0, so
we have (x+ t0y,x+ t0y) = 0, and by property (3), second part, this is only
possible if x+ t0y = 0 that is x is collinear to y.

For example, with the standard dot product on Rn the Cauchy–Schwarz
inequality reads:

|x1y1 + x2y2 + . . .+ xnyn| ≤
√
(x2

1 + . . .+ x2
n)(y

2
1 + . . .+ y2n).

and on the space of functions∣∣∣∣∣
∫ b

a
f(x)g(x)dx

∣∣∣∣∣ ≤
(∫ b

a
f 2(x)dx

)1/2 (∫ b

a
g2(x)dx

)1/2

.

Cauchy–Schwarz inequality together with (5) give

∥x+ y∥ ≤ ∥x∥+ ∥y∥,

and this is called the triangle ineuality: the length of side of a triangle is
at most the sum of the lengths of two other sides. By recalling the case of
equality in the Sauchy–Schwarz inequality we concluse that the straight line
gives the shortest distance between two points.

Using Cauchy–Schwarz inequality, we can also define the angle between
two vectors:

̸ (x,y) = arccos
(x,y)

∥x∥∥y∥
.

So the angle is always between 0 and π. This is a different meaning of the
word “angle” from the meaning used in Lecture 8! With this notion of angle
and (6) we also obtain the familiar cosine theorem:

∥x− y∥2 = ∥x∥2 + ∥y∥2 − 2∥x|∥y∥ cosα

which shows that our geometry coincides with that studied in high school,
except that now we have all those notions in arbitrary dimension.
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Vectors are called orthogonal if the angle between them is 90◦, that is if
(x,y) = 0. Sometimes this property is recorded as x⊥y.

Suppose that some non-zero vectors v1, . . . are mutually orthogonal, that
is

(vi,vj) = 0 for all i ̸= j.

Such a set of vectors is called an orthogonal system. It does not have to be
finite.

Remember, the zero vector can not be included into an orthogonal system,
by definition! Then we have

Theorem. Any orthogonal system is linearly independent.

Proof. Suppose that v1, . . . ,vn are mutually orthogonal, and

c1v1 + . . . , cnvn = 0.

For any j, we dot-multiply this on vj. Then all products vanish, except one,
and we obtain cj(vj,vj) = 0, but (vj,vj) ̸= 0 since vj ̸= 0 and by property
(3). Therefore cj = 0, and this holds for every j.

So an orthogonal system which spans a finite-dimensional space is auto-
matically a basis of this space. Such a system is called an orthogonal basis.

Let x be a vector in the span of v1, . . . ,vn so we have

x = c1v2 + . . .+ cnvn. (8)

In general, to find the coefficients cj we need to solve the system of linear
equations

Ac = x,

where A = [v1, . . . ,vn] and c = (c1, . . . , cn)
T . However orthogonality allows

us to write the answer immediately: dot-multiply equation (8) on vj. We
obtain

cj =
(x,vj)

∥vj∥2
. (9)

So in particular it is useful to have an orthogonal basis in the space, since
expansion of vectors in this basis is easy. We will later return to the question
how to find an orthogonal basis.

When an orthogonal system has the additional property that ∥vj∥ = 1
for all vectors of this system, formula (9) simplifies:

cj = (x,vj). (10)
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Such systems of vectors are called orthonormal systems. In particular we
have orthonormal bases. Equations (9) and (10) are called Fourier formulas.

Examples. 1. The standard basis e1, e2, . . . , en is an orthonormal basis in
Rn with the standard dot product.

2. In the space C[0, π] of continuous functions on [0, π] with standard dot
product, consider the vectors ϕn(t) = sinnt, n = 1, 2, . . . . This is an orthog-
onal system. Indeed,

(ϕm, ϕn) =
∫ π

0
sinmt sinnt dt

=
1

2

∫ π

0
cos(m− n)t− cos(m+ n)t dt

=

{
0 if m ̸= n,
π/2 if n = n.

So the system (ϕn)
∞
n=1 is orthogonal, and the length of each vector is

√
π/2.

Thus √
2

π
sinnt, n = 1, 2, 3, . . .

is an orthonormal system.
Suppose that a function f belongs to the span of this system, that is

f =
N∑

n=1

cnϕn.

Then Fourier formulas become

cn =
2

π

∫ π

0
f(t) sinnt dt.

Let us (dot)-multiply the expansion (8) on itself. Using orthogonality, we
see that all products of the type (vi,vj) vanish. What remains is

∥x∥2 = c21∥v1∥2 + . . .+ c2n∥vn∥2.

This is a generalization of Pythagorean theorem to arbitrary dimension.

5



Orthogonal subspaces. Two subspaces X and Y of a vector space V with
a dot product are called orthogonal if every x ∈ X is orthogonal to every
y ∈ Y . Zero-vector is the only common vector of such subspaces. Indeed, if
a vector x ∈ X ∩ Y then x is orthogonal to itself, and this is only possible
when x = 0, by property (3).

So this use of the word “orthogonal” in Linear Algebra is different from
the use of the word “perpendicular” in everyday life: a wall in a room is not
orthogonal to the floor; they have a common line!

Let V be a space with an inner product, and U a subspace. The orthogonal
complement U⊥ of U is defined as the set of all vectors in V which are
orthogonal to every vector in U :

U⊥ := {x ∈ V : (x,y) = 0 for all y ∈ U}.

For example, in R3 the line through e3 is orthogonal to the plane spanned
by e1 and e2.

The main example of orthogonal complement in Rn with the standard
dot product is the following:

For every matrix A, N(AT ) = C(A)⊥, and N(A) = (R(A)T )⊥.

This follows immediately from the definitions: xTA = 0 means exactly
that every column of A is orthogonal to the row xT . N(AT ) by definition
consists of all rows xT which are orthogonal to every column of A.

It is important that the converse is also true:

Every subspace U of Rn is the column space of some matrix.

Indeed, choose a basis in U , use as columns of a matrix.
So rank and nullity theorem gives a relation between dimensions of a

subspace U of V and its orthogonal complement

dimU + dimU⊥ = dimV. (11)

This relation allows one to prove another important formula:

(U⊥)⊥ = U.

Proof. It is an immediate consequence of the definition that U ⊂ (U⊥)⊥.
But the dimension formula (11) implies that U and (U⊥)⊥ have the same
dimensions. So by Theorem 4 in Lecture 5 these spaces are equal.
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Since U and U⊥ have only the zero vector in common, we can take any
basis u1, . . . ,uk in U and a basis u′

1, . . . ,u
′
ℓ in U⊥. Then together these bases

form a linearly independent system: indeed, if

k∑
j=1

cjuj +
ℓ∑

j=1

c′ju
′
j = 0,

then each of the two sums must be equal to zero since the first sum belongs
to U and the second one to U⊥. So all cj and c′j must be zero since both (uj)
and (u′

j) are bases in their spaces. Now dimension formula (11) implies that
(uj) and (u′

j) together must form a basis in the whole space.
So we obtain: If U ⊂ V is a subspace, then any vector x ∈ V can be

written as
x = u+w, where u ∈ U and w ∈ U⊥

in a unique way.

Now let u1, . . .uk be any orthogonal system in a space V , and let U be
its span. Then we can write any vector x ∈ V as

x = u+w =
k∑

j=1

cjuj +w, where w ∈ U⊥.

Let us square this:

(x,x) =
k∑

j=1

c2j∥uj∥2 + ∥w∥2.

All mixed products (xi,xj) and (xj,w) vanish because of orthogonality. So
we have

k∑
j=1

c2juj
2 ≤ ∥x∥2,

and this holds for any orthogonal system and any vector, and cj are given by
formulas (9). This is called the Bessel Inequality. When the system u1, . . . ,uk

spans the space U , so that U⊥ = {0}, Bessel’s inequality becomes an equal-
ity which is called the Parseval equality (the generalization of Pythagorean
theorem mentioned above).
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