
1. Complex numbers. Complex numbers are expression of the form a+bi,
where a, b ∈ R, which are added and multiplied as polynomials with respect
to the letter i, with the convention that i2 = −1. The set of all complex
numbers is denoted by C. Usually a complex number is denoted with one
letter, for example z = x+ iy, ζ = ξ + iη or w = u+ iv.

1.1 Verify that C is a field. Hint: (a+ bi)−1 = a/(a2 + b2)− ib/(a2 + b2).
1.2 There is a one-to-one correspondence between complex numbers a + ib

and vectors (a, b) ∈ R2, which gives a geometric interpretation of addition
of complex numbers.
1.3 Consider the set of matrices of the form(

a −b
b a

)
, where a and b are real.

Show that the usual operations of addition and multiplication of matrices
preserve this set of matrices, and that it forms a field isomorphic to C.
This gives a geometric interpretation of multiplication of complex numbers:
describe it in words. (Hint: what is the geometric meaning of a matrix?)

We use shorthand notations like a + i0 = a, a + i1 = a + i and so on.
Then R ⊂ C, and the operations in C agree with the usual ones in R. We
describe such situation by saying that R is a subfield of C, or that C is an
extension of R.

A one to one map σ of a field into itself is called an automorphism if it
has the properties σ(x+ y) = σ(x) + σ(y) and σ(xy) = σ(x)σ(y).

1.4 The only automorphisms of C, that satisfy σ(x) = x for every x ∈ R, are
the identity and the automorphism σ(a+ib) = a−ib. The last automorphism
is called complex conjugacy and the standard notation for it is z̄. So if
z = x+ iy then z̄ = x− iy.

If z = x + iy is a complex number, then the real numbers <z := x and
=z := y are called real and imaginary parts of z. We have

<z =
1

2
(z + z̄) and =z =

1

2i
(z − z̄). (1)

The expression
zz̄ = (<z)2 + (=z)2 (2)

is always non-negative, as a sum of squares of real numbers, so one can
consider the non-negative square root of it: |z| :=

√
zz̄. This is called the
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absolute value or norm or modulus of z. From (2) follows

|<z| ≤ |z|, |=z| ≤ |z| and |z| ≤ |<z|+ |=z|. (3)

1.5 Absolute value has the following properties:

a) |z| ≥ 0 with equality iff z = 0,
b) |z1z2| = |z1||z2|,
c) |z1 + z2| ≤ |z1|+ |z2|.

Hint for c): Write |z1 + z2|2 = (z1 + z2)(z1 + z2) = |z1|2 + |z2|2 + 2<(z1z̄2),
using (1). Then use the first inequality in (3).

If complex numbers are interpreted as vectors in R2, then |, | is the Eu-
clidean norm in R2. Whenever we have a norm, a distance between two
vectors can be defined as ρ(z1, z2) = |z1 − z2|.

1.6 The distance function has the following properties:

a) ρ(z1, z2) ≥ 0 with equality iff z1 = z2 (positivity),
b) ρ(z1, z2) = ρ(z2, z1) (symmetry),
c) ρ(z1, z2) ≤ ρ(z1, z3) + ρ(z2, z3) (triangle inequality).

A set with a function satisfying a), b) and c) is called a metric space.

1.7 The subset {z : |z| = 1} ⊂ C is called the unit circle. Every complex
number can be written as a product of a non-negative number and a number
on the unit circle. The ratio of any two numbers on the unit circle, again
belongs to the unit circle. This shows that the unit circle is a subgroup of
the multiplicative group of C.
1.8 The expression <(z1z̄2) gives the dot-product in R2. The operation
(z1, z2) 7→ z1z̄2 is called the Hermitian product. Thus the dot product is
the real part of the Hermitian product. Does the imaginary part of the
Hermitian product look familiar to you?

Consider a plane with rectangular coordinates, and to every point (a, b)
in this plane put into correspondence the complex number a + ib. This
correspondence is one-to-one, which gives a third geometric interpretation
to complex numbers. It also consistent with the notion of distance: the
distance between two points in the plane is defined by the same formula as
the distance between two complex numbers. Whenever one has a notion of
a distance, satisfying a), b), and c) from 1.6, all topological notions can be
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defined (neighborhoods, open and closed sets, limits and continuity). For
example, Let E be a set in the complex plane, and a is a point in E. We say
that E is a neighborhood of a if {z : |z − a| < r} ⊂ E for some r > 0.

1.9 Intersection of a finite set of neighborhoods of a is again a neighbor-
hood of a. Union of any set of neighborhoods of a is again a neighborhood
of a.

A set is called open if it is a neighborhood of each of its points. Telling
which subsets are open defines a topology on a set. Topology of the set of
complex numbers is the same as the topology in the plane R2, because the
notion of the distance is the same. See any introductory text of topology, or
an advanced calculus textbook. We only recall some facts and notions.

A sequence is a function on the set of non-negative (sometimes only pos-
itive) integers. It is usually denoted as (zn), or

(zn)∞n=0, or simply z0, z2, z3, . . . .

We say that a sequence of complex numbers (zn) has a limit a ∈ C if for
every neighborhood E of a there exists an integer N , such that zn ∈ E for
every n ≥ N .

1.10 zn → a iff <zn → <a and =zn → =a. Hint: use inequalities (3).

A sequence (zn) is called Cauchy sequence if for every ε > 0 there exists
such integer N that ρ(zm, zn) ≤ ε for all m ≥ N and n ≥ N . (This can
be defined for any metric space). A metric space is called complete is every
Cauchy sequence has a limit.

1.11 Prove that C is complete. Hint: Use 1.9 and the fact that R is complete
(in the axiomatic definition of R this is actually one of the axioms!)
1.12 A topological space X is called connected if the only subsets which are
simultaneously open and closed are ∅ and X. Prove that C is connected.
Hint: consider R first.
1.13 If f : X → Y is a surjective continuous map of topological spaces, and
X is connected then Y is also connected. As a corollary we obtain that the
unit circle T is connected.

A set which is open and connected is called a region.
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