
On an entire function

Alex Eremenko∗

November 27, 2005

The functional equation

F ′(z) = F (qz), F (0) = 1,

has a unique series solution in powers of z:

F (z) =
∞∑
n=0

qn(n−1)/2zn/n!.

When |q| ≤ 1, this series represents an entire function. We are interested
in the location of zeros of F for |q| < 1. The case |q| = 1 was recently
investigated in [1] where the references related to this case are also given.
We denote these zeros by zj, so that

|z0| ≤ |z1| ≤ . . . . (1)

Here each zero is repeated according to its multiplicity. When q ∈ [0, 1], all
zeros are negative and simple. This follows from a result of Laguerre Pólya
and Schur on multiplier sequences [2, 4]. Langley [3] proved for q ∈ (0, 1)
that the sequence zn+1/zn is decreasing for n large enough, and furthermore,

zn/zn−1 = (n+ 1)/(nq) + o(n−2), n → ∞,

from which follows

zn = −nq−n(γ + o(1)), n → ∞, (2)

where γ is a constant.
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In this note we prove, that (2) holds for all complex q in the open unit
disc, with γ = 1. In particular, all zeros but finitely many are simple. As an
application of the method, we will also show that inequalities (1) are strict
when |q| < 0.39. In particular, all zeros are simple, for such q.

It will be convenient to work with a modified function

f(z) =
∞∑
n=0

cnz
n =

∞∑
n=0

qn
2

zn/n!, |q| < 1, (3)

which is related to F by the formula

fq(z) = Fq2(qz). (4)

Let |q| < 1 be fixed, and let N be a large integer. (How large will depend
on |q|.) The N -th term of the series (3) is maximal (among all the terms of
this series) when

rN−1 < |z| < rN ,

where
rN = (N + 1)|q|−2N−1.

We will restrict |z| to this annulus, or maybe to a slightly larger annulus, so
we put

z = wN/q2N ,

so that w is near 1. Setting n = N +m, we have

f(z)

cNzN
=

∞∑
m=−N

NmN !

(N +m)!
wmqm

2

. (5)

We will compare this with the theta-function

θ3(w, q) =
∞∑

m=−∞
wmqm

2

.

The idea is that:
a) only few terms in both sums are relevant, and
b) for theta functions, we know both their coefficients and their zeros per-
cisely.

First of all, the factor

NmN !

(N +m)!
< 1 for all m ̸= 0, (6)
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both positive and negative. So it can be neglected in the estimates of the
tails of the series.

Second, we will take a partial sum of (5) for |m| < µ where µ = µ(q) is
independent of N . So our estimates will be valid when N > µ. Notice that
for |m| < µ, the factor (6) tends to 1 as N → ∞, so it can be neglected.

To choose µ, we want the tail of the theta-function to be less than min-
imum of its modulus for some fixed |w|. We have the Euler–Jacobi product
(following the notation of Whittaker-Watson):

θ3 =
∞∏
n=1

(1− q2n)
∞∏
n=1

(
1 + q2n−1(w + w−1) + q4n−2

)

=
∞∏
n=1

(1− q2n)
∞∏
n=1

(1 + q2n−1w)(1 + q2n−1/w).

So the zeros are at q2n+1 : −∞ < n < ∞. The minimum on the unit circle is
at least

c(q) :=
∞∏
n=1

(1− |q|2n)
∞∏
n=1

(1− |q|2n−1)2,

which is θ3(−1, |q|), that is

c(q) = 1 + 2
∞∑
n=1

(−1)n|q|n2

> 0. (7)

Let us also introduce c1(q), the minimum of the θ3 on the circle |w| = |q|2.
This minimum is also positive,

c1(q) = |q|−1c(q) > c(q). (8)

Now we will define µ = µ(q) by the condition

4
∑
m≥µ

|q|m2

< ϵmin{c(q), c1(q)} = ϵc(q),

where ϵ ∈ (0, 1). Then equation (5) will give us

f(z)

cNzN
= θ3(w) + error term, (9)

where the error term is less than the minimum of θ3 on the boundary of the
ring

A = {w : |q|2 < |w| < 1}.
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Furthermore, the error term tends to zero as N → ∞, and the rate of this
convergence can be also estimated. As θ3 has exactly one zero in the annulus
A, namely at the point −q, Rouche’s theorem implies that f has one zero in
the annulus

N |q|−2N−2 < |z| < N |q|−2N ,

and this zero is within ϵN |q|−2N from the point

ZN = −Nq−2N+1.

Let us also show that f has exactly N zeros in the disc

|z| < N |q|−2N . (10)

The number of zeros of F in this disc is equal to the increment I of the arg f
on the circle |z| = N |q|−2N , divided by 2π. According to (5), this increment
I is 2πN plus the increment of the argument of θ3 on the unit circle. But
the increment of the argument of θ3 on the unit circle is zero (this is because
it is zero for very small q, and depends continuously on q). Thus I = 2πN
and f has exactly N zeros in the disc (10).

So the N -th zero of f is close to ZN . Translated in terms of the zeros of
the original function F , whis gives

zn = −(n+ o(n))q−n,

as advertized.
In particular, this gives an upper estimate for the N -th zero, and shows

that no zero can escape to infinity while q varies on a compact subset of the
punctured unit disc.

Now we separate the roots of F . To separate the root z0 of the smallest
modulus, we write

F (z) = (1 + z + qz2/2) + (q3z3/6 + . . .) = P (z) +Q(z).

The two roots of P are (−1±
√
1− 2q)/q; if |q| < 1/2, then they are separated

by the circle C = {z : |z| = |q|−1} and we have |P (z)| ≥ 1/|2q| − 1 on this
circle. Now we estimate |Q| from above on C:

|Q(eiϕ/|q|)| ≤
∞∑
n=3

|q|n(n−3)/2/n! ≤ 1

6(1− |q|2)
.
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Thus if
1

|2q|
− 1 >

1

6(1− |q|2)
, (11)

then F has exactly one zero inside the circle C, and this is the case when

|q| < 0.41.

To prove separation of other roots, we choose µ = 2 in the previous
arguments, that is we write as in (5) with N ≥ 2

f(z)

cNzN
= 1 + q(

N

N + 1
w + w−1) +Q(w) = P (w) +Q(w).

The equation P (z) = 0 has two roots. If |q| ≤ 1/2, these two roots are

separated by the circle |w| =
√
(N + 1)/N, and the minimum of |P | on this

circle is at least 1− |q|
√
N/(N + 1).

The maximum of |Q(w)| on the same circle is at most 2|q|4/(1− |q|). So
the moduli of all zeros zn for n ≥ 1 will be separated if

(1− |q|
√
N/(N + 1)(1− |q|) > 2|q|4,

that is |q| ≤ 0.436.
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[4] G. Pólya and I. Schur, Über zwei Arten von Faktorenfolgen in der Theorie
der algebraischen Gleichungen, J. für Math. 144 (1014) 89–113.

[5] E. Whittaker and G. Watson, A course of modern analysis, v. 2, Cam-
bridge UP, 1927.

5


