
Lecture 10.2
M o r e  o n  m e m o r y l e s s n e s s ;  g e o m e t r i c  r a n d o m  

v a r i a b l e s
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Today’s reading: more from 5.5, 
4.8.1
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Next class: 5.7

HW8 due Friday.



Today’s draft problem
To be presented by today’s draftee.
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Let 𝑋 be an exponentially distributed random variable 
with rate 𝜆.  Compute the 𝑛th moment of 𝑋, i.e. 𝐸[𝑋!].

(Hint: use induction.)



Recall: Exponential Random Variables
Definition:
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A continuous ℝ-valued random variable 𝑋 (on a sample space 𝑆 with 
probability measure 𝑃…) is called exponential with parameter (or rate) 𝜆 if 
its PDF is given by

𝑓 𝑥 = -𝜆𝑒
"#$, 𝑥 ≥ 	0
0, 𝑥 < 0

Basic properties (proved last class):

§ the CDF of 𝑋 is 𝐹 𝑎 = -1 − 𝑒
"#%, 𝑎 ≥ 	0
0, 𝑎 < 0

§ 𝐸 𝑋 = 1/𝜆
§ 𝑉𝑎𝑟 𝑋 = 1/𝜆&



Recall: Hazard rate functions
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Let 𝑋 be any positive, continuous random variable with PDF 𝑓 and CDF 𝐹.  
Then the hazard rate function (or failure rate function) of 𝑋 is the function

𝜆 𝑡 =
𝑓(𝑡)

1 − 𝐹(𝑡)

Definition:



Hazard rate functions can “do it all”
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The hazard rate function of a (positive and continuous) random variable can 
completely recover the random variable’s CDF.

Why?
Hint: consider

>
'

(

𝜆 𝑠 	𝑑𝑠

Final answer: 𝐹 𝑡 = 1	 − 𝑒𝑥𝑝 −∫'
( 𝜆 𝑠 	𝑑𝑠

Fact:



Hazard rate function of exponential random 
variables
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Let 𝑋 be exponentially distributed with parameter (or rate) 𝜆. Then its 
hazard rate function is constant:

𝜆 𝑡 = 𝜆

What is the hazard rate function of an exponentially distributed random 
variable?



Recall: Memorylessness
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A (nonnegative) random variable 𝑋 is called memoryless if 
𝑃 𝑋 > 𝑠 + 𝑡	 𝑋 > 𝑡} = 𝑃{𝑋 > 𝑠}

for all 𝑠, 𝑡 ≥ 0.  Equivalently:
𝑃 𝑋 > 𝑠 + 𝑡 = 𝑃 𝑋 > 𝑠 𝑃{𝑋 > 𝑡}

Definition:

Fact:
A nonnegative, continuous random variable 𝑋 is memoryless if and only if it 
is exponential.

We didn’t finish proving the ⇒ direction, so let’s do it now.



Continuous + Memoryless ⇒ Exponential
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§ If 𝑋 is memoryless and continuous, then one can show that its hazard 
rate function is constant, i.e.

𝜆 𝑠 = 𝑐
(How?)
§ We just showed that

𝐹 𝑡 = 1	 − 𝑒𝑥𝑝 −>
'

(

𝜆 𝑠 	𝑑𝑠

§ Thus: 𝐹 𝑡 = 1	 − 𝑒")(, and so 𝑓 𝑡 = *+
*$

𝑡 = 𝑐𝑒")(, which shows the 
variable is exponential. 

Let’s finish the proof that “continuous + memoryless” and “exponential” 
are equivalent:



So, exponential random variables 
are exactly the same thing as 
continuous random variables that 
are memoryless.
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But what about discrete random variables?   
Which of those are memoryless?



Geometric random variables
Definition:
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A discrete ℝ-valued random variable 𝑋 (on a sample space 𝑆 with 
probability measure 𝑃…) is called geometric with success probability 0 ≤
𝑝 ≤ 1 if its PMF is given by

𝑃 𝑋 = 𝑛 = 1 − 𝑝 !",𝑝	 𝑛 = 1,2,3, …

Equivalently: a geometric random variable keeps track of when we see the 
first success if we repeatedly do independent Bernoulli trials, each with 
success probability 𝑝.



Geometric random variables
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Recall: Exponential Random Variables
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By EvgSkv - Own work, CC0, 
https://commons.wikimedia.org/w/index.
php?curid=129244482



Geometric random variables – basic properties
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If 𝑋 is a geometric random variable with success probability 𝑝 then:

§ 𝐸 𝑋 = 1/𝑝

§ 𝑉𝑎𝑟 𝑋 = ,"-
-!

Read Examples 8b and 8c in Section 4.8.1 to see why.



Discrete memorylessness
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Fact:
A positive, discrete random variable 𝑋 is memoryless if and only if it is 
geometric.

Let’s prove the easy direction, namely: ⇐

Note how intuitive this is, e.g.: if I repeatedly flip a coin until I get the first 
heads, then the probability that it requires at least 50+30 flips given that 
I’ve already gotten 30 tails in a row IS EXACTLY EQUAL to the probability 
that it takes at least 50 flips.  The coin does not remember that it had 30 
tails in a row!

We won’t prove the harder ⇒ direction. (Note that we can’t use hazard rate 
functions because we’re in the discrete setting!  Need to solve a recurrence 
relation instead.)



Exponential random variables are a continuous 
limit of geometric random variables
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Fact:

If 𝑝 = #
!
 and 𝑋 is geometric with success probability 𝑝, then as 𝑛 → ∞ the 

CDF of X converges to an exponential random variable with parameter 𝜆.

 

Analogy:
Exponential random variables are related to geometric random variables 
like Poisson random variables are related to binomial random variables.

 



Friday’s draft problem
To be presented by Friday’s draftee
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Let 𝑋 be a geometric random 
variable.  Give both an algebraic 
proof and a verbal explanation of the 
following:

𝑃 𝑋 = 𝑛 + 𝑘	 𝑋 > 𝑛 = 𝑃{𝑋 = 𝑘}


