Lecture 11.2

Independent random variables

Department of Mathematics

4/2/25

A First Course in **Probability**

Tenth Edition

Sheldon Ross

Today's reading: more from 6.1, 6.2 (Not on MT2)

Next class: MT2 Review

HW9 now available. Due Friday.

Practice MT2 is now available. Wil send more study suggestions later today.

P

Department of Mathematics

4/2/25

2

Today's draft problem

To be presented by today's draftee.

Suppose *X* and *Y* are jointly continuously distributed with joint PDF

$$f(x,y) = \begin{cases} e^{-(x+y)}, & x > 0, y > 0\\ 0, & \text{else.} \end{cases}$$

Find $P\{X < Y\}$ and $P\{X < a\}$.

Department of Mathematics

Recall: Jointly continuous random variables

Definition:

Let *X* and *Y* be random variables. We say they are *jointly continuous* if there exists a function f(x, y) such that for every (measurable) event $C \subset \mathbb{R}^2$

$$P\{(X,Y) \in C\} = \iint_{(x,y)\in C} f(x,y) \, dx \, dy$$

We call *f* the *joint probability density function* (*joint PDF*) of *X* and *Y*. In particular,

$$F(a,b) = \int_{-\infty}^{b} \int_{-\infty}^{a} f(x,y) \, dx \, dy$$

so by the Fundamental Theorem of Calculus,

$$f(a,b) = \frac{\partial^2}{\partial a \,\partial b} F(a,b)$$

Department of Mathematics

Recall: Jointly continuous random variables

We recover marginals in the continuous case analogously to how we did it in the discrete case:

.

Let *X* and *Y* be jointly continuous random variables. Then

$$P\{X \in A\} = P\{X \in A, -\infty < Y < +\infty\} = \int_{A} \int_{-\infty}^{+\infty} f(x, y) \, dy \, dx = \int_{A} f_X(x) \, dx$$

where

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \, dy$$

is the PDF of X.

Let's do examples 1f and 1e now.

Department of Mathematics

SEVERAL jointly random variables

We can generalize all the above from two random variables to several. Let $X_1, X_2, ..., X_n$ be several random variables. Their *joint CDF* is defined by $F(a_1, a_2, ..., a_n) = P\{X_1 \le a_1, X_2 \le a_2 ..., X_n \le a_n\}.$

We say they are <u>jointly continuous</u> if there exists a function $f(x_1, x_2, ..., x_n)$ such that

$$P\{(X_1, X_2, \dots, X_n) \in C\} = \iint \cdots \int_{(x_1, x_2, \dots, x_n) \in C} f(x_1, x_2, \dots, x_n) \, dx_1 \cdots dx_n$$

We recover the marginal for, say, X_1 by "integrating out" all the other variables:

$$P(X_1 \in A_1) = \int_{A_1} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} f(x_1, x_2, \dots, x_n) \, dx_2 \, \cdots \, dx_{n-1} \, dx_n$$

Department of Mathematics

Independent random variables

Definition:

Two random variables X and Y are independent if for any two (measurable*) subsets of real numbers $A, B \subset \mathbb{R}$

 $P\{X \in A, Y \in B\} = P\{X \in A\}P\{Y \in B\}.$

In other words: the events $\{X \in A\}$ and $\{Y \in B\}$ are independent for all $A, B \subset \mathbb{R}$.

With some work, previous definition can be shown to be equivalent to following:

 $F(a,b) = F_X(a)F_Y(b)$ for all $a, b \in \mathbb{R}$.

Department of Mathematics

Discrete Case: Independent random variables

Useful fact:

If two random variables *X* and *Y* are both discrete, then they are independent exactly when $p(x, y) = p_X(x)p_Y(y)$ for all $x, y \in \mathbb{R}$.

Let's prove this.

Department of Mathematics

Continuous Case: Independent random variables

Useful fact:

If two random variables X and Y are both continuous, then they are independent exactly when

 $f(x, y) = f_X(x)f_Y(y)$ for all $x, y \in \mathbb{R}$.

Department of Mathematics