
Lecture 12.2
I N T E R L U D E :  L i m i t  T h e o r e m s
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Today’s reading: 8.1-8.4

2

Next class: 6.3

HW10 will be made available by end of 
day Friday.  Will be due next Friday, 4/18.

I will do my best to get graded MT2 back 
to you by Monday. 

I will definitely get it back to you before 
next Friday, since that is the last day to 
drop (with W).

Remember: starting this Friday (4/11), we 
will have TWO draft problems every day, 
an “A” problem and a “B” problem.  I will 
announce the A draftee lists and B draftee 
lists now. 



Today we’re going to peak ahead in the book 
because limit theorems are just too cool not to 
talk about as soon as possible.  Moreover, there 
are some tools involved in proving them that are 
extremely useful in many settings.
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By Konrad Jacobs - https://opc.mfo.de/detail?photoID=7493, CC BY-SA 2.0 
de, https://commons.wikimedia.org/w/index.php?curid=11829175



Markov’s inequality
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If 𝑋 is a non-negative (ℝ-valued) random variable, then for any 𝑎 > 0,

𝑃 𝑋 ≥ 𝑎 ≤
𝐸[𝑋]
𝑎

Proposition 2.1

Why care? Markov’s inequality shows that for ANY non-negative random variable, we can upper 
bound the probability of a “tail” event without needing to know anything except the mean of the 
random variable!  (Of course, this bound will be quite bad for most specific choices of 𝑋, but the 
usefulness of Markov’s inequality comes from its universality.)



Chebyshev’s inequality

5

Proposition 2.2
If 𝑋 is any (ℝ-valued) random variable with mean 𝜇 < ∞ and variance 𝜎!, then for any 𝜖 > 0

𝑃 𝑋 − 𝜇 ≥ 𝜖 ≤
𝜎!

𝜖!

Why care? For similar reason as Markov’s inequality.  Chebyshev’s inequality shows that for ANY 
random variable, we can upper bound the probability that it is “far away” from its mean without 
needing to know anything except the mean and the variance of the random variable!  (Of course, 
this bound will be quite bad for most specific choices of 𝑋, but the usefulness of Chebyshev’s 
inequality comes from its universality.)



A cute application of Chebyshev’s inequality
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The only random variables with variance 0 are constant.
In other words: if Var 𝑋 = 0, then

𝑃 𝑋 = 𝐸 𝑋 = 1

Proposition 2.3



A more important application of Chebyshev’s 
inequality: Weak law of large numbers

Theorem 2.1
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Let 𝑋", 𝑋!, … be a sequence of independent and identically distributed random variables (“i.i.d.”) 
with 𝜇 = 𝐸 𝑋" = 𝐸 𝑋! = ⋯.  Then for any 𝜖 > 0

𝑃
𝑋" +⋯+ 𝑋#

𝑛
− 𝜇 ≥ 𝜖 → 0	 as	 𝑛 → ∞

Intuition: the probability that a sample mean is “far away” (that is, farther than epsilon away) from 
the true mean goes to 0 as we take more samples.

(One downside: this theorem doesn’t tell us anything about how large 𝑛 needs to be in order to 
guarantee the probability is small.  With more effort, one can get such control.)



More is true! (Although we won’t prove it)
Theorem 4.1 (Strong Law of Large Numbers):
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Intuition: as we take more and more samples, the sample mean “almost certainly” converges to 
the true mean. 

Let 𝑋", 𝑋!, … be a sequence of independent and identically distributed random variables (“i.i.d.”) 
with 𝜇 = 𝐸 𝑋" = 𝐸 𝑋! = ⋯.  Then with probability 1

𝑃 lim
#→%

𝑋" +⋯+ 𝑋#
𝑛

= 𝜇 = 1



One of the “crown jewels” of probability theory
Theorem 3.1 (Central Limit Theorem)
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Intuition: if we “normalize” a sum of more and more i.i.d. random variables, then in the limit, the 
normalized CDF becomes.  Put another way: if we “properly account” for the variance, then in the 
limit of taking more and more samples, the difference between the sample mean and the true 
mean is the standard normal bell curve.
Worth noting (if this means anything to you): while not stated this way, we can in fact show that 
we get uniform convergence of the CDFs.

Let 𝑋", 𝑋!, … be a sequence of independent and identically distributed random variables (“i.i.d.”) 
with mean 𝜇 = 𝐸 𝑋" = 𝐸 𝑋! = ⋯ and variance 𝜎! = 𝑉𝑎𝑟 𝑋" = 𝑉𝑎𝑟 𝑋! = ⋯. Then for every 
real number 𝑎

lim
#→%

𝑃
𝑋" +⋯+ 𝑋# − 𝑛𝜇

𝜎 𝑛
≤ 𝑎 = Φ 𝑎 ,

where Φ 𝑎  is the CDF of the standard normal 𝑍. 



A technical result needed to prove CLT
Lemma 3.2
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Let 𝑍", 𝑍!, … be a sequence of random variables having distribution functions 𝐹&!and moment 
generating functions 𝑀&!, 𝑛 ≥ 1, and let 𝑍 be a random variable having distribution function 
𝐹& and moment generating function 𝐹&.  If 

lim
#→%

𝑀&! 𝑡 = 𝑀&(𝑡)
for all 𝑡, then

lim
#→%

𝐹&! 𝑡 = 𝐹& 𝑡
for all 𝑡 at which 𝐹& 𝑡  is continuous.

Note: we’ll talk about “moment generating functions” in a few weeks.  After that, we’ll circle back 
to proving CLT using this lemma (we won’t prove this lemma).

Intuition: if the “moment generating functions” of a sequence of random variables converges to 
the moment generating function of some other random variable, then the CDFs converge to the 
CDF.



Francis Galton, Natural Inheritance (1901)
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By Matemateca (IME USP) / (name of the photographer), CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=57045935

By Mark Hebner - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=67111322



Friday’s draft problem A
To be presented by Friday’s A draftee.
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Use Chebyshev’s inequality to answer the following:
How many flips 𝑛 of a biased coin with unknown probability of heads 𝑝 does it take in order to be 90% 
certain that the ratio 

number	of	heads	observed
𝑛

agrees with 𝑝 to two decimal places?
Put another way: if 0 ≤ 𝑝 ≤ 1 and 𝑋# denotes a binomial random variable with parameters 𝑛 and 𝑝 
where 𝑝 is unknown, how large does 𝑛 need to be in order to guarantee that

𝑃
𝑋#
𝑛 − 𝑝 ≥ 0.01 ≤ 0.1

Hint: '!
#
− 𝑝 ≥ 0.01 if and only if 𝑋# − 𝜇# ≥ 0.01𝑛, where 𝜇# = 𝑛𝑝 = 𝐸[𝑋#].  Now combine 

Chebyshev’s inequality with the fact that  𝜎#! = 𝑉𝑎𝑟 𝑋# ≤ 0.25𝑛 (the key point is that this is 
independent of 𝑝).



Friday’s draft problem B
To be presented by Friday’s B draftee.
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Consider two independent random variables 
𝑋!	and 𝑋"	such that 𝑋! follows an 
exponential distribution with mean 2, and 
𝑋" follows a uniform distribution on the 
interval [0,2𝜋]. Let 𝑌! = 𝑋! cos 𝑋" and 
𝑌" = 𝑋! sin 𝑋".
1. Show that 𝑌! and 𝑌" are independent.
2. Show that 𝑌! and 𝑌" are both standard 

normal variables.


