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Today’s reading: 4.1+4.2
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Next class: 4.3

No HW this week.  HW5 will be 
made available soon.

I will do my best to return graded 
MT1 in class on Monday.



(Real-valued) random variables

Definition (more-or-less from the book):

Let 𝑆 be a sample space.  A (real-valued) 
random variable on 𝑆 is a function

𝑋:  𝑆 → ℝ
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Comments:
• REMEMBER ALL OF THIS ASAP.
• Notice that the definition has 

NOTHING to do with any choice of 
probability measure on 𝑆. (Recall: a 
given sample space 𝑆 typically has 
many different probability measures 
on it.) More on this momentarily.

• If 𝑇 is any set, we could talk about 
an “𝑇-valued random variable on 𝑆”.  
This would simply be a function 
X:  𝑆 → 𝑇.



Random variables – why do we care?
Let 𝑆 be a sample space.  A (real valued) 
random variable on 𝑆 is a function

𝑋:  𝑆 → ℝ
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Practically:

Formally/mathematically:

We often don’t care about the 
specifics of events in 𝑆, but instead 
have some way of associating a real 
number to every outcome in 𝑆. E.g., 
if we roll two dice but only care 
about their sum, then we really only 
care about a single real number 
between 2 and 12 (rather than a pair 
of numbers, each between 1 and 6).

If we have a random variable X:  𝑆 → ℝ and we 
have a probability measure 𝑃 on 𝑆, then we can 
use 𝑋 to “pushforward” 𝑃 and define a probability 
measure on ℝ. (By a small “abuse of notation,” we 
often denote this measure on ℝ by 𝑃, even though 
we should really call it something like 𝑋∗𝑃.)

[general construction on chalkboard (I’m showing 
you this for your benefit, but you do not need to 
remember it!)]

Intuitively: real-valued random variables allow us 
to convert probability measures on “weird” sample 
spaces 𝑆 into probability measures on something 
we know and love, namely, the real line ℝ.



Cumulative distribution functions
Let 𝑆 be a sample space.  A (real valued) 
random variable on 𝑆 is a function

𝑋:  𝑆 → ℝ
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Definition:

Fix a sample space 𝑆 with a probability 
measure 𝑃 and let 𝑋: 𝑆 → ℝ be a random 
variable.  The cumulative distribution 
function of 𝑋 is the function 𝐹: ℝ → ℝ 
defined by

𝐹 𝑥 = 𝑃( 𝑋 ≤ 𝑥 )

Comments:
• The definition of the cumulative distribution 

function of 𝑋 depends on 𝑋, 𝑆 and 𝑃, even 
though the notation does not make this clear.  
Sorry, but get used to it!

• We often refer to the cumulative distribution 
function as the “CDF,” or drop the word 
“cumulative” and just say “distribution function.”

• If I had my druthers, I would denote the CDF by 
CDF𝑆,𝑃,𝑋 

• The CDF is monotone increasing. (Why?)
• We will see later why this is useful.



THE VIEW FROM 10,000 
FEET: A FUNDAMENTAL 
FACT ABOUT 
PROBABILITY 
MEASURES ON ℝ

Every probability measure 
on ℝ is a “mixture” of a 
“discrete probability 
measure” and a “continuous 
probability measure."
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Comments:
• This is called the “Lebesgue 

decomposition theorem” (I haven’t 
stated it precisely, but I think it is 
helpful to see, since it gives some 
understanding of why we care so 
much about “discrete” vs 
“continuous” random variables.

• We won’t prove this theorem (take 
MA 538 or MA 544 if you want to).

• We will define “discrete probability 
measures” momentarily (and, more 
importantly, “discrete random 
variables”).

• Chapter 4 only considers discrete 
random variables.  (Thus, we will only 
consider discrete random variables for 
the next 3 weeks.)

• In Chapter 5, we will study 
“continuous probability measures” on 
ℝ and, relatedly, “continuous random 
variables.”



Discrete probability measures on ℝ
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Definition (NOT in the book, but hopefully helpful):

A probability measure 𝑃 on ℝ is 
discrete if there exists a finite or at-
most countably infinite set of real 
numbers 𝑥1, 𝑥2, 𝑥3, … ∈ ℝ with the 
two following properties:
▪ 𝑃 𝑥𝑖 > 0
▪ σ𝑖=1

∞ 𝑃 𝑥𝑖 = 1

Intuition/equivalently: a probability 
measure 𝑃 on ℝ is discrete if the 
probability of an event E ⊂ ℝ is the sum of 
the probabilities of the individual outcomes 

in E. That is: P 𝐸 =  σ𝑒∈𝐸 𝑃({𝑒})

If 𝑃 is discrete, then its probability 
mass function (or PMF) is the 
function 𝑝: ℝ → ℝ defined as 
𝑝 𝑥 = 𝑃( 𝑥 ).  Being discrete 
guarantees that 𝑃 is entirely 
determined by its probability mass 
function.



Discrete probability measures on ℝ: examples
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We specify these examples by their PMFs

𝑝 𝑛 =
1

2𝑛 for 𝑛 = 1,2,3, …



Looking ahead: an example of a continuous probability 
measure on ℝ
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“Absolutely continuous“ probability measures 

on ℝ are specified by a “probability density 
function” (PDF).

If the PDF is 𝑓: ℝ → ℝ, then the probability 

of an event 𝐸 ⊂ ℝ is

𝑃 𝐸 = න

𝑥∈𝐸

𝑓(𝑥) 𝑑𝑥

In particular, for a continuous 
probability measure, the probability 
of a single outcome is always 0. 
(Contrast with discrete measures!)

By Ainali - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=3141713



Cantor distribution: a continuous probability measure 
on ℝ with a CDF but no PDF
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This example is “pathological” and not of the type we will study later.  (It is 
“continuous” but not “absolutely continuous.” This is just for fun!)

By CantorEscalier.svg: Theonderivative work: Amirki - This file was derived from: 
CantorEscalier.svg:, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=20407545 By Amirki - Own work, CC BY-SA 3.0, 

https://commons.wikimedia.org/w/index.php?curid=20418844



Discrete random variables
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Definition:

A (real-valued) random variable 𝑋: 𝑆 → ℝ is discrete if it takes on at 
most countably infinitely many different values in ℝ.

Equivalently, 𝑋: 𝑆 → ℝ is discrete if for every probability measure 𝑃 
on 𝑆, the induced probability measure on ℝ is discrete.

We will see many, many examples in the next 3 weeks.



Friday’s draft problem

To be presented by Friday’s draftee.
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Two fair dice are rolled and one fair coin 
is tossed.  Let 𝑋 be the product of the 
two dice outcomes together with +1 if 
the coin was heads or -1 if the coin was 
tails.  Compute 𝑃 𝑋 = 𝑖 for each 𝑖 =
± 1, ±2, … , ±36.
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