Lecture 9.1

Continuous Random Variables:
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Monday’s draft problem

To be presented by Monday’s draftee.

The probability of getting dealt a full
house in one hand of poker is
approximately 0.0014. Use a Poisson
approximation to approximate the
probability that in 1000 hands of poker,
you are dealt at least 2 full houses.
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Continuous Random Variables

Definition (more-or-less from the book):

A R random variable X (on a sample space S with probability measure P...) is
called (absolutely) continuous if there exists a nonnegative function f: R — R,
called the probability density function of X, such that for any mesuaenset B € R

P{X € B} = ff(x)dx

XEB
In particular,

P{la <X <b}= fff(x) dx and P{X =a} = f;f(x) dx =0
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CDF of Continuous Random Variables

Definition (more-or-less from the book):

For a continuous random variable X with PDF f: R — R, the cumulative
distribution function (CDF) of X is the function F: R — R given by

a
F(a)=P{X <a} = Jf(x) dx
In particular, by the fundamental theorem of calculus,

d
%F(a) = f(a)
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Continuous Random Variables — Expectation &

Variance

Definition (from the book):

For a continuous random variable X with PDF f: R — IR, the expectation value of
X is

oo

E|X] = jxf(x) dx

— 0

If we write u = E[X], then the variance of X is defined to be

Var(x) = E[(X — w)?] = f (x — 12 f(x) dx

xXER
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Properties of Expectation

Most of the properties of expectation and variance we established for discrete
random variables generalize appropriately:

Proposition 2.1. If g is a function of X, then

E[g(X)] = f 900 F(x) dx

— 00

Corollary 2.1.
ElaX + b] = aE|X] + b
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Properties of Variance

Var(X) = E[X?] — (E[X])?

Var(aX + b) = a*Var(X)
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Proving these properties

The proofs of most of these properties are basically the same as the analogous
properties for discrete random variables. The only exception is

Proposition 2.1. If g is a function of X, then

E[g(X)] = f 900 F(x) dx

— 00

To prove this proposition, it is helpful to use

Lemma 2.1. If Y is a random variable that never takes a negative value, then
BV = | P> y)ay
0
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Uniform random variables

Definition

Fix two real numbers a < 3. A continuous random variable X is called uniform on
the interval (a, f) if the PDF is

(1

fx)=<pB—-a’
\

ifa<x<pf

0, else

On the board, let’s compute: the graph of f(x), the CDF of f(x) and its graph, the expectation and
the variance.
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Wednesday’s draft problem

To be presented by Wednesday’s draftee.

The PDF of X is given by

_Va+ bx?, 0<x<1
f(x) = { 0, else
If E[X] = 3/5, find a and b.
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