CS 593/MA 592 - Intro to Quantum Computing Spring 2024
 Thursday, February 22 - Lecture 7.2

Today's scribe: Jun Kil [Note: not proofread by Eric]

Reading:
 Agenda:

1. Group Algebra
2. Irreps of $\mathbb{Z} / n \mathbb{Z}$
3. Fourier Transform on $\mathbb{Z} / n \mathbb{Z}$
4. Quantum Fourier Transform (QFT)

1 Group Algebra

Note: Within the branch of math called algebra, there is a specific type of algebraic structure called an "algebra". An "algebra" is a vector space with a distributive vector multiplication.

Let G be any finite group. Define $\mathbb{C} G$ to be the Hilbert space with an orthonormal basis given by:

$$
\begin{gathered}
|g\rangle, g \in G \\
\operatorname{dim}(\mathbb{C} G)=|G|
\end{gathered}
$$

$\mathbb{C} G$ is not just a Hilbert space: We can multiply vectors in $\mathbb{C} G$ by extending the group multiplication linearly.

$$
\begin{gathered}
|g\rangle \cdot|h\rangle=|g h\rangle \\
\left(\sum_{g \in G} b g|g\rangle\right)\left(\sum_{h \in G} c h|h\rangle\right)=\sum_{g, h} b g c h|g h\rangle
\end{gathered}
$$

$\mathbb{C} G$ with this multiplication is called the group algebra of G. The group algebra has an obvious representation of G on it:

$$
\rho: G \rightarrow G L(\mathbb{C} G), g \mapsto L g
$$

where

$$
L g: \mathbb{C} G \rightarrow \mathbb{C} G,|h\rangle \mapsto|g h\rangle
$$

This is called the (left) regular representation of G.
We can think of a general vector $|\psi\rangle \in \mathbb{C} G$

$$
|\psi\rangle=\sum \psi_{g}|g\rangle
$$

as a function $\psi: G \rightarrow \mathbb{C}, g \mapsto \psi_{g}$ Roughly: $\mathbb{C} G=\bigoplus_{\rho \in \operatorname{Irrep}(G)}(\mathbb{C} G)_{\rho}$ where $(\mathbb{C} G)_{\rho}$ is the set of functions $G \rightarrow \mathbb{C}$ that are " ρ periodic".
Fourier transform is essentially a way of decomposing a function $\psi: G \rightarrow \mathbb{C}$ into its " ρ periodic pieces". Making this precise for non-abelian groups ought to be done with "character theory". Instead, now we will prove this directly for $G=A=\mathbb{Z} / N \mathbb{Z}$, where A is an abelian group.

2 Irreps of $\mathbb{Z} / n \mathbb{Z}$

Last time: Irreps of A are the same thing as 1 -dim representation which we might as well assume it is unitary, so, the irreps of A are given by $\hat{A}:=\{\rho: A \rightarrow U(1) \mid \rho$ a homomorphism $\}$, with $A=\mathbb{Z} / N \mathbb{Z}=\{0,1, \ldots, N-1\}$.
(Note: we use ' + ' notation for A not ' \cdot ' notation whereas \hat{A} is multiplicative)
Since $A=\mathbb{Z} / N \mathbb{Z}$ is cyclic and generated by 1 , every representation $\rho: A \rightarrow U(1)$ is determined by $\rho(1)$. On the other hand, $U(1)=\left\{e^{2 \pi i \theta} \mid 0 \leq \theta<1\right\}$. Given ρ, write $\rho(1)=e^{2 \pi i \theta}$ for some $0 \leq \theta_{1}<1$.
Since ρ is a homomorphism, $\rho(k)=\rho(1)^{k}=e^{2 \pi i \theta_{1} k}$. Moreover, $e^{2 \pi i \theta_{1} 0}=\rho(0)=\rho(N)=\rho(1)^{N}=e^{2 \pi i \theta_{1} N}$. Thus $\theta_{1} \in\left\{\frac{0}{N}, \frac{1}{N}, \frac{2}{N}, \ldots, \frac{N-1}{N}\right\}$.
In fact, every such theta gives a valid representation $\rho: A \rightarrow U(1)$. Equivalently, every irrep of $\mathbb{Z} / N \mathbb{Z}$ is of the form $\rho_{k}: \mathbb{Z} / N \mathbb{Z} \rightarrow U(1), j \mapsto e^{2 \pi i k j / N}$.

Trivial representation

fallfifl represertation

not faithalal

fnithand

Figure 1: Ex. $\mathbb{Z} / N \mathbb{Z} 4$ Irreps
What is \otimes of representation?

$$
\begin{gathered}
\rho: G \rightarrow G L(v) \\
\rho^{\prime}: G \rightarrow G L(w) \\
\Rightarrow \rho \otimes \rho^{\prime}: G \rightarrow G L(v \otimes w), g \mapsto \rho(g) \otimes \rho\left(g^{\prime}\right) .
\end{gathered}
$$

3 Fourier transform on $\mathbb{Z} / N \mathbb{Z}$ (Discrete 1-dim Fourier transform)

Write $\mathrm{A}=\mathbb{Z} / N \mathbb{Z}$. The group algebra $\mathbb{C} A$ is a representation of $\mathrm{A} . \mathbb{C} A$ has a standard basis $\{|a\rangle \mid a \in A\}$. As a function, what is $|a\rangle$?

$$
|a\rangle: A \rightarrow \mathbb{C}, b \mapsto 1 \text { if } b=a, 0 \text { otherwise. i.e. }|a\rangle=\delta_{a i x}
$$

On the other hand, $\mathbb{C} A=\bigoplus_{\rho \in \hat{A}}(\mathbb{C} A)_{\rho}$, where $(\mathbb{C} A)_{\rho} \subseteq \mathbb{C} A$ consisting " ρ periodic" functions $A \rightarrow \mathbb{C}$. A priori, $(\mathbb{C} A)_{\rho}$ could be multidimensional (for non-abelian G, there's always an irrep ρ such that $(\mathbb{C} G)_{\rho}$ is greater than 1 dimensional).
In fact, $(\mathbb{C} A)_{\rho}$ can be identified in our case by an elementary observation: $\hat{A} \subset \mathbb{C} A$. That is, every irrep $\rho: A \rightarrow U(1) \subseteq$ \mathbb{C} is an element of $\mathbb{C} A$. Intuition: ρ is a "discretized cosine with frequency ρ ".

Lemma: Ais an orthogonal basis of $\mathbb{C} A$.
Proof:
Pick $\rho_{k}, \rho_{l} \in \hat{A},\left|\rho_{k}\right\rangle=\sum_{a \in A} \rho_{k}(a)|a\rangle=\sum_{a \in A} e^{2 \pi i k a / N}|a\rangle$
Likewise $\left|\rho_{l}\right\rangle=\sum_{b \in A} e^{2 \pi i k b / N}|b\rangle$
$\left\langle\rho_{l} \mid \rho_{k}\right\rangle=\sum_{a} e^{2 \pi i a(k-l) / N}$.
If $k=l,\left\langle\rho_{l} \mid \rho_{k}\right\rangle=\sum_{a \in A} 1=|A|=N$.
If $k \neq l,\left\langle\rho_{l} \mid \rho_{k}\right\rangle=0$ by symmetry.

Definition: The Fourier basis of $\mathbb{C} A$ is the (ordered) Orthonormal Basis

$$
\frac{1}{\sqrt{N}}\left|\rho_{0}\right\rangle, \frac{1}{\sqrt{N}}\left|\rho_{1}\right\rangle, \ldots, \frac{1}{\sqrt{N}}\left|\rho_{N-1}\right\rangle
$$

The above lemma is saying that every function $\psi: A \rightarrow \mathbb{C}$ is a unique linear combination of these periodic functions.
Definition: The Fourier transform \mathcal{F} of $\mathbb{C Z} / N \mathbb{Z}$ is the unitary transformation $\mathbb{C Z} / N \mathbb{Z} \rightarrow \mathbb{C} \mathbb{Z} / N \mathbb{Z},|a\rangle \mapsto \frac{1}{\sqrt{N}}\left|\rho_{a}\right\rangle$

$$
\begin{aligned}
& \mathscr{F}_{\mathbb{Z} / 2 \mathbb{Z}}= \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)=\mathrm{H} \\
& \mathscr{F}_{\mathbb{Z} / 4 \mathbb{Z}}=\frac{1}{\sqrt{4}}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i
\end{array}\right)
\end{aligned}
$$

4 Quantum Fourier Transform (QFT)
The QFT is a realization of $\mathscr{F}_{\mathbb{Z} / 2 \mathbb{Z}}$ as a quantum circuit on n quits. This is sensible because $\mathbb{C} \mathbb{Z} / 2^{n} \mathbb{Z} \rightarrow\left(\mathbb{C}^{2}\right)^{\otimes n}$.
$|a\rangle \mapsto\left|a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ (binary representation of a, where $a \in\left\{0, \ldots, 2^{n-1}\right\}$ and $a=a_{1} a_{2} \ldots a_{n}$ is binary rep of such an integer.
The trick to getting a circuit rep of $\mathscr{F}_{\mathbb{Z} / 2 \mathbb{Z}}$ is to use binary functions.

$$
\begin{aligned}
& F_{z / 2^{n} z}(a)=\frac{1}{2^{n / 2}} \sum_{b=0}^{2^{n-1}} \exp \left(2 \pi i a b / 2^{n} \mid b\right) \\
& \begin{array}{l}
\text { what to think of } \\
\text { this as a fact }
\end{array} \\
& \text { in binary } \\
& =\frac{1}{2^{n / 2}} \sum_{b_{1}=0}^{1} \sum_{b_{2}=0}^{1} \cdots \sum_{b_{n}=0}^{1} \exp \left[2 \pi i a\left(\sum_{l=1}^{n} b_{l} 2^{-l}\right)\right]\left|b_{1} b_{2} \cdots b_{l}\right\rangle \\
& =\frac{1}{2^{n / 2}} \sum_{b_{1}=0}^{1} \cdots \sum_{b_{n}=0}^{1}\left[\bigotimes_{l=1}^{n} \exp \left(2 \pi i a_{l} / 2^{l}\right)\left|b_{l}\right\rangle\right] \\
& =\frac{1}{2^{n / 2}} \bigotimes_{k=1}^{n}\left[\sum_{b_{l}=0}^{1} \exp \left(2 \pi i a b_{l} \mid 2^{l}\right)\left|b_{l}\right\rangle\right] \\
& =\frac{1}{2^{n / 2}} \bigotimes_{\ell=1}^{n}\left(|0\rangle+e^{2 \pi i a / 2^{l}}|1\rangle\right) \\
& =\frac{1}{2^{n / 2}}\left(|0\rangle+e^{2 \pi i a / 2^{1}}|1\rangle\right)\left(|0\rangle+e^{2 \pi i a / 2^{2}}|1\rangle\right) \cdots\left(|0\rangle+e^{2 \pi i a / 2^{n}}|1\rangle\right) \\
& \text { Note } \exp \left(2 \pi i a / 2^{l}\right)=\exp \left(2 \pi i a_{1} a_{2} \cdots a_{n-e} \quad \downarrow a_{n-l+1}^{\text {decimal }} \cdots a_{n}\right) \\
& =\exp \left(2 \pi i O \cdot a_{n-e+1} \cdots a_{n}\right) \\
& \mathbb{F}_{\mathbb{Z} / 2^{n} \mathbb{Z}}|a\rangle=\frac{1}{2^{n / 2}}\left(|0\rangle+e^{2 \pi i 0 \cdot a_{n}}|1\rangle\right) \otimes\left(|0\rangle+e^{2 \pi i 0 \cdot a_{n-1} a_{n}}|1\rangle\right) \\
& \otimes \cdots \otimes\left(|0\rangle+e^{2 \pi r 0 \cdot a_{1} \cdots a_{n}}|1\rangle\right)
\end{aligned}
$$

