
CS 593/MA 592 - Intro to Quantum Computation

Homework 2

Due Monday, January 29 at 8pm (upload to Brightspace)

1. Do the following exercises from Nielsen and Chuang: 2.57, 2.58, 2.59, 2.60, 2.61, 2.66.

2. (a) A vector |ψ⟩ in a tensor product Hilbert space V ⊗ W is called separable (or unentangled) if
there exist vectors |v⟩ ∈ V and |w⟩ ∈ W such that |ψ⟩ = |v⟩ ⊗ |w⟩. Give an exampe of a state
|ψ⟩ ∈ (C2)⊗2 on two qubits that is not separable (in other words, it is entangled). Justify your
answer.

(b) Show that V ⊗W has no entangled states if and only if V or W is 0 or 1 dimensional.

3. Let’s work through the details of quantum state tomography via repeated measurements in the com-
putational basis.

Let

|ψ⟩ =
2n−1∑
b=0

zb|b⟩ ∈ (C2)⊗n

be some unknown state on n qubits, which we will assume is normalized. The goal of quantum state
tomography is to determine what the amplitudes zb are—up to a given error, with high confidence.
We don’t yet have the tools to do things at this level of precision quite yet, but we can at least ask
about trying to determine, say, |z0|2 up to some given accuracy.

Since measurement collapses the state, we will assume that we are able to prepare copies of this state
for free. On each copy, we will perform projective measurement in the computational basis. The
outcomes will be independent and identically distributed. If we do this k times, we get a sequence
of outcomes (i1, . . . , ik) where each ij ∈ {0, . . . , 2n − 1}. From this, we may compute an empirical
probability distribution p̃k on the set {0, . . . , 2n−1} simply by counting the different outcomes and
dividing by k

p̃k(i) :=
#{j | ij = i}

k
.

Of course, the true distribution of outcomes is given by the Born rule:

p(i) = p(i | |ψ⟩) = |zi|2 = ziz
∗
i .

Let ϵ > 0. We would like to know how many rounds of our experiment we need to perform—that is,
how large k needs to be—in order for us to be able to confidently say that our empirical estimate p̃k(0)
is within ϵ of the true value p(0). This requires a little bit of explaining, basically having to do with
the fact that p̃k(0) is itself a random variable (on the set {0, 1/k, 2/k, . . . , k/k = 1}, but don’t think
too hard about this).

Let us say that we are δ-confident that our observed p̃k(0) is within ϵ if we pick k large enough so that

Prob(|p̃k(0)− p(0)| ≥ ϵ) ≤ δ.
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Our goal is to find a lower bound on k (as a function of ϵ, but independent of everything else) that
makes this inequality true.

To do so, we can use Chebyshev’s inequality (see Appendix 1 in Nielsen and Chuang). This problem
will walk you through this. The idea is exactly the same as trying to get a good estimate of the bias
of an unfair coin with high confidence.

(a) Let Y be the random variable on the set {0, 1} with p(0) = 1−|z0|2 and p(1) = |z0|2.1 Show that
E(Y ) = E(Y 2) = |z0|2. Use this to show the variance var(Y ) = |z0|2 − |z0|4 = |z0|2(1− |z0|2).

(b) Show that max0≤p≤1 p(1− p) = 1/4. Conclude that var(Y ) ≤ 1/4.

(c) Now let Y1, . . . , Yk be k i.i.d variables all having the same distribution as Y .2 Let Xk be the
sample mean

1

k

k∑
i=1

Yi.

Show that Xk is exactly the same thing as p̃k(0). (This should be very easy.)

(d) Use the fact that expectation values are linear to show E(Xk) = E(p̃k(0)) = p(0). (In the language
of probability theory, this shows that p̃k(0) is an “unbiased estimator” of the true probability p(0).)

(e) Since the Yi are independent, the variance of their sum is the sum of their variances. Use this to
show var(X) = 1

k var(Y ).

(f) Now use Chebyshev’s inequality to argue that we should take k ≥ 1
4ϵ2δ .

(g) How big should k be if we want to be 95% confident that our estimate of |z0|2 is correct up to b
bits?

Let me conclude by noting that there are better ways to do quantum state tomography!

1So, we should interpret outcome 0 for Y as “after measuring |ψ⟩ once in the computational basis, we did not see outcome
0.” Similarly, we should interpret outcome 1 as “after measuring |ψ⟩ once in the computational basis, we DID see outcome 0.”

2Think of these as the different measurements we perform on k copies of |ψ⟩.
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