CS 593/MA 592 - Intro to Quantum Computation Homework 7

Due Friday, April 5 at 8pm (upload to Brightspace)

1. In this problem, you'll prove the two mathematical facts we needed to know in order for Simon's algorithm to work.
(a) Let A be a finite abelian group. Prove that if g_{1}, \ldots, g_{l} are l independently and uniformly randomly chosen elements of A, then the probability that $\left\langle g_{1}, g_{2}, \ldots, g_{l}\right\rangle=A$ is at least $1-\frac{|A|}{2^{l}}$. [Hint: as an intermediate step, you might use Lagrange's theorem to argue that the probability that $g_{i+1} \notin\left\langle g_{1}, \ldots, g_{i}\right\rangle$ is at least $1 / 2$ whenever $\left\langle g_{1}, \ldots, g_{i}\right\rangle \neq A$.]
(b) Let $A=(\mathbb{Z} / 2 \mathbb{Z})^{n}$ be an n dimensional vector space over $\mathbb{Z} / 2 \mathbb{Z}$. Let $s \in A$ be a non-zero element and suppose $g_{1}, \ldots, g_{l} \in A$ generate what I called $\langle s\rangle^{\perp}$, which is defined as

$$
\langle s\rangle^{\perp}=\{a \in A \mid a \cdot s=0 \quad \bmod 2\}
$$

where $a \cdot s$ is the mod 2 dot product of $a=\left(a_{1}, \ldots, a_{n}\right)$ and $s=\left(s_{1}, \ldots, s_{n}\right)$. Prove that s is the unique non-zero solution to the system of equations

$$
\begin{aligned}
& g_{1} \cdot x=0 \quad \bmod 2 \\
& g_{2} \cdot x=0 \quad \bmod 2 \\
& \vdots \\
& g_{l} \cdot x=0 \quad \bmod 2
\end{aligned}
$$

2. List all of the numbers $1 \leq x \leq 100$ such that Shor's factoring algorithm actually needs to use a quantum computer in order to find a factor.
3. Do Exercise A4.17 in Nielsen and Chuang.
4. Do Exercise 5.13 in Nielsen and Chuang.
5. Do Exercise 5.16 in Nielsen and Chuang.
6. Do Exercise 5.17 in Nielsen and Chuang.
