CS 593/MA 592 - Intro to Quantum Computation Homework 7

Due Friday, April 5 at 8pm (upload to Brightspace)

- 1. In this problem, you'll prove the two mathematical facts we needed to know in order for Simon's algorithm to work.
 - (a) Let A be a finite abelian group. Prove that if g_1, \ldots, g_l are l independently and uniformly randomly chosen elements of A, then the probability that $\langle g_1, g_2, \ldots, g_l \rangle = A$ is at least $1 - \frac{|A|}{2^l}$. [Hint: as an intermediate step, you might use Lagrange's theorem to argue that the probability that $g_{i+1} \notin \langle g_1, \ldots, g_i \rangle$ is at least 1/2 whenever $\langle g_1, \ldots, g_i \rangle \neq A$.]
 - (b) Let $A = (\mathbb{Z}/2\mathbb{Z})^n$ be an *n* dimensional vector space over $\mathbb{Z}/2\mathbb{Z}$. Let $s \in A$ be a non-zero element and suppose $g_1, \ldots, g_l \in A$ generate what I called $\langle s \rangle^{\perp}$, which is defined as

$$\langle s \rangle^{\perp} = \{ a \in A \mid a \cdot s = 0 \mod 2 \},\$$

where $a \cdot s$ is the mod 2 dot product of $a = (a_1, \ldots, a_n)$ and $s = (s_1, \ldots, s_n)$. Prove that s is the unique non-zero solution to the system of equations

$$g_1 \cdot x = 0 \mod 2$$
$$g_2 \cdot x = 0 \mod 2$$
$$\vdots$$
$$g_l \cdot x = 0 \mod 2$$

- 2. List all of the numbers $1 \le x \le 100$ such that Shor's factoring algorithm actually needs to use a quantum computer in order to find a factor.
- 3. Do Exercise A4.17 in Nielsen and Chuang.
- 4. Do Exercise 5.13 in Nielsen and Chuang.
- 5. Do Exercise 5.16 in Nielsen and Chuang.
- 6. Do Exercise 5.17 in Nielsen and Chuang.