
CS 593/MA 592 - Intro to Quantum Computation

Homework 8

Due Friday, April 26 at 8pm (upload to Brightspace)

This is the last homework of the semester. It is “quasi-optional.” This means that you don’t have to do
it, but there are some reasons you might want to:

• You can use this assignment to replace a previous assignment. For example, if you didn’t submit an
old assignment, or you did poorly on one, you can use your score on this one to replace that old score.

• Acing this assignment is a requirement if you want an A+ in the course. Some of you have been doing
very well on all of the requirements in the class, but if you want an A+, then I am requiring you to do
this assignment (and ace it). If you don’t do this assignment, then the highest grade you can expect
to earn is an A, although not doing it won’t otherwise affect your grade.

And to reiterate: you are still allowed to submit your solutions in teams of two.
The assignment consists of just one long problem, which will have you work through the structure of

CSS (Calderbank-Shor-Steane) codes, a special subclass of Pauli stabilizer codes. CSS codes are the most
popular codes that people like to (try to!) implement on current quantum computers. The toric code is a
special case, and the results of this problem can be easily used to rederive the calculations I did in class for
toric code.

1. A CSS code is a Pauli stabilizer code generated by a set of stabilizers with the property that each
is either “pure X” or “pure Z.” To this end, let A = {(x⃗1, 0⃗), . . . , (x⃗l, 0⃗)} ⊂ Fn

2 ⊕ Fn
2 and B =

{(⃗0, z⃗1), . . . , (⃗0, z⃗k)} ⊂ Fn
2 ⊕ Fn

2 , and define

S = S(A,B) := {X(x⃗i), Z(z⃗j) | (x⃗i, 0⃗) ∈ A, (⃗0, z⃗j) ∈ B}.

In this exercise, we will establish fairly explicit formulas for the distance and number of logical qubits
for the stabilizer code

CS =
{
|ψ⟩ ∈ (C2)⊗n | s|ψ⟩ = |ψ⟩, s ∈ S

}
.

(a) By a minor abuse of notation, let A denote the n × l matrix (with entries in F2 = {0, 1}) whose
ith column is x⃗i, where (x⃗i, 0⃗) ∈ A. Similarly, let B denote the n × k matrix whose j column is
z⃗j , where (⃗0, z⃗j) ∈ B.1

Show that CS ̸= {⃗0} is a non-trivial subspace of (C2)⊗n if and only if BTA = 0 if and only if
ATB = 0.

[Hint: remember, I explained in class that CS ̸= {⃗0} if and only if −1 /∈ ⟨S⟩ ≤ Gn, where Gn is
the Pauli group on n qubits. You need to think through what our choice of stabilizer generators
has to do with the symplectic inner product.]

For the rest of the problem, let us assume that BTA = 0.

1These are essentially quantum parity check matrices, if that terminology is familiar to you.
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(b) Let X = spanA ≤ Fn
2 ⊕ Fn

2 , Z = spanB ≤ Fn
2 ⊕ Fn

2 , and W = spanA ∪ B = X ⊕ Z ≤ Fn
2 ⊕ Fn

2 .
Show that W⊥ = X⊥ ∩ Z⊥.

Note: as should be expected, for a subspace V ≤ Fn
2 ⊕Fn

2 , the notation V ⊥ means the symplectic
complement. That is

V ⊥ = {(⃗a, b⃗) ∈ Fn
2 ⊕ Fn

2 | ω((⃗a, b⃗), (v⃗1, v⃗2)) = 0, (v⃗1, v⃗2) ∈ V }

where
ω((⃗a, b⃗), (v⃗1, v⃗2)) = a⃗ · v⃗2 + b⃗ · v⃗1 mod 2.

(c) Recall that the symplectic weight wt((x⃗, z⃗)) of a vector (x⃗, z⃗) = ((x1, . . . , xn), (z1, . . . , zn)) ∈
Fn
2 ⊕ Fn

2 is the number of nonzero columns of the matrix(
x1 · · · xn
z1 · · · zn

)
.

Show

min
(x⃗,z⃗)∈W⊥−W

wt((x⃗, z⃗)) = min

{
min

(x⃗,⃗0)∈W⊥−W
|x⃗|, min

(⃗0,z⃗)∈W⊥−W
|z⃗|

}

= min

{
min

x⃗∈kerBT−imA
|x⃗|, min

z⃗∈kerAT−imB
|z⃗|

}
where |x⃗| is the usual Hamming weight of a vector in Fn

2 .

(d) Show

W⊥ =
(
kerBT ⊕ {⃗0}

)
+
(
{⃗0} ⊕ kerAT

)
and use this to show

W⊥/W =
X⊥ ∩ Z⊥

X + Z
=

(
kerBT ⊕ {⃗0}

)
+

(
{⃗0} ⊕ kerAT

)
(
imA⊕ {⃗0}

)
+

(
{⃗0} ⊕ imB

) ∼=
kerBT

imA
⊕ kerAT

imB

(e) Show

dim

(
kerBT

imA

)
= dim

(
kerAT

imB

)
.

(f) Conclude that the number of logical qubits in CS is

1

2
dimW⊥/W = dim

(
kerBT

imA

)
.

That concludes the problem. What follows is for your enjoyment.

We can summarize/interpret the results of this problem as follows: part (a) shows that a CSS code on n
qubits (together with a choice of generators for it) is essentially the same thing as matrices A and B such
that the composition

Fl
2

A−→ Fn
2

BT

−−→ Fk
2

is BTA = 0. In algebraic topology, this would be called a “chain complex of based vector spaces over F2.”
Such things can be found in many places, thanks to the following: any choice of a positive integer k and “CW
complex” ∆ gives rise to one, by looking at the cellular chain complex (with F2 coefficients) in dimension k:

Ccellular
k+1 (∆;F2)

∂−→ Ccellular
k (∆;F2)

∂−→ Ccellular
k−1 (∆;F2)
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Part (f) shows that the number of logical qubits is exactly the rank of the homology of the chain complex.
Part (c), roughly, shows that the distance of the code is determined by identifying the smallest Hamming
weight representative of any non-trivial homology class. More precisely, we have to find the minimum weight
we see among the non-trivial homology classes in the above chain complex, as well as in the dual cochain
complex

Ck+1
cellular(∆;F2)

δ←− Ck
cellular(∆;F2)

δ−→ Ck−1
cellular(∆;F2)

If this sounds interesting to you, then you should take MA 572 - Algebraic Topology!
As far as current state of the art: as of roughly 2020, “good quantum LDPC codes” are now known

to exist. LD means “low-density” and PC means “parity check” (a synonym for CSS). More precisely, this
means there exists an infinite family of CSS codes with generators (An, Bn)n∈N with the following properties:

• the nth code uses O(n) many physical qubits

• the columns of the matrices An and Bn have O(1) many non-zero entries (“low-density”)

• there are θ(n) many logical qubits.

• the distance is θ(n).

The last two properties are why the codes are called “good.”
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