
CS 593/MA 595 - Intro to Quantum Computation

Theoretical Homework 9

Due Wednesday, December 3 at 11:59PM (upload to Brightspace)

1. Show that the 1-Local Hamiltonian Problem is in P.

2. Consider the simulation of a time-dependent Hamiltonian H(t), which is the solution U(0, T ) (from
time t = 0 to T ) to the Schrödinger equation (for unitary) i d

dtU(t) = H(t)U(t). Assume that H(t)
is (first-order) differentiable and bounded by M = max0≤t≤T ||H(t)|| and D = max0≤t≤T ||H ′(t)||.
We can approximate it with piece-wise time-independent Hamiltonian at N equidistant time stamps
tj = (j− 1)T/N , each evolving for T/N (with algorithms introduced in classes), and bound the errors.

(a) Let Vj(t) = eiH(tj)tU(tj , tj + t) for 0 ≤ t < T
N . Show that

d

dt
Vj(t) = i

(
eiH(tj)t (H(tj)−H(t))U(tj , tj + t)

)
.

(b) Show: ∥∥∥U(tj , tj+1)− e−iH(tj)
T
N

∥∥∥ ≤ DT 2

2N2
.

[Hint: rewrite the left hand side to e−iH(tj)
T
N (Vj(t)− I), and take derivative. ]

(c) Prove that ∥∥∥∥U(0, T )−
∏1

j=N
e−iH(tj)

T
N

∥∥∥∥ ≤ DT 2

2N
.

3. Prove: if there is a fast-forwarding quantum simulation, then EXP = BQP. A more rigorous context:

• We assume that we have a quantum algorithm that can simulate arbitrary time-independent
Hamiltonian H for time t, succinctly described by a classical string x of length n. To simulate
within error ϵ, the quantum algorithm has gate complexity O(t1−δpoly(log t, ϵ−1, n)) for a small
constant δ > 0.

• By “succinctly described by x of length n”, we assume that H is on O(poly(n)) qubits, ∥H∥ =
O(poly(n)), and there is an classical polynomial-time algorithm computing t = O(2poly(n)) and
Hjk given x, j, k.

Example: bounded row-sparse Hamiltonian and bounded Ising models can be succinctly described.

• EXP is the problem class that can be decided by deterministic Turing machines that terminates
in exponential time (no assumptions on space). It is also known that BQP ⊆ QEXP = EXP.

An outline of the proof with sub-problems is provided in the next page. You are recommended to think
about the high-level idea (which is easy and fun) before reading the next page (which contains many
details).
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Prove the following arguments:

(a) For any unitary U , let

H = −
[
0 U†

U 0

]
= − |1⟩ ⟨0| ⊗ U − |0⟩ ⟨1| ⊗ U†,

then
e−iH π

2 |0⟩ |ψ⟩ = i |1⟩ (U |ψ⟩).

(b) (Feynman-Kitaev) Given a quantum circuit U = UL · · ·U1 succinctly described by a classical
string x of length n, there is a time-independent and succinctly described Hamiltonian H on
O(poly(n)) qubits such that I ⊗ U = exp (−iHL) up to a global phase.

Here, the circuit U being succinctly described by x means that U acts on O(poly(n)) qubits, and
there is a classical polynomial-time algorithm that can compute L = O(2poly(n)) and specify Uj ,
an elementary 1- or 2-qubit quantum gate, given x and j.

[Hint: Consider introducing an ancillary register t whose value ranges from 0 to L, and Hamilto-
nian of a generalized form from part (a).]

(c) With the fast-forwarding quantum algorithm simulating a succinctly described evolution with gate
complexity O(t1−δpoly(log t, ϵ−1, n)), there is a faster quantum algorithm simulating a succinctly

described evolution with O(t(1−δ)2poly(log t, ϵ−1, n)) gates.

(d) With the fast-forwarding quantum algorithm, there is a quantum algorithm simulating a succinctly
described evolution with O(poly(log t, ϵ−1, n)) gates.

[Hint: bootstrap part (c) for O(log log t) times]

(e) (Not required to prove) (Chandra–Kozen–Stockmeyer) APSPACE = EXP. Hence, for any prob-
lem in EXP and input length n, there is a classical circuit with O(poly(n)) width and O(2poly(n))
depth to determine it.

(f) (Not required to prove) For a classical circuit with width w and depth l, there exists a quantum
circuit with O(wl) gates and O(w log(l)) qubits simulating the classical circuit.

(g) With the fast-forwarding quantum algorithm, any problem in EXP can be solved with a polynomial
time quantum algorithm, which is EXP ⊆ BQP.
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