CS 593/MA 595 - Intro to Quantum Computation
Theoretical Homework 9

Due Wednesday, December 3 at 11:59PM (upload to Brightspace)

1. Show that the 1-Local Hamiltonian Problem is in P.

2. Consider the simulation of a time-dependent Hamiltonian H(¢), which is the solution U(0,T") (from
time ¢t = 0 to T') to the Schrédinger equation (for unitary) iLU(t) = H(t)U(t). Assume that H(t)
is (first-order) differentiable and bounded by M = maxo<;<r ||H(t)|| and D = maxo<,<7 ||H'(t)||-
We can approximate it with piece-wise time-independent Hamiltonian at N equidistant time stamps
t; = (j —1)T/N, each evolving for T'/N (with algorithms introduced in classes), and bound the errors.

(a) Let V;(t) = e™HtDtU(t;,t; +t) for 0 <t < L. Show that
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[Hint: rewrite the left hand side to e~ *# (%)
(c) Prove that

(V;(t) — I), and take derivative. ]
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3. Prove: if there is a fast-forwarding quantum simulation, then EXP = BQP. A more rigorous context:

e We assume that we have a quantum algorithm that can simulate arbitrary time-independent
Hamiltonian H for time ¢, succinctly described by a classical string x of length n. To simulate
within error €, the quantum algorithm has gate complexity O(t!~°poly(logt,e~!,n)) for a small
constant & > 0.

e By “succinctly described by x of length n”, we assume that H is on O(poly(n)) qubits, |H| =
O(poly(n)), and there is an classical polynomial-time algorithm computing ¢t = O(2P°%¥(™)) and
Hjj, given z, j, k.

Example: bounded row-sparse Hamiltonian and bounded Ising models can be succinctly described.

e EXP is the problem class that can be decided by deterministic Turing machines that terminates
in exponential time (no assumptions on space). It is also known that BQP C QEXP = EXP.

An outline of the proof with sub-problems is provided in the next page. You are recommended to think
about the high-level idea (which is easy and fun) before reading the next page (which contains many
details).



Prove the following arguments:

(a)

For any unitary U, let

T
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then o
e="ME10) [¢) = i[1) (U [)).

(Feynman-Kitaev) Given a quantum circuit U = Uy, --- Uy succinctly described by a classical
string x of length n, there is a time-independent and succinctly described Hamiltonian H on
O(poly(n)) qubits such that I ® U = exp (—iH L) up to a global phase.

Here, the circuit U being succinctly described by x means that U acts on O(poly(n)) qubits, and
there is a classical polynomial-time algorithm that can compute L = O(2p01y<n)) and specify Uj,
an elementary 1- or 2-qubit quantum gate, given = and j.

[Hint: Consider introducing an ancillary register ¢ whose value ranges from 0 to L, and Hamilto-
nian of a generalized form from part (a).]

With the fast-forwarding quantum algorithm simulating a succinctly described evolution with gate
complexity O(t*~°poly(logt,e~*,n)), there is a faster quantum algorithm simulating a succinctly
described evolution with O(t1=9"poly(logt, e, n)) gates.

With the fast-forwarding quantum algorithm, there is a quantum algorithm simulating a succinctly
described evolution with O(poly(logt,e~1,n)) gates.

[Hint: bootstrap part (c) for O(loglogt) times]

(Not required to prove) (Chandra—Kozen—Stockmeyer) APSPACE = EXP. Hence, for any prob-

lem in EXP and input length n, there is a classical circuit with O(poly(n)) width and O(2P°Y (™)
depth to determine it.

(Not required to prove) For a classical circuit with width w and depth [, there exists a quantum
circuit with O(wl) gates and O(wlog(l)) qubits simulating the classical circuit.

With the fast-forwarding quantum algorithm, any problem in EXP can be solved with a polynomial
time quantum algorithm, which is EXP C BQP.



