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Abstract

The dfects of drug treatment of human hosts upon a population of schistosome parasites depend
upon a variety of factors. Previous models have shdwahrmultiple strains of drg-resistant parasites
are likely to be favored as the treatment rateréases. However, such models have neglected to
account for the complex nature of schistosome mating biology. To more accurately account for the
biology of these parasites, a simple mating structure is included in a multi-strain schistosome model,
with parasites under the influence of drug treatment of their human hosts. Parasites are assumed to
pay a cost for drug resistance in terms of reduced reproduction and transmission. The dynamics of
the parasite population are described by a system of homogeneous differential equations, and the
existence and stability of thexponential solutions for this system are used to infer the impact of
drug treatment on the maintenance of schistosome genetic diversity.
© 2005 Society for Mathematical Biology. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Schistosomiasis is a major parasitic disease infecting 200 million people in Africa,
Asia, andSouth America Chitsulo et al., 2000WHO, 2004). Currently, the most efficient
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method of schistosomiasis control involves chemotherapeutic treatment of patients with

praziquantel (PZQ)Renwick et al., 2003. This drug kills the adult worms residing within

the patient, effectively halting the deposition of parasite eggs within host tissues, and

preventing the further worsening of symptoms. However, reports suggest that schistosome
populations in some endemic areas may be developing resistance tol$td4dl et al.,

1999. Thus, disease control programs employing chemotherapeutic agents may select for
varying degrees of drug resistance in parasite populations (at different spatial and temporal
scales). If a natural schistosome population consists of a collection of “strains” that express

different levels of resistance, then it will be important to understand the consequences
of this genetic diversity on both disease transmission and proposed disease control
strategies.

Prevously, we have studied schistosomiasis models which consider both human and
shail hosts as well as other detailed biology such as infection age of snails and density-
dependent recruitment ratdseg et al., 20012002. For example, ifFeng et al. (2001,)
we proposed a mathematical model that attempted to incorporate parasite resistance
to chemotherapy. The model envisioned a number of parasite strains, each defined by
its inherent resistance to theeatment drug. Parasite strains paid a cost in diminished
reproduction and transmission that was inversely related to the level of drug resistance,
because without such costs, the most restss&rain would be expected to dominate the
population very quickly, even if treatment occurred at a very low rate. We showed that as
drug treatment of the population of human patients increased, a greater number of resistant
parasite strias (with higher levels of resistance) were able to coexist, and that a fully
susceptible strain would go locally extinct.

A recognized limitation of our earlier models arose from the fact that schistosomes
have separate sexes, and thus, the reproduction of the different strains was likely to be
much more complex (in terms of mathematical logistics and the underlying biology)
than we were able to model with that system of equations. By accounting for the
separate male and female worms of each strain, we have attempted to create a more
robust model of the spread of drug resistance in schistosome populations. This model
retains the assumption of a simple genetic basis for resistance, as we employed in our
earlier model, but now allows for mating between individuals of two different strains. We
make the further assumption that the offspring of such inter-strain matings will have the
same values for drug resistance as their parére., inermediate values of resistance,
potentially corresponding to new strains, are geherated). Incorporating this important
feature of schistosne mating Iology greatly complicates the model—as we now have
equations for unmated male worms and ated female worms of each strain, along
with an equation for each possible straiontbination as a mated pair—and yet, the
results of our analysis are qualitatively very similar to those obtained with our previous
model. Thus, the treatment rate affects the range of resistance values (e.g., variety of
strains) that can coexist in the parasite population, and if high enough, may lead to the
exclusion of sisceptilte strains. Furthermore, it is possible to calculate a treatment rate
below which resistant strains cannot invade a population of mostly susceptible parasites,
although this “critical rate” depends upon theproductive costs that parasites pay for
resistance.
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When two strains (dig-sensitive and -resistant strains) are considered, our model is
an eight-dimensional system of homogeneous equations of degree one. Following the
approach of Hadeler and co-workers (stsgleler et al., 1988Hadeler, 1989Hadele and
Ngoma, 199)we dudied both analytically and numerically the existence and stability of
exponential solutions of the system. Our bifation analysis provides threshold conditions
which can be used to determine whether the resistant strain can invade a population
consisting of only the sensitive strain of parasites. Results for the two-strain model are
extended numerically to cases when more thamw strains are considered. This paper
is organized as follows. IrSection 2we consider a siple one-strain model and study
persistent proportions of populations represented by exponential solutions of the model.
The results in this section will be applied to the study of the two-strain model described
in Section 3 Existence and stability of exponentialations of the full system are also
given inSection 3 Section 4is devoted to numerical simulans to ®nfirm or extend the
analytic results.

2. Themodel for a single strain of schistosomes

In this section we consider a one-strain model for a population of schistosome
parasites whose human hosts are treated with chemotherapy. This schistosome population
is divided into three subpopulation§:andm are the densities of female and male singles,
respectively, ang is the density of pairs. The formation of schistosome pairs is described
by a “mating function”yp : R2 — R, sdisfying

(i) Preservatia of positivity: ¢(m, 0) = ¢(0, f) = 0;
(i) Homogeneityp(am, «f) = ap(m, f), Vo > 0;
(iif) Monotonicity: p(m+u, f +v) > ¢(m, f) forallu, v > 0.

Let b be the per capita birthate of a pair, and leks andp be the per capita death
rates of single worms and worms in a mated pair, respectively. Note that we assume
that both members of a mated pair are killed simultaneously; individuals in the model
do not lose their mate and return to the population of single worms. A disease control
program distributes a chemotherapeutic drug to the host population at a constant rate, but
the effectiveness of the drug in killing individuals of a particular strain of schistosomes is
reduced by a factof}, which wecall the “drug resistance” of that parasite strain> 1
means that the strain of schistosomes has some degree of resistance to the drug, while
6 = 1 implies the strain is entirely sensitive to the drug. Thus, due to drug treatment of
their hosts, a fully sensitive strain of parasites has a per capita death rate] ths death
rateis reduced by the fact@r > 1, /6, for strains vith innate dug resistance. Then, the
model for schistosomes is given by

m=kp— (Ms+%)m—<p(m, f),
f =kp— (s + %) f—o(m, f), 2.1)

o

p=gp(m, f)—(up+9)p,
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wherek = b/2, i.e., the ratio of fmaleto male offspring is assumed to be 1Gryseels
and de Vlas, 1996 Following the approach d®dlard (1973)we assume that the mating
functiong takes thdorm of %, where 2 represents the effective contact number (which
may be a product of several parameters ingigdhe average contact number of a parasite
and the probability of a pair being formed per contact). Other forms of mating functions
can also be considered (see for exantidtillo-Chavez et al. (19961999) Hadeler et al.
(1988) Hadeler (1989)Hadeler and Ngoma (199@ndPdlard (1973).

For system 2.1), stationary solutions can not be expected due to the homogeneity.
Instead, we can look for persistent distributions, i.e., exponential solutions of the

form

(me), f), pt)) = m, f, pe, (2.2)

wherem, f, p are constants. Hadeler et aHadeler et al., 1988Hadeler, 1989Hadeler
and Ngoma, 1990provided a systematic approach to the existence and stability of
exponential solutions for homogeous evolution equations, which proceeds as follows.
Consider a population model

X(t) = f(x(t)), (2.3)

where thefunction f is continuously differentiable oR"} \ {0}, andhomogeneous, i.e.,
f(ax) = af (x) for all o, x > 0. We require that zero is a stationary point {3}, and
that the firs quadraniR!] is invariant for the solution semiflow of ER @). Let

X

= f R \ {0
Y=o forxeRi\(0)

where he dot “” denotes the inner product @', e* = (1, 1, ..., 1). That s, the variable
vectory is the proportion vector ok to the total population. Then, the proportion variable
y satisfies

yt) = fy®) — e - fyt)y® (2.4)

on the gmplexS = {y > 0: e* . y = 1}. A solution y(t) of (2.4) corresponds to the
following group of solutions toZ.3):

If y € Sis an equilibrium of 2.4), then the corresponding solutions &f3) are of tre form
x(t) = yeMe - x(0),

wherex = e* - f (y). If is globally asymptotically stable, then a subset of the population
may increase or decrease over time, but always represents the same proportion of the total
population. Thus, the existence and stability of equilibriazy#) are inmportant issues.
Fortunatdy, Hadeler et al. (1988provided a simple result: if we denote the eigenvalues of

the Jacobiarf’(y) by A1 = A, A2, ..., An (multiplicities counted), thef is linearly stable

if all of the real pats of the numbers; — 4,i = 2,3, ..., n, are lesghan zero.
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Using the above approach, we will disculse stability of tie exponential solutions for
the two models in this paper. In the following, we say that an exponential solge&nof
a ystem is trajectorally stable (or simply stable), if the equilibrigns stable with respect
to the corresponding proportion syster2.{).

Substituting 2.2) into system @.1), we have

—h,

kp— (s + 2 ) m—p(m. ) = 2m,
kﬁ—(uﬁ%) f —p(m, f)=af,
o

oM. )= (1p+7) p=2p.
There are two trivial solutions (up to a constant)

Em=(10,00 and E;=(0,1,00  Withim = —sus— % (2.5)

and a unique positive solutidBp with A, where

_ p
Ep= 1715 = 15177 5
p=( V) ( )~p+ﬂp+%>

20

1
_ _ 2
5 >+2\/(Hs Mp + p)* + 4Kp.

1
)»pZ—E (/Ls+Mp+P+

To study the stability of exponential solgtis, we need to check the eigenvalues of
the corresponding Jacobian matrices of systéhi)( The Jacobian aEn, can be readily
obtained:

o o
e — 2 —Us— — —2p k
Jm:( MUs 9 *>’ Cm: 6

o

Here, the matrivlock denoted by is not of inteest. ThenE,e* ™ ! is trajectorally stable
if Am,f > Ac,,, Whereic,, is the dominant eigenvalue Gfy. It is easy to get that

20

1
_ _ 2
A )+ 2\/(11«5 ip + 2p)“ + 8Kp.

1
Am = —5 <Ms+up+2p+

Therefore Eme’m 1t is trajectorally stable if and only ji p — s +2p > 0 > s — pp+Kk.
A similar computation shows thd ;€™ ! is trajectorally stable if and only if the same
conditions hold.

To investigate the stability of th@ositive exponential solutioEdet, we reduce
system R.1) to atwo-dimensional system by introducing projective variables
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The new sgtem is given by

. 2
Eok— (ue—upt — 2011 e),

52;;7’77 (2.6)
DK — (e — oy — P51,
n (s — pupn $+n( +n)

For this system,Ri is strictly positive invariant. Moreover, this system is an irreducible
and competitive system. A€, ) = (1/p, 1/p), the Jacobian of the right-hand side of

(2.6)is
_Hs‘i‘ﬂp_g_} <1+1) _}p(l_i_l)
3= p 2 p 2
1 1 1
_§P<1+6> —Ms+llvp——_—§:0(1+_p>
3 30 1 1 1 o
_ THsT R T o T ke TP _§<p+“’+“p+5)
N 1 o 3 30 1 1
S(ptioruptg)  mem gt 5T ue g

We can show that the maximum eigenvaluepfis —Ap — us — 7. Therdore, (€, 1) is
stable ifAip+us+5 > 0,i.e.,up—us+p < 00orus—pup+k > 0. Moreover, ifitis stable,
then it is globally asymptotically stableebause of the monotonicity and dissipativity of
the solution semiflow associated with.§).

Cadllecting the results on the stability of exponential solutions, we have

Theorem 2.1. The trivial exponential solutions Epne™ 't and Efemft are locally
trajectorally stableif and only if s — up+k < 0 < pup — s+ 2p. The persistent solution
Epetrt isglobally trajectorally stableif and only if s — pp +k > 0,0r up —pus+p < 0.

In reality, pairs of schistosomes may live for a few years while single parasites may
only live for a few weeks. Therefore, in thisper, we always assume that the death rate of
pairs should be less than that of singles, jug.,< ws. Under this condition, the two trivial
exponential solutions can not be stable and the persistent solution is stable. We also have
the followingobservations:

(1) The treatment rater, and drug resistance#, have o efects on the stability of
the exponential solutions, particularly the persistent solut®ge*rt, which shows
constant proportions of male and female singles and of pairs.

(2) If Ap > 0, the whole population of schistosomes is increasing, wheregs i 0,
the whole population is decreasing. Thus, the expongntcan be regarded as a
reproduction rate for this particular strain of schistosomes.

(3) The treatment rate;,, and the degreefoesiganceg, affect the sign of.p. Anincrease
in the treatment rate;, redices the growth rate.p, of the population, while an increase
in 6 leads to an increase irp.

The stability results obtained in this section will be use&éttion for the two-strain
model.
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3. Themodel for two strains of schistosomes

We assume that the whole schistosome population consists of individuals belonging to
one of two strains with different levels of drug resistartcé|n the following, let6; < 6,.)
The following definitions are required for the formulation of the model:

m; = density of single males of strain

fi = density of single females of strain

pij = density of pais with straini male and gain j female
¢ij = the mating function of strain male and sain j female

In order to model the heredity of drug resistenit is further assumed that the offspring

of an interstrain mating inherit either the paternal or maternal drug resistance with equal
frequency, and that pairs produce equal numbers of male and female offspring. We use
kij as the recruitment rate of sirgfermales and males of strainsor j by pairspjj. Note

thatkjj < b/4 fori # j andkjj < b/2, whereb is the background per capita birth rate

of pairs for a sensitie strain and thatk;p = ko1, because of our assumptions. Then, the
pair-formation model for two strains is given by:

o

My = kK11p11 + Kiz2p12 + ko1pe1 — <Ms + o

) my — (p11(M, f) 4+ @12(m, 1)),

. o
f1 = k11p11 + k12p12 + ko1p21 — <Ms + 9—1) f1 — (pr2(m, ) + @o1(m, 1)),

. o

P11 = p11(m, f) — (Mp + 9—1) P11,

o
02
o2
02

My = k12p12 + Ko1p21 + Koo poa— (Hs + ) mz — (21(M, ) + @22(m, ),
(3.7)

fa = Ki2p12 + ko1p21 + kozpo2 — <Ms + ) f2 — (p12(m, ) 4 @22(m, 1)),

. o
P12 = @12(m, f) — (Hp + 9—1) P12,

. o
P21 = @21(m, f) — (Mp + 9—2) P21,

P22 = @22(m, ) — (Hp + 922) P22,
wherem = (mg, mp), f = (f1, f2). It is also worth noting that, du¢o the biology of
the parasites — male schistosomes protect and nourish their female partner, while holding
them in a copulatory groove — the resistance level of a parasite pair is assumed to be
determined by the male member of the pair.
As in Section 2 we will consider the existence and bility of exponential solutions of

(3.7 in thecase ofpi; = % System 8.7) has a thee-dimensional subsystem

for each schistosome strain. The subsystems are equivalent to sysigmith the rates
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specified by
. o
mi = kii pii — <Ms+ ef) m; — o(m;, fi),
|
. o
fi =kii pii — <Ms+ ef) fi —@(mi, fi), (3.8)
|

Pii = (m;, fi) — (Hp—i- g) Pii -

Each of these subsystems admits two trivial exponential solutions
@006 =) (01,0 (=)

which are locally trajectorally unstable with respect to syst88)((recall that we have
already assumed that, < s), and a positive exponential solutioh, 1, pii)e’\"it, where

Pii

pi=—"7"5,
Ap +upt g

20

1

1
Ay =35 (H5+Mp+,0ii +
The unique positive exponential solution is globally trajectorally stable with respect to
system 8.8).

We can identify the two equilibria where only one strain persists,

E1= (1,1, p11,0,0,0,0,0), and E>=(0,0,0,1,1,0,0, p22).

Then Eje*n!, which corresponds to the positive exponential solution for a one-strain
system, is a persistent solution for each strain, with respect to the whole sy8t&n (
Next, we consider the stability of these two solutions.

It is not difficult to verify that the Jacobian of syster®.{) at E; takes he form

AL x %
J]_ == 0 A2 * )
0 0 A3
where
o 1 K
MUs 91 2:Oll 2:011 11
1 o 1
AL = —— —Ug — — — = k ,
1 2,011 s o1 2,011 11
1 1 o
5P 5P Hp o1
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o
—Hs — 5 021 0 k12 ko1
o
0 —Hs = o = P12 k12 ko1
A2 = 2 o ,
0 P12 “Hp T 0
o
021 0 0 —Mtp — %
o
Az=—up——.
I

The off-diagonal blocks represented by a#i ‘are not of interest for a linear stability
analysis. For mathematical convenience, we introduce new symmetric variables, and
rearrange the system as:
my + f1 mp — f;
5 P11, >

With respect to these variables the Jacobian has the form

,myp, T2, p12, P21, pzz).

A1l * % %

3 0 A * =«
=1 o o A o]
0 0 0 A3
where
o
—ls — — — p11 k11
A 5 a A g
11 = —un— — | > 12 = —[s — —.
P11 S Bs =,

The dominant eigenvalue ok;; is exactly the exponenkp, of the persistent solution
when only Strain 1 is present. Note that the off-diagonal entrie80ére non-negative.
Thus, Az has the dominant eigenvalue, denoted.y, with a strictly positive eigenvector.
Therefore E1€' P! is trajectorally stable if (i pr+ s+ 011 > 0; (i) Ap, +p+ 912 > 0;
(i) Ap, — Aa, > 0. Condition (i) is equivalent tus — ptp + K1z > 0, or pp — s +
p11 < 0, which is always satisfied becauseof < us. Condtion (i) is equivalent
to

o o 1 1
Lz _ 2 — (e —
it < 2\/(H~s wp + p11)“ + 4K11011 2(Ms Mp + p11). (3.9)
Now, letn = (X,V, p,q) be the #ictly positive eigenvector associated with the
eigenvalueia,. Expanding (A2 — Al)np = 0, wherel is the identity matrix, we

have

o
s + p21+ % + Aa, | X =ki2p + koaq,

o
(Ms + p12+ 9_2 + )»Az) y = ki2p + k210,
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o
(Mp +—+ )»Az) p = p12Y,
01

02

Thereforea, + up + g—i > 0, fori = 1, 2, and hence conditioriiij implies condition

(ii). Continuing,if we assume thap1> = p21 = p (i.e., the interstrain pair-formation rate

is independent of the strain to which the male belongs), then from the first two equations
we havex = y. Therdore, it follows that

o
(Hp + —+ )»Az) q = p21X.

(3.10)

kiop ko1p
An, +u +,0+—— .
2 TS 02 Amtupts Amtuptg

Let

k120 ko210
f@)=z+pus+ +— - .
@ e G 2 upt g zrupt g

Then f (2) is strictly increasing for all positive parameters, ai@ a,) = 0. Notethat

o k11011
hpy s+ P11 — = —— it 3.11
P1 S 01 )‘p1+ﬂp+9£1 ( )

If there holds

_p_£+ ki2p ko1p
o k11011
<—pp- L4 fuem (3.12)
01 )\,p1+llp+9£1
then
ki1p11
f(hp) > Ap, +,us+,011+ — ———————— =0= f(Apy),

01 )\,p1+llp+0£1

and hence, the monotonicity df(z) implies thatip, > Aa, in the case ofip, + up

91 > 0.Similarly, if the inequality 8.12 is reversd, we have.p, < Aa,. Taken together,
we have the following stability conditions fdné persistent solution when only Strain 1 is
present.

Theorem 3.1. E;&*m! istrajectorally stableif A, > Aa,. Inthe case of p12 = p21 = p,
it isstable if there hold inequalities (3.9) and
k —k k
o 11011 — Ki2p 210 (3.13)

———+p11—,0< .
61 6o )»p1+llp+0£1 )\p1+Mp+9£2

It is unstable in the case of either reversed inequality (3.9) or Ap, < Xa,. In the case
of p12 = p21 = p, if inequality (3.9) still holds, reversed inequality (3.13 can lead to
instability of E;e*rit.

For reasonable parameter values, including those we used in our numerical studies (see
Section 4, the condition 8.9) islikely to be satisfied when the conditioB.( 3 is saisfied.
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This allows us to draw the following biological conclusion frdmeorem 3.1Stran 1 can
exclude Strain 2 from the population if its growth rétg, exceeds the eigenvalu, .

In order to study the persistent solution when only Strain 2 exists’P2!, we mnsider
the Jacobian of syster.(7) under the following rearrangement of the variables:

my + 2 my —
my, P12, P21, f1, —5 P2 —5— |
One can verify that the Jacobian is
B « 0 O
5;_|oB oo
2=l % % B3 0|’
¥ % x By
where
o
—[s — o P12 k12 ko1 0
o
P12 —Hp~ o 0 0
By = ! o )
0 0 —he— o p21
o
0 kiz ko1 —fs — — — p21
01
o
—MHs — 9—2 — P22 koo
Bs = 2,
P22 H“p o
o o
B - - -, B = — _—
2 MUp 0, 4 MUs 0,

Therefore Eoe'P2' is stable ifip, + us + & > 0,hp, + pp + & > 0, andip, > i,
whereip, is the dominant eigenvalue @;. Note tha the first two inequalities always
hold bgcause Ofip < s andell < ,92' In thecase wherei, = p21 = p, by the same
analysis used for the other equilibrium, we have

o K120 ko1p
AB s+ p+— = .
s 01 A tup+g A tupto

Therefore, similar results follow for the persistent solution when Strain 2 excludes
Strain 1.

Theorem 3.2. Eper2! istrajectorally stableif Ap, > Ag,. In the case where p12 = p21 =
p,itisstableif
o o ki2p k210 — k22022

———+p—px> :
01 02 Apptupt+ g Apptupt g

(3.14)

Again, this persistent solution is stable, and Strain 2 can exclude Strain 1 from the
population if the growth ratep,, exceeds the eigenvaluss, .
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If drug resistance had no cost to parasites, then all parasites would be expected to be
made up of only resistant parasites. Since not all parasites are resistant, it is expected that
drug-resistant parasites might pay energetic costs that result in lower reproductive rates,
or other adverse effects. It would then follow that natural parasite populations in areas
where no treatment program exists would maintain very little or no resistance. Thus, it is
interesting to consider the situation in which the majority of parasites are resistance free
and a small number of individuals that are resistant (either due to a novel mutation or
migration from other areas) enter the population. Will the mutant strain, made up of these
novel resistant individuals, invade and persist in the population (regardless of whether or
not the seriive strain becomes extinct)?

Let9; = 1,00 > 1. That is, Strain 1 parasites af@ly susceptible and Strain 2
parasites are partially drug resistant. Then, the conditions under which Strain 2 can survive
in the population are those under which the persistent solution for Straifyd'P1!, is
trajectorally unstable. That ishe instability conditions folE1e*P1! (seeTheorem 3.1
provide invasion criteria, and can be used to determine the impact of drug treatment on a
mixed population of parasites.

Let us examine the inequalitie3.(3 and @.14) in Theorems 3.And3.2, resgectively,
in a special case. Assume that the probability of forming a pair between female and male
parastes of any two strains is the same, i.e11 = p12 = p21 = p22 = p. Assume also
that there is no reduction in reproduction for the resistant strainki.e= ko2 = b/2 and
k12 = ko1 = b/4 whereb is the background per capita birth rate of pairs with the sensitive
strain. Under these assumptions, the inequaliBek3 and @3.14) become:

1/4b, 1/4b,
a—£< /4bp - /4bp = (3.15)
02 )\,pl‘i‘l/«p‘i‘O' )“pl+'up+0_2
and
o O o A 1/4bo (3.16)

02 Ap,+up+o _)»p;_,—i—up—i-@%’

respectively. Sincé, > 1, the inequality 8.15 will never hold as itdeft hand side is
positive and its right hand side is negative. This implies g P! is alwaysunstable.
E,e'r2! is always stable as its left hand side is iius and its rght hand side is negative.
Therefore, we have verified the biologically intuitive result:

If there is no cost for drug resistance, then the resistant strain will always invade a
population subject to drug treatment, and exclude the sensitive strain.

However, as mentioned above, there is almost certainly some cost that parasites must
pay in order to maintain drug resistance, an&attion 4 below, we discas in more detail
one specific form of cost (e.g., reduced reproductive rate) and the effect of such cost. For
now, we consider the general case of some reduction in the birth rate for pairs of parasites
from the resistant strain. If we take the same assumptions on coefficients as in the above
special case, except fdwo = k11h(62) = bh(62)/2, whereh(6,) € (0, 1), then it s easy
to see from the inequalitie8(13 and B.14) thatboth E;e*Pit and Eoe*r2t are unstable
for all sufficiently smallh(6y). In thiscase, coexistence of the two strains is expected, due
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to the cost paid by the resistant Strain 2. Next, we consider the possibility of coexistence
of the two strains in the general setting.
Consider tle functionsm; = mie!, fi = fie*, pjj = fije, wherem;, fi, pij > 0,
i, j =1, 2. These functions are the components of the exponential solution of Sy&@Bm (
if andonly if

o\ _
K11P11 + k12P12 + ko1 P21 — ( + us + 9—1) my
= (p12(m, ) + p12(M, f)) =0,
K11P11 + k12P12 + ko1 P21 — ( + us + %) F1
= (p12(m, ) + @21(M, f)) =0,
o\ _
K12P12 + ko1 P21 + koo o2 — ( + us + 9—2) 1173
— (p21(M, ) + @oo(, f)) =0,
o _
Ki2P12 + K21 P21 + K22P22 — ( + s + 9—2) 2 (3.17)

— (p12(M, f) 4 @22(M, f)) =0

_ o
p11(m, f) — <)»+Hp+9 >

_ £ o _
p12(m, f) — <)»+,va+—> p12=0,

g21(m, f) — <K +up+ —
02

@oo(m, f) — <)» + pup+ 9—2> P22=0

wherem = (my, My), and f = (f1, fo).

Again takingpi2 = p21 = p, we try to find srictly positive solutions of systen8(17)
with m; = f;. Subdituting the last four equations into the first four equations3ri. (), we
have

A+ s + + p11M1 + ,Om2 k11p11m16—|— k_lzme_
01 MMy (ot pp+ ) (M4 M)
k21,0m2
T Ot &) (Mg +my)”
2oM2 + pMy Ko1pMy + Koop2op
A+ s + + P p P — _'0 2
02 M+mp (ot pp+ &) (M4 M)
k12,0m1

()»+Mp+ g7)(My +mp)”
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As in Cadtillo-Chavez ¢ al. (1996) if we defineT = —M__ then t follows that

my+mp’

o k11p11(1 = T) + kiopT
At+ps+—+p11(1—T)+pT —
nst g p11( )+ p P
o ke
Atup+g
o S ko1o(1 — T) + Ka2p22T (3.18)
11—
At ps+—+p22T +p(1—-T) —
Hs oot p22 p( ) Py
_ kip(1-T) 0
A+ Kp + 011
Lemma3.1. Inthecaseof p12 = p21 = p, system(3.17) admitsa strictly positive solution
withm; = fj,i = 1, 2, if and only if there exist a real number A and anumber T € (0, 1)
satisfying Egs. (3.18).
If the boundary exponential solutiofig P!, fori = 1, 2, lose their stability due to

the inequalities3.13 and @.14), then we have the existencesifictly positive persistent
solutions which allow the two strains to coexist.

Theorem 3.3. In the case where p12 = p21 = p, if Eie*?!, for i = 1,2, are unstable
because of the reversed inequalities (3.13 and (3.14), then system (3.7) admits at least
one persistent solution for two strains coexisting.

Proof. Denote the left hand sides of equations B8 by Gi(A, T) and G2(A, T),
respectively. Lett = —up — min{eil, 912}. A direct computation shows th%%(k, T)>0
forall T € [0,1] andA € (¢, +00), and that for eacll € (0, 1), lim;_, ,+ Gi(A, T) =
—00, limy_ 100 Gi (A, T) = oo. Therefore, for eacll € (0, 1), there exits aunique
Ai (T) suchthatG; (1 (T), T) = 0. Furthermore, by the implicit function theorem(T)
are continuous functions df on (0, 1). Note tha theequalities 8.10 and @.11) show hat
G2(Ap,, 0) = 0 andGi1(Ap,, 0) = 0. Thus, together with the reversed inequalitigsl®)
and @.14), the imgicit function theorem implies that

’2(0) = dp, > Ap, = A1(0).

The same argument leadsxe(1l) = Ag, > A2(1) = Ap,. By thecontinuity of i (T) on
T, there eists at least ond* < (0, 1) suchthatA1(T*) = A2(T*). Herce,Lemma 3.1
completes the proof.

4. Impact of treatment on coexistence of strains

In this section, we discuss further the impact of drug treatment on drug-resistant
schistosomes, and conduct some numerical simulations to verify and extend our analytic
results. To incorporate the costs that parasites are paying for the drug resistance, we
assume that the birth rates of pairs that involve Strain 2 parasites are decreasing functions
of 6. Thus, parasite reproductive capacity and drug resistance are inversely related. Let
k12 = ko1 = k11/(262), ko2 = k11/(362). With regard to the mating possibilities between
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Fig. 1. The plot of functiorG (o, 62). The invasion condition for Strain 2 parasites3éo, 62) < 0.

the strains, we assume thati = p22 = 3p/2, andp12 = p21 = p, which take together
imply that individuals of the same strain are more likely to encounter one another and
form a mated pair than individuals of different strains. We also retain the assumption that
us = 10up, reflecting the diminished survivakperienced by unmated worms.

We then, ewrite (3.13 and @.14) asFi(o, 62) > 0 andFz(o, 62) > 0, respectively,
where

o 1 1- Tzz)kllp k110
Fi(o,62) = - -0 — 5 - T
() 2 Apy +up+o 292()»p1+up+9—2)
o 1 (T:‘I;'Z - 37232)k11,0 k110
Fo(0,00) =0 — — — =p — - = .
O 2 Apy +ip + 5 207(Ap, + pp +0)

Let f(0,602) = Ap, + up + 012, G(o, 62) = min{F1(o, 02), f (o, 62)}. Then he invasion
condition for Strain 2 parasites G(o, 62) < 0 (Fig. 1). According toTheorem 3.3in the
case off (o, 62) > 0, the coexistence domain is

2 ={(0,02) : Fi(o,62) <0,i =1, 2},

whichis shown irFFig. 2 L; represents the curve on whi€h(o, 62) = 0, while | represents
the curvef (o, 62) = 0. Below the curved.1 is the domain where the Strain 1 persistent
solution E1€*P1! is stable, and the resistant Strain 2 can not invade the population. Above

the curvely, Egpzt is stable, and the resistant Strain 2 will take over the population,
excluding the susceptible &tin 1. The parameter values used for the figures are taken
askis = 0.5, us = 0.2, p = 0.467.

Wenumerically calculated the solutions of the proportion system correspondi®g}o (
In Fig. 3, all paraméers have the same values as-igs. 1and2, and the esistance level
of Strain 2 is set aflo = 2.5. For this level of resistancé; (o, 2.5) = 0 ato = 0.359,
andFz(o, 2.5) = 0 ato = 0.583. Thus, irFig. 2, (o, 82) = (0.32, 2.5) represents a point
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i} Lo\l
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b
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L Q
0.4

Fig. 2. The plots of curve§; (o, 62) = 0 and f (o, 62) = 0. Below the curvd_1 is the parameter domain where
the Strain 1 persistent solution is stable, while ti@i8 2 persistent solution is stable above the clryef? is
the coexistence domain.

Treatment Rate
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Fig. 3. The proportions of paing; 1 and p22 in the whole population vs. timte plotted for three different treatment
rates. The pgrameter values are the same adigs. 1land2. For this set of alues,F; (o, 2.5) = 0 wheno = 0.36
andF»(o, 2.5) = 0 wheno = 0.583.

slightly below the curvé. 1, andhence, the Strail persigent solution is stableHig. 3, left
column). The poinfo, 62) = (0.38, 2.5) lies slightly above the curve; and belongs to the
domain{2, and so the 8ain 1 persistent solution is unstable, and there exists a persistent
solution for coexistence of the two strains; in this case, the coexistence is stapl8, (
middle column). For the poin, 82) = (0.6, 2.5), which is dightly above the curvé. »,

the Strain 2 persistent solution is stabfég(. 3, right column).
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Fig. 4. The bifurcation diagrams, regardiagas the bifurcation parametdor the proportions of pairp;1 and
p22, Where all mrameters are the same exceptdpe 2.5.

In order to visualize the hircation described ifFig. 2 more clearly, we used Auto
to plot the proportions of the pairp11 and pz2 in the whole population Eig. 4), again
usingo as the bifurcation pameter and taking> = 2.5. The solid lines imply that the
corresponding persistent solution is trajectorally stable while the dashed lines represent the
instability of the corresponding persistent solution. Fog 0.359, the Strain 1 persistent
solution is stable; for € (0.36, 0.583), the persigent solution for coexistence is stable;
and foro > 0.584, the Strain 2 persistent solution becomes stable. Therefore, as long as
o > 0.36, Strain 2 will invade and persist in the population.
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Fig. 5. Simulations of proportions of pairerfvarious values of the treatment rateand three parasite strains:
01 = 1 (swsceptible strain)g, = 2.5 andd3 = 3.

From these amputations, we have the following observations:

(1) Higher treatment rates can allow parasitéth lower drug resistance to invade (see
Fig. 2).

(2) Higher treatment rate can allow for cigence between susceptible and resistant
parasite strains, though the range of “allowable” resistance levels becomes more
narrow, and can resulh the elimination of both susceptible and highly resistant
parasite strains from the populatidfig. 2).

(3) There existsa ciitical valueo; such that foro < o¢, thedrug-resistant strain can not
invade and persist in the population (séégs. 2through4), whereo; = —%,011 +

% > 0, wherew = —3(us — pp + p11) + %\/(/Ls — ip + p11)? + 4k11011.

Briefly, we can also consider the behavior of the model for multiple strai2y.(For
three strains — one susceptible stréin = 1) and two drug-resistant straif®s > 62 > 1)
— the simulations of the proportions of “same strain” pairs in the whole population are
shown inFig. 5 Costs are ofhie form used in the two-strain model above except for
k1z = k31 = k11/(203), koz = k32 = k11/(3.563), kaz = ki1/(463). Pammeter values are
as above, except for drug resistance levgls= 2.5 andd; = 3. Simuldion results show
that for a treatment rate < 0.345, only the sensitive Strain 1 persists; anddfor 0.346,
drug resistant strains can begin to invade the populatioRigns, the thre strainsoexist
in the case ob = 0.362 (middle column), and the sensitive strain becomes extinct and
only the drug resistant strains coexist or- 0.39 (right column).
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5. Discussion

The control of schistosomiasis continues to be difficult due, at least in part, to the
complexity of the parasites themselves. The use of multiple hosts, the presence of separate
sexes, widespread genetic diversity, and other factors all contribute to this complexity;
together, they are likely todve a gjnificant impact on attempts to control the disease
through chemotherapeutic treatment of human patients. These factors also complicate
attempts to realistically model the transmission of schistosome parasites. The approach
that we havaused to date has focused on analyzing how these factors in isolation affect
the interplay between drug treatment andgséte genetic diversity (i.e., the number of
different parasite strains in the population). Such analyses provide estimates for the various
model parameters that are needed to yielddgjizally intuitive results, as well as drive
hypothesis testing in laboratory and field-based studies of these parasites. For example,
the results presented above suggest that it will be important to determine the extent
of protection that a male schistosome can impart to his mate based on his genetically
determined drug resistance.

In the current model, such protectioflosvs a drug resistant male to shelter a
more susceptible (but also more fertile) female, thereby leaving more offspring that
carry his genes in the next generatiofhe male worm benefits by mating with a
more fecund female from the susceptild&ain, and the feamle worm benefits by
out-living (and out-producing) her peers that were mated to, and not protected by,
males from the suscéple strain. While this feature of the model is based on our
understanding of how drugs like Praziquantel kill schistosomes, further experimentation
is needed to determine if protection occurs to the extent described in our model, if
at all.

Other areas of biological research areoatigHhighted by our current model as being
important for further refinement of the model, and to improve our understanding of
schistosome population dynamics and the control of schistosomiasis. Further studies of
inter-strain matings are needed that inigete factors such as mate choice by male and
female worms, and the sex ratio of the offspring produced. The need for further genetic
studies of natural schistosome populations is also indicated. Such studies will provide
critical insight into the range of genetic polymorphism present in these populations on
different geographic scales, and the likely impact of gene flow and selection imposed by
control efforts on the spread of drug resistance.

In summary, the current model describes how the interaction between schistosome
strains with a range of susceptibility to drug treatments can lead to a stable genetic
polymorphism in the population. It also predicts parameters and features that would be
required to allow drug resistant worms to ineathecome established within, and perhaps
even replace a formerly susceptible population of worms. The results of the deterministic
model for two strains have also been extended through numerical studies and shown to
be quditatively similar for three strains. Further refinement of the model might attempt
to incorporate further elements of complexity in the schistosomiasis system, such as
the interactions among the larval stages of various strains within the snail intermediate
hosts.
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