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Abstract

The effects of drug treatment of human hosts upon a population of schistosome parasites depend
upon a variety of factors. Previous models have shown that multiple strains of drug-resistant parasites
are likely to be favored as the treatment rate increases. However, such models have neglected to
account for the complex nature of schistosome mating biology. To more accurately account for the
biologyof these parasites, a simple mating structure is included in a multi-strain schistosome model,
with parasites under the influence of drug treatment of their human hosts. Parasites are assumed to
pay a cost for drug resistance in terms of reduced reproduction and transmission. The dynamics of
the parasite population are described by a system of homogeneous differential equations, and the
existence and stability of the exponential solutions for this system are used to infer the impact of
drug treatment on the maintenance of schistosome genetic diversity.
© 2005 Society for Mathematical Biology. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Schistosomiasis is a major parasitic disease infecting 200 million people in Africa,
Asia, andSouth America (Chitsulo et al., 2000; WHO, 2004). Currently, the most efficient
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method of schistosomiasis control involves chemotherapeutic treatment of patients with
praziquantel (PZQ) (Fenwick et al., 2003). This drug kills the adult worms residing within
the patient, effectively halting the deposition of parasite eggs within host tissues, and
preventing the further worsening of symptoms. However, reports suggest that schistosome
populations in some endemic areas may be developing resistance to PZQ (Ismail et al.,
1999). Thus, disease control programs employing chemotherapeutic agents may select for
varying degrees of drug resistance in parasite populations (at different spatial and temporal
scales). If a natural schistosome population consists of a collection of “strains” that express
different levels of resistance, then it will be important to understand the consequences
of this genetic diversity on both disease transmission and proposed disease control
strategies.

Previously, we have studied schistosomiasis models which consider both human and
snail hosts as well as other detailed biology such as infection age of snails and density-
dependent recruitment rates (Feng et al., 2001, 2002). For example, inFeng et al. (2001),
we proposed a mathematical model that attempted to incorporate parasite resistance
to chemotherapy. The model envisioned a number of parasite strains, each defined by
its inherent resistance to the treatment drug. Parasite strains paid a cost in diminished
reproduction and transmission that was inversely related to the level of drug resistance,
because without such costs, the most resistant strain would be expected to dominate the
population very quickly, even if treatment occurred at a very low rate. We showed that as
drug treatment of the population of human patients increased, a greater number of resistant
parasite strains (with higher levels of resistance) were able to coexist, and that a fully
susceptible strain would go locally extinct.

A recognized limitation of our earlier models arose from the fact that schistosomes
have separate sexes, and thus, the reproduction of the different strains was likely to be
much more complex (in terms of mathematical logistics and the underlying biology)
than we were able to model with that system of equations. By accounting for the
separate male and female worms of each strain, we have attempted to create a more
robust model of the spread of drug resistance in schistosome populations. This model
retains the assumption of a simple genetic basis for resistance, as we employed in our
earlier model, but now allows for mating between individuals of two different strains. We
make the further assumption that the offspring of such inter-strain matings will have the
same values for drug resistance as their parents (i.e., intermediate values of resistance,
potentially corresponding to new strains, are notgenerated). Incorporating this important
feature of schistosome mating biology greatly complicates the model—as we now have
equations for unmated male worms and unmated female worms of each strain, along
with an equation for each possible strain combination as a mated pair—and yet, the
results of our analysis are qualitatively very similar to those obtained with our previous
model. Thus, the treatment rate affects the range of resistance values (e.g., variety of
strains) that can coexist in the parasite population, and if high enough, may lead to the
exclusion of susceptible strains. Furthermore, it is possible to calculate a treatment rate
below which resistant strains cannot invade a population of mostly susceptible parasites,
although this “critical rate” depends upon the reproductive costs that parasites pay for
resistance.
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When two strains (drug-sensitive and -resistant strains) are considered, our model is
an eight-dimensional system of homogeneous equations of degree one. Following the
approach of Hadeler and co-workers (seeHadeler et al., 1988; Hadeler, 1989; Hadeler and
Ngoma, 1990) we studied both analytically and numerically the existence and stability of
exponential solutions of the system. Our bifurcation analysis provides threshold conditions
which can be used to determine whether the resistant strain can invade a population
consisting of only the sensitive strain of parasites. Results for the two-strain model are
extended numerically to cases when more thantwo strains are considered. This paper
is organized as follows. InSection 2we consider a simple one-strain model and study
persistent proportions of populations represented by exponential solutions of the model.
The results in this section will be applied to the study of the two-strain model described
in Section 3. Existence and stability of exponential solutions of the full system are also
given inSection 3. Section 4is devoted to numerical simulations to confirm or extend the
analytic results.

2. The model for a single strain of schistosomes

In this section we consider a one-strain model for a population of schistosome
parasites whose human hosts are treated with chemotherapy. This schistosome population
is divided into three subpopulations:f andm are the densities of female and male singles,
respectively, andp is the density of pairs. The formation of schistosome pairs is described
by a “mating function”,ϕ : R

2+ → R+, satisfying

(i) Preservation of positivity: ϕ(m, 0) = ϕ(0, f ) = 0;

(ii) Homogeneity:ϕ(αm, α f ) = αϕ(m, f ),∀α > 0;

(iii) Monotonicity: ϕ(m + u, f + v) ≥ ϕ(m, f ) for all u, v ≥ 0.

Let b be the per capita birth rate of a pair, and letµs andµp be the per capita death
rates of single worms and worms in a mated pair, respectively. Note that we assume
that both members of a mated pair are killed simultaneously; individuals in the model
do not lose their mate and return to the population of single worms. A disease control
program distributes a chemotherapeutic drug to the host population at a constant rate, but
the effectiveness of the drug in killing individuals of a particular strain of schistosomes is
reduced by a factor,θ , which wecall the “drug resistance” of that parasite strain.θ > 1
means that the strain of schistosomes has some degree of resistance to the drug, while
θ = 1 implies the strain is entirely sensitive to the drug. Thus, due to drug treatment of
their hosts, a fully sensitive strain of parasites has a per capita death rate,σ , and this death
rateis reduced by the factorθ > 1, σ/θ , for strains with innate drug resistance. Then, the
model for schistosomes is given by

ṁ = kp −
(
µs + σ

θ

)
m − ϕ(m, f ),

ḟ = kp −
(
µs + σ

θ

)
f − ϕ(m, f ),

ṗ = ϕ(m, f ) −
(
µp + σ

θ

)
p,

(2.1)



1210 D. Xu et al. / Bulletin of Mathematical Biology 67 (2005) 1207–1226

wherek = b/2, i.e., the ratio of femaleto male offspring is assumed to be 1:1 (Gryseels
and de Vlas, 1996). Following the approach ofPollard (1973)we assume that the mating
functionϕ takes theform of 2ρm f

m+ f , where 2ρ represents the effective contact number (which
may be a product of several parameters including the average contact number of a parasite
and the probability of a pair being formed per contact). Other forms of mating functions
can also be considered (see for exampleCastillo-Chavez et al. (1996, 1999), Hadeler et al.
(1988), Hadeler (1989), Hadeler and Ngoma (1990)andPollard (1973)).

For system (2.1), stationary solutions can not be expected due to the homogeneity.
Instead, we can look for persistent distributions, i.e., exponential solutions of the
form

(m(t), f (t), p(t)) = (m̄, f̄ , p̄)eλt , (2.2)

wherem̄, f̄ , p̄ are constants. Hadeler et al. (Hadeler et al., 1988; Hadeler, 1989; Hadeler
and Ngoma, 1990) provided a systematic approach to the existence and stability of
exponential solutions for homogeneous evolution equations, which proceeds as follows.
Consider a population model

ẋ(t) = f (x(t)), (2.3)

where thefunction f is continuously differentiable onRn+ \ {0}, andhomogeneous, i.e.,
f (αx) = α f (x) for all α, x > 0. We require that zero is a stationary point of (2.3), and
that the first quadrantRn+ is invariant for the solution semiflow of Eq. (2.3). Let

y = x

e∗ · x
for x ∈ R

n+ \ {0},

where the dot “·” denotes the inner product onRn , e∗ = (1, 1, . . . , 1). That is, the variable
vectory is the proportion vector ofx to the total population. Then, the proportion variable
y satisfies

ẏ(t) = f (y(t)) − e∗ · f (y(t))y(t) (2.4)

on the simplex S = {y ≥ 0 : e∗ · y = 1}. A solution y(t) of (2.4) corresponds to the
following group of solutions to (2.3):

x(t) = y(t)e
∫ t

0 e∗· f (y(s))dse∗ · x(0).

If ȳ ∈ S is an equilibrium of (2.4), then the corresponding solutions of (2.3) are of the form

x(t) = ȳeλ̄t e∗ · x(0),

whereλ̄ = e∗ · f (ȳ). If ȳ is globally asymptotically stable, then a subset of the population
may increase or decrease over time, but always represents the same proportion of the total
population. Thus, the existence and stability of equilibria of (2.4) are important issues.
Fortunately, Hadeler et al. (1988)provided a simple result: if we denote the eigenvalues of
the Jacobianf ′(ȳ) by λ1 = λ̄, λ2, . . . , λn (multiplicities counted), then̄y is linearly stable
if all of the real parts of the numbersλi − λ̄, i = 2, 3, . . . , n, are lessthan zero.
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Using the above approach, we will discuss the stability of the exponential solutions for
the two models in this paper. In the following, we say that an exponential solutionȳeλ̄t of
a system is trajectorally stable (or simply stable), if the equilibriumȳ is stable with respect
to the corresponding proportion system (2.4).

Substituting (2.2) into system (2.1), we have

k p̄ −
(
µs + σ

θ

)
m̄ − ϕ(m̄, f̄ ) = λm̄,

k p̄ −
(
µs + σ

θ

)
f̄ − ϕ(m̄, f̄ ) = λ f̄ ,

ϕ(m̄, f̄ ) −
(
µp + σ

θ

)
p̄ = λ p̄.

There are two trivial solutions (up to a constant)

Em = (1, 0, 0) and E f = (0, 1, 0) with λm, f = −µs − σ

θ
, (2.5)

and a unique positive solutionE p with λp, where

E p = (1, 1, p̄) =
(

1, 1,
ρ

λp + µp + σ
θ

)
,

λp = −1

2

(
µs + µp + ρ + 2σ

θ

)
+ 1

2

√
(µs − µp + ρ)2 + 4kρ.

To study the stability of exponential solutions, we need to check the eigenvalues of
the corresponding Jacobian matrices of system (2.1). The Jacobian atEm can be readily
obtained:

Jm =
(

−µs − σ

θ
∗

0 Cm

)
, Cm =


−µs − σ

θ
− 2ρ k

2ρ −µp − σ

θ


 .

Here, the matrixblock denoted by∗ is not of interest. Then,Emeλm, f t is trajectorally stable
if λm, f > λCm , whereλCm is the dominant eigenvalue ofCm . It is easy to get that

λCm = −1

2

(
µs + µp + 2ρ + 2σ

θ

)
+ 1

2

√
(µs − µp + 2ρ)2 + 8kρ.

Therefore,Emeλm, f t is trajectorally stable if and only ifµp −µs +2ρ > 0 > µs −µp + k.
A similar computation shows thatE f eλm, f t is trajectorally stable if and only if the same
conditions hold.

To investigate the stability of thepositive exponential solutionE peλpt , we reduce
system (2.1) to atwo-dimensional system by introducing projective variables

ξ = m

p
, η = f

p
.
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The new system is given by

ξ̇ = k − (µs − µp)ξ − 2ρξη

ξ + η
(1 + ξ),

η̇ = k − (µs − µp)η − 2ρξη

ξ + η
(1 + η).

(2.6)

For this system,R2+ is strictly positive invariant. Moreover, this system is an irreducible
and competitive system. At(ξ̄ , η̄) = (1/ p̄, 1/ p̄), the Jacobian of the right-hand side of
(2.6) is

Jp =




−µs + µp − ρ

p̄
− 1

2
ρ

(
1 + 1

p̄

)
−1

2
ρ

(
1 + 1

p̄

)

−1

2
ρ

(
1 + 1

p̄

)
−µs + µp − ρ

p̄
− 1

2
ρ

(
1 + 1

p̄

)



=




−µs − 3

2
λp − 3

2

σ

θ
− 1

2
µp − 1

2
ρ −1

2

(
ρ + λp + µp + σ

θ

)

−1

2

(
ρ + λp + µp + σ

θ

)
−µs − 3

2
λp − 3

2

σ

θ
− 1

2
µp − 1

2
ρ


 .

We can show that the maximum eigenvalue ofJp is −λp − µs − σ
θ

. Therefore, (ξ̄ , η̄) is
stable ifλp +µs + σ

θ
> 0, i.e.,µp−µs +ρ < 0 orµs −µp+k > 0. Moreover, if it is stable,

then it is globally asymptotically stable because of the monotonicity and dissipativity of
the solution semiflow associated with (2.6).

Collecting the results on the stability of exponential solutions, we have

Theorem 2.1. The trivial exponential solutions Emeλm, f t and E f eλm, f t are locally
trajectorally stable if and only if µs −µp +k < 0 < µp −µs +2ρ. The persistent solution
E peλpt is globally trajectorally stable if and only if µs −µp + k > 0, or µp −µs +ρ < 0.

In reality, pairs of schistosomes may live for a few years while single parasites may
only live for a few weeks. Therefore, in this paper, we always assume that the death rate of
pairs should be less than that of singles, i.e.,µp < µs . Under this condition, the two trivial
exponential solutions can not be stable and the persistent solution is stable. We also have
the followingobservations:

(1) The treatment rateσ , and drug resistanceθ , have no effects on the stability of
the exponential solutions, particularly the persistent solutionE peλpt , which shows
constant proportions of male and female singles and of pairs.

(2) If λp > 0, the whole population of schistosomes is increasing, whereas ifλp < 0,
the whole population is decreasing. Thus, the exponentλp can be regarded as a
reproduction rate for this particular strain of schistosomes.

(3) The treatment rate,σ , and the degree of resistance,θ , affect the sign ofλp. An increase
in the treatment rate,σ , reduces the growth rate,λp, of the population, while an increase
in θ leads to an increase inλp.

The stability results obtained in this section will be used inSection 3for the two-strain
model.
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3. The model for two strains of schistosomes

We assume that the whole schistosome population consists of individuals belonging to
one of two strains with different levels of drug resistance,θ . (In the following, letθ1 < θ2.)
The following definitions are required for the formulation of the model:

mi = density of single males of straini,

fi = density of single females of straini,

pi j = density of pairs with straini male and strain j female,

ϕi j = the mating function of straini male and strain j female.

In order to model the heredity of drug resistance, it is further assumed that the offspring
of an interstrain mating inherit either the paternal or maternal drug resistance with equal
frequency, and that pairs produce equal numbers of male and female offspring. We use
ki j as the recruitment rate of single females and males of strainsi or j by pairspi j . Note
that ki j ≤ b/4 for i �= j andkii ≤ b/2, whereb is the background per capita birth rate
of pairs for a sensitive strain, and thatk12 = k21, because of our assumptions. Then, the
pair-formation model for two strains is given by:

ṁ1 = k11p11 + k12p12 + k21p21 −
(

µs + σ

θ1

)
m1 − (ϕ11(m, f ) + ϕ12(m, f )),

ḟ1 = k11p11 + k12p12 + k21p21 −
(

µs + σ

θ1

)
f1 − (ϕ11(m, f ) + ϕ21(m, f )),

ṗ11 = ϕ11(m, f ) −
(

µp + σ

θ1

)
p11,

ṁ2 = k12p12 + k21p21 + k22p22−
(

µs + σ

θ2

)
m2 − (ϕ21(m, f ) + ϕ22(m, f )),

ḟ2 = k12p12 + k21p21 + k22p22 −
(

µs + σ

θ2

)
f2 − (ϕ12(m, f ) + ϕ22(m, f )),

ṗ12 = ϕ12(m, f ) −
(

µp + σ

θ1

)
p12,

ṗ21 = ϕ21(m, f ) −
(

µp + σ

θ2

)
p21,

ṗ22 = ϕ22(m, f ) −
(

µp + σ

θ2

)
p22,

(3.7)

wherem = (m1, m2), f = ( f1, f2). It is also worth noting that, dueto the biology of
the parasites — male schistosomes protect and nourish their female partner, while holding
them in a copulatory groove — the resistance level of a parasite pair is assumed to be
determined by the male member of the pair.

As in Section 2, we will consider the existence and stability of exponential solutions of

(3.7) in thecase ofϕi j = 2ρi j mi f j
m1+m2+ f1+ f2

. System (3.7) has a three-dimensional subsystem
for each schistosome strain. The subsystems are equivalent to system (2.1) with the rates
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specified by

ṁi = kii pii −
(

µs + σ

θi

)
mi − ϕ(mi , fi ),

ḟi = kii pii −
(

µs + σ

θi

)
fi − ϕ(mi , fi ),

ṗii = ϕ(mi , fi ) −
(

µp + σ

θi

)
pii .

(3.8)

Each of these subsystems admits two trivial exponential solutions

(1, 0, 0)e
−
(
µs+ σ

θi

)
t
, (0, 1, 0)e

−
(
µs+ σ

θi

)
t
,

which are locally trajectorally unstable with respect to system (3.8) (recall that we have
already assumed thatµp < µs ), and a positive exponential solution(1, 1, p̄ii )e

λpi t , where

p̄ii = ρii

λpi + µp + σ
θi

,

λpi = −1

2

(
µs + µp + ρii + 2σ

θi

)
+ 1

2

√
(µs − µp + ρii )2 + 4kiiρii .

The unique positive exponential solution is globally trajectorally stable with respect to
system (3.8).

We can identify the two equilibria where only one strain persists,

E1 = (1, 1, p̄11, 0, 0, 0, 0, 0), and E2 = (0, 0, 0, 1, 1, 0, 0, p̄22).

Then Eie
λpi t , which corresponds to the positive exponential solution for a one-strain

system, is a persistent solution for each strain, with respect to the whole system (3.7).
Next, we consider the stability of these two solutions.

It is not difficult to verify that the Jacobian of system (3.7) at E1 takes the form

J1 =

A1 ∗ ∗

0 A2 ∗
0 0 A3


 ,

where

A1 =




−µs − σ

θ1
− 1

2
ρ11 −1

2
ρ11 k11

−1

2
ρ11 −µs − σ

θ1
− 1

2
ρ11 k11

1

2
ρ11

1

2
ρ11 −µp − σ

θ1




,
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A2 =




−µs − σ

θ2
− ρ21 0 k12 k21

0 −µs − σ

θ2
− ρ12 k12 k21

0 ρ12 −µp − σ

θ1
0

ρ21 0 0 −µp − σ

θ2




,

A3 = −µp − σ

θ2
.

The off-diagonal blocks represented by an “∗” are not of interest for a linear stability
analysis. For mathematical convenience, we introduce new symmetric variables, and
rearrange the system as:(

m1 + f1
2

, p11,
m1 − f1

2
, m2, f2, p12, p21, p22

)
.

With respect to these variables the Jacobian has the form

Ĵ1 =




A11 ∗ ∗ ∗
0 A12 ∗ ∗
0 0 A2 0
0 0 0 A3


 ,

where

A11 =




−µs − σ

θ1
− ρ11 k11

ρ11 −µp − σ

θ1


 , A12 = −µs − σ

θ1
.

The dominant eigenvalue ofA11 is exactly the exponentλp1 of the persistent solution
when only Strain 1 is present. Note that the off-diagonal entries ofA2 are non-negative.
Thus,A2 has the dominant eigenvalue, denoted byλA2, with a strictly positive eigenvector.
Therefore,E1eλp1t is trajectorally stable if (i)λp1 + µs + σ

θ1
> 0; (ii) λp1 + µp + σ

θ2
> 0;

(iii) λp1 − λA2 > 0. Condition (i) is equivalent toµs − µp + k11 > 0, or µp − µs +
ρ11 < 0, which is always satisfied because ofµp < µs . Condition (ii) is equivalent
to

σ

θ1
− σ

θ2
<

1

2

√
(µs − µp + ρ11)2 + 4k11ρ11 − 1

2
(µs − µp + ρ11). (3.9)

Now, let η = (x, y, p, q) be the strictly positive eigenvector associated with the
eigenvalueλA2. Expanding (A2 − λI )η = 0, where I is the identity matrix, we
have (

µs + ρ21 + σ

θ2
+ λA2

)
x = k12p + k21q,(

µs + ρ12 + σ

θ2
+ λA2

)
y = k12p + k21q,
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µp + σ

θ1
+ λA2

)
p = ρ12y,(

µp + σ

θ2
+ λA2

)
q = ρ21x .

Therefore,λA2 + µp + σ
θi

> 0, for i = 1, 2, and hence condition (iii) implies condition
(ii). Continuing,if we assume thatρ12 = ρ21 = ρ (i.e., the interstrain pair-formation rate
is independent of the strain to which the male belongs), then from the first two equations
we havex = y. Therefore, it follows that

λA2 + µs + ρ + σ

θ2
= k12ρ

λA2 + µp + σ
θ1

+ k21ρ

λA2 + µp + σ
θ2

. (3.10)

Let

f (z) = z + µs + ρ + σ

θ2
− k12ρ

z + µp + σ
θ1

− k21ρ

z + µp + σ
θ2

.

Then f (z) is strictly increasing for all positive parameters, andf (λA2) = 0. Notethat

λp1 + µs + ρ11 + σ

θ1
= k11ρ11

λp1 + µp + σ
θ1

. (3.11)

If there holds

−ρ − σ

θ2
+ k12ρ

λp1 + µp + σ
θ1

+ k21ρ

λp1 + µp + σ
θ2

< −ρ11 − σ

θ1
+ k11ρ11

λp1 + µp + σ
θ1

, (3.12)

then

f (λp1) > λp1 + µs + ρ11 + σ

θ1
− k11ρ11

λp1 + µp + σ
θ1

= 0 = f (λA2),

and hence, the monotonicity off (z) implies thatλp1 > λA2 in the case ofλp1 + µp

+ σ
θ2

> 0.Similarly, if the inequality (3.12) is reversed, we haveλp1 < λA2. Taken together,
we have the following stability conditions for the persistent solution when only Strain 1 is
present.

Theorem 3.1. E1eλp1t is trajectorally stable if λp1 > λA2 . In the case of ρ12 = ρ21 = ρ,
it is stable if there hold inequalities (3.9) and

σ

θ1
− σ

θ2
+ ρ11 − ρ <

k11ρ11 − k12ρ

λp1 + µp + σ
θ1

− k21ρ

λp1 + µp + σ
θ2

. (3.13)

It is unstable in the case of either reversed inequality (3.9) or λp1 < λA2 . In the case
of ρ12 = ρ21 = ρ, if inequality (3.9) still holds, reversed inequality (3.13) can lead to
instability of E1eλp1t .

For reasonable parameter values, including those we used in our numerical studies (see
Section 4), the condition (3.9) is likely to be satisfied when the condition (3.13) is satisfied.
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This allows us to draw the following biological conclusion fromTheorem 3.1: Strain 1can
exclude Strain 2 from the population if its growth rateλp1 exceeds the eigenvalueλA2.

In order to study the persistent solution when only Strain 2 exists,E2eλp2 t , we consider
the Jacobian of system (3.7) under the following rearrangement of the variables:(

m1, p12, p21, f1,
m2 + f2

2
, p22,

m2 − f2
2

)
.

One can verify that the Jacobian is

Ĵ2 =




B1 ∗ 0 0
0 B2 0 0
∗ ∗ B3 0
∗ ∗ ∗ B4


 ,

where

B1 =




−µs − σ

θ1
− ρ12 k12 k21 0

ρ12 −µp − σ

θ1
0 0

0 0 −µp − σ

θ2
ρ21

0 k12 k21 −µs − σ

θ1
− ρ21




,

B3 =




−µs − σ

θ2
− ρ22 k22

ρ22 −µp − σ

θ2


 ,

B2 = −µp − σ

θ1
, B4 = −µs − σ

θ2
.

Therefore,E2eλp2t is stable ifλp2 + µs + σ
θ2

> 0, λp2 + µp + σ
θ1

> 0, andλp2 > λB1,
whereλB1 is the dominant eigenvalue ofB1. Note that the first two inequalities always
hold because ofµp < µs andθ1 < θ2. In thecase whereρ12 = ρ21 = ρ, by the same
analysis used for the other equilibrium, we have

λB1 + µs + ρ + σ

θ1
= k12ρ

λB1 + µp + σ
θ1

+ k21ρ

λB1 + µp + σ
θ2

.

Therefore, similar results follow for the persistent solution when Strain 2 excludes
Strain 1.

Theorem 3.2. E2eλp2 t is trajectorally stable if λp2 > λB1. In the case where ρ12 = ρ21 =
ρ, it is stable if

σ

θ1
− σ

θ2
+ ρ − ρ22 >

k12ρ

λp2 + µp + σ
θ1

+ k21ρ − k22ρ22

λp2 + µp + σ
θ2

. (3.14)

Again, this persistent solution is stable, and Strain 2 can exclude Strain 1 from the
population if the growth rateλp2 exceeds the eigenvalueλB1.
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If drug resistance had no cost to parasites, then all parasites would be expected to be
made up of only resistant parasites. Since not all parasites are resistant, it is expected that
drug-resistant parasites might pay energetic costs that result in lower reproductive rates,
or other adverse effects. It would then follow that natural parasite populations in areas
where no treatment program exists would maintain very little or no resistance. Thus, it is
interesting to consider the situation in which the majority of parasites are resistance free
and a small number of individuals that are resistant (either due to a novel mutation or
migration from other areas) enter the population. Will the mutant strain, made up of these
novel resistant individuals, invade and persist in the population (regardless of whether or
not the sensitive strain becomes extinct)?

Let θ1 = 1, θ2 > 1. That is, Strain 1 parasites arefully susceptible and Strain 2
parasites are partially drug resistant. Then, the conditions under which Strain 2 can survive
in the population are those under which the persistent solution for Strain 1,E1eλp1 t , is
trajectorally unstable. That is, the instability conditions forE1eλp1t (seeTheorem 3.1)
provide invasion criteria, and can be used to determine the impact of drug treatment on a
mixed population of parasites.

Let us examine the inequalities (3.13) and (3.14) in Theorems 3.1and3.2, respectively,
in a special case. Assume that the probability of forming a pair between female and male
parasites of any two strains is the same, i.e.,ρ11 = ρ12 = ρ21 = ρ22 = ρ. Assume also
that there is no reduction in reproduction for the resistant strain, i.e.,k11 = k22 = b/2 and
k12 = k21 = b/4 whereb is the background per capita birth rate of pairs with the sensitive
strain. Under these assumptions, the inequalities (3.13) and (3.14) become:

σ − σ

θ2
<

1/4bρ

λp1 + µp + σ
− 1/4bρ

λp1 + µp + σ
θ2

, (3.15)

and

σ − σ

θ2
>

1/4bρ

λp2 + µp + σ
− 1/4bρ

λp2 + µp + σ
θ2

, (3.16)

respectively. Sinceθ2 > 1, the inequality (3.15) will never hold as itsleft hand side is
positive and its right hand side is negative. This implies thatE1eλp1t is alwaysunstable.
E2eλp2t is always stable as its left hand side is positive and its right hand side is negative.
Therefore, we have verified the biologically intuitive result:

If there is no cost for drug resistance, then the resistant strain will always invade a
population subject to drug treatment, and exclude the sensitive strain.

However, as mentioned above, there is almost certainly some cost that parasites must
pay in order to maintain drug resistance, and inSection 4, below, we discuss in more detail
one specific form of cost (e.g., reduced reproductive rate) and the effect of such cost. For
now, we consider the general case of some reduction in the birth rate for pairs of parasites
from the resistant strain. If we take the same assumptions on coefficients as in the above
special case, except fork22 = k11h(θ2) = bh(θ2)/2, whereh(θ2) ∈ (0, 1), then it is easy
to see from the inequalities (3.13) and (3.14) that both E1eλp1t and E2eλp2 t are unstable
for all sufficiently smallh(θ2). In thiscase, coexistence of the two strains is expected, due
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to the cost paid by the resistant Strain 2. Next, we consider the possibility of coexistence
of the two strains in the general setting.

Consider the functionsmi = m̄ieλt , fi = f̄i eλt , pi j = p̄i j eλt , wherem̄i , f̄i , p̄i j > 0,
i, j = 1, 2. These functions are the components of the exponential solution of system (3.7)
if andonly if

k11 p̄11 + k12 p̄12 + k21 p̄21 −
(

λ + µs + σ

θ1

)
m̄1

− (ϕ11(m̄, f̄ ) + ϕ12(m̄, f̄ )) = 0,

k11 p̄11 + k12 p̄12 + k21 p̄21 −
(

λ + µs + σ

θ1

)
f̄1

− (ϕ11(m̄, f̄ ) + ϕ21(m̄, f̄ )) = 0,

k12 p̄12 + k21 p̄21 + k22 p̄22 −
(

λ + µs + σ

θ2

)
m̄2

− (ϕ21(m̄, f̄ ) + ϕ22(m̄, f̄ )) = 0,

k12 p̄12 + k21 p̄21 + k22 p̄22 −
(

λ + µs + σ

θ2

)
f̄2

− (ϕ12(m̄, f̄ ) + ϕ22(m̄, f̄ )) = 0,

ϕ11(m̄, f̄ ) −
(

λ + µp + σ

θ1

)
p̄11 = 0,

ϕ12(m̄, f̄ ) −
(

λ + µp + σ

θ1

)
p̄12 = 0,

ϕ21(m̄, f̄ ) −
(

λ + µp + σ

θ2

)
p̄21 = 0,

ϕ22(m̄, f̄ ) −
(

λ + µp + σ

θ2

)
p̄22 = 0,

(3.17)

wherem̄ = (m̄1, m̄2), and f̄ = ( f̄1, f̄2).
Again takingρ12 = ρ21 = ρ, we try to find strictly positive solutions of system (3.17)

with m̄i = f̄i . Substituting the last four equations into the first four equations in (3.17), we
have

λ + µs + σ

θ1
+ ρ11m̄1 + ρm̄2

m̄1 + m̄2
= k11ρ11m̄1 + k12ρm̄2

(λ + µp + σ
θ1

)(m̄1 + m̄2)

+ k21ρm̄2

(λ + µp + σ
θ2

)(m̄1 + m̄2)
,

λ + µs + σ

θ2
+ ρ22m̄2 + ρm̄1

m̄1 + m̄2
= k21ρm̄1 + k22ρ22m̄2

(λ + µp + σ
θ2

)(m̄1 + m̄2)

+ k12ρm̄1

(λ + µp + σ
θ1

)(m̄1 + m̄2)
.



1220 D. Xu et al. / Bulletin of Mathematical Biology 67 (2005) 1207–1226

As in Castillo-Chavez et al. (1996), if we defineT = m̄2
m̄1+m̄2

, then it follows that

λ + µs + σ

θ1
+ ρ11(1 − T ) + ρT − k11ρ11(1 − T ) + k12ρT

λ + µp + σ
θ1

− k21ρT

λ + µp + σ
θ2

= 0,

λ + µs + σ

θ2
+ ρ22T + ρ(1 − T ) − k21ρ(1 − T ) + k22ρ22T

λ + µp + σ
θ2

− k12ρ(1 − T )

λ + µp + σ
θ1

= 0.

(3.18)

Lemma 3.1. In the case of ρ12 = ρ21 = ρ, system (3.17) admits a strictly positive solution
with m̄i = f̄i , i = 1, 2, if and only if there exist a real number λ and a number T ∈ (0, 1)

satisfying Eqs. (3.18).

If the boundary exponential solutionsEie
λpi t , for i = 1, 2, lose their stability due to

the inequalities (3.13) and (3.14), then we have the existence ofstrictly positive persistent
solutions which allow the two strains to coexist.

Theorem 3.3. In the case where ρ12 = ρ21 = ρ, if Eie
λpi t , for i = 1, 2, are unstable

because of the reversed inequalities (3.13) and (3.14), then system (3.7) admits at least
one persistent solution for two strains coexisting.

Proof. Denote the left hand sides of equations in (3.18) by G1(λ, T ) and G2(λ, T ),
respectively. Letα = −µp − min{ σ

θ1
, σ

θ2
}. A direct computation shows that∂Gi

∂λ
(λ, T ) > 0

for all T ∈ [0, 1] andλ ∈ (α,+∞), and that for eachT ∈ (0, 1), limλ→α+ Gi (λ, T ) =
−∞, limλ→+∞ Gi (λ, T ) = ∞. Therefore, for eachT ∈ (0, 1), there exists a unique
λi (T ) suchthat Gi (λi (T ), T ) = 0. Furthermore, by the implicit function theorem,λi (T )

are continuous functions ofT on(0, 1). Note that theequalities (3.10) and (3.11) show that
G2(λA2, 0) = 0 andG1(λp1, 0) = 0. Thus, together with the reversed inequalities (3.13)
and (3.14), the implicit function theorem implies that

λ2(0) = λA2 > λp1 = λ1(0).

The same argument leads toλ1(1) = λB1 > λ2(1) = λp2. By thecontinuity ofλi (T ) on
T , there exists at least oneT ∗ ∈ (0, 1) suchthatλ1(T ∗) = λ2(T ∗). Hence,Lemma 3.1
completes the proof.

4. Impact of treatment on coexistence of strains

In this section, we discuss further the impact of drug treatment on drug-resistant
schistosomes, and conduct some numerical simulations to verify and extend our analytic
results. To incorporate the costs that parasites are paying for the drug resistance, we
assume that the birth rates of pairs that involve Strain 2 parasites are decreasing functions
of θ2. Thus, parasite reproductive capacity and drug resistance are inversely related. Let
k12 = k21 = k11/(2θ2), k22 = k11/(3θ2). With regard to the mating possibilities between
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Fig. 1. The plot of functionG(σ, θ2). The invasion condition for Strain 2 parasites isG(σ, θ2) < 0.

the strains, we assume thatρ11 = ρ22 = 3ρ/2, andρ12 = ρ21 = ρ, which taken together
imply that individuals of the same strain are more likely to encounter one another and
form a mated pair than individuals of different strains. We also retain the assumption that
µs = 10µp, reflecting the diminished survivalexperienced by unmated worms.

We then, rewrite (3.13) and (3.14) as F1(σ, θ2) > 0 andF2(σ, θ2) > 0, respectively,
where

F1(σ, θ2) = σ

θ2
− σ − 1

2
ρ + (1 − 1

2θ2
)k11ρ

λp1 + µp + σ
− k11ρ

2θ2(λp1 + µp + σ
θ2

)
,

F2(σ, θ2) = σ − σ

θ2
− 1

2
ρ − ( 1

2θ2
− 1

3θ2
)k11ρ

λp2 + µp + σ
θ2

− k11ρ

2θ2(λp2 + µp + σ)
.

Let f (σ, θ2) = λp1 + µp + σ
θ2

, G(σ, θ2) = min{F1(σ, θ2), f (σ, θ2)}. Then the invasion
condition for Strain 2 parasites isG(σ, θ2) < 0 (Fig. 1). According toTheorem 3.3, in the
case off (σ, θ2) > 0, the coexistence domain is

Ω = {(σ, θ2) : Fi (σ, θ2) < 0, i = 1, 2},
which is shown inFig. 2. Li represents the curve on whichFi (σ, θ2) = 0, while l represents
the curve f (σ, θ2) = 0. Below the curveL1 is the domain where the Strain 1 persistent
solutionE1eλp1t is stable, and the resistant Strain 2 can not invade the population. Above

the curveL2, E
λp2 t
2 is stable, and the resistant Strain 2 will take over the population,

excluding the susceptible Strain 1. The parameter values used for the figures are taken
ask11 = 0.5, µs = 0.2, ρ = 0.467.

Wenumerically calculated the solutions of the proportion system corresponding to (3.7).
In Fig. 3, all parameters have the same values as inFigs. 1and2, and the resistance level
of Strain 2 is set atθ2 = 2.5. For this level of resistance,F1(σ, 2.5) = 0 atσ = 0.359,
andF2(σ, 2.5) = 0 atσ = 0.583. Thus, inFig. 2, (σ, θ2) = (0.32, 2.5) represents a point
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Fig. 2. The plots of curvesFi (σ, θ2) = 0 and f (σ, θ2) = 0. Below the curveL1 is the parameter domain where
the Strain 1 persistent solution is stable, while the Strain 2 persistent solution is stable above the curveL2. Ω is
the coexistence domain.

Fig. 3. The proportions of pairsp11 andp22 in the whole population vs. timet , plotted for three different treatment
rates. The parameter values are the same as forFigs. 1and2. For this set of values,F1(σ, 2.5) = 0 whenσ = 0.36
andF2(σ, 2.5) = 0 whenσ = 0.583.

slightly below the curveL1, andhence, the Strain 1 persistent solution is stable (Fig. 3, left
column). The point(σ, θ2) = (0.38, 2.5) lies slightly above the curveL1 and belongs to the
domainΩ , and so the Strain 1 persistent solution is unstable, and there exists a persistent
solution for coexistence of the two strains; in this case, the coexistence is stable (Fig. 3,
middle column). For the point(σ, θ2) = (0.6, 2.5), which is slightly above the curveL2,
the Strain 2 persistent solution is stable (Fig. 3, right column).
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Fig. 4. The bifurcation diagrams, regardingσ as the bifurcation parameter, for the proportions of pairsp11 and
p22, where all parameters are the same except forθ2 = 2.5.

In order to visualize the bifurcation described inFig. 2 more clearly, we used Auto
to plot the proportions of the pairsp11 and p22 in the whole population (Fig. 4), again
usingσ as the bifurcation parameter and takingθ2 = 2.5. The solid lines imply that the
corresponding persistent solution is trajectorally stable while the dashed lines represent the
instability of the corresponding persistent solution. Forσ < 0.359, the Strain 1 persistent
solution is stable; forσ ∈ (0.36, 0.583), thepersistent solution for coexistence is stable;
and forσ > 0.584, the Strain 2 persistent solution becomes stable. Therefore, as long as
σ > 0.36, Strain 2 will invade and persist in the population.
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Fig. 5. Simulations of proportions of pairs for various values of the treatment rateσ and three parasite strains:
θ1 = 1 (susceptible strain),θ2 = 2.5 andθ3 = 3.

From these computations, we have the following observations:

(1) Higher treatment rates can allow parasites with lower drug resistance to invade (see
Fig. 2).

(2) Higher treatment rate can allow for coexistence between susceptible and resistant
parasite strains, though the range of “allowable” resistance levels becomes more
narrow, and can resultin the elimination of both susceptible and highly resistant
parasite strains from the population (Fig. 2).

(3) There existsa critical valueσc such that for σ < σc, thedrug-resistant strain can not
invade and persist in the population (seeFigs. 2through4), whereσc = −1

2ρ11 +
k11ρ11

α
> 0, whereα = −1

2(µs − µp + ρ11) + 1
2

√
(µs − µp + ρ11)2 + 4k11ρ11.

Briefly, we can also consider the behavior of the model for multiple strains (>2). For
three strains — one susceptible strain(θ1 = 1) and two drug-resistant strains(θ3 > θ2 > 1)

— the simulations of the proportions of “same strain” pairs in the whole population are
shown inFig. 5. Costs are of the form used in the two-strain model above except for
k13 = k31 = k11/(2θ3), k23 = k32 = k11/(3.5θ3), k33 = k11/(4θ3). Parameter values are
as above, except for drug resistance levels:θ2 = 2.5 andθ3 = 3. Simulation results show
that for a treatment rateσ < 0.345, only the sensitive Strain 1 persists; and forσ > 0.346,
drug resistant strains can begin to invade the population. InFig. 5, the three strainscoexist
in the case ofσ = 0.362 (middle column), and the sensitive strain becomes extinct and
only the drug resistant strains coexist forσ > 0.39 (right column).
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5. Discussion

The control of schistosomiasis continues to be difficult due, at least in part, to the
complexity of the parasites themselves. The use of multiple hosts, the presence of separate
sexes, widespread genetic diversity, and other factors all contribute to this complexity;
together, they are likely to have a significant impact on attempts to control the disease
through chemotherapeutic treatment of human patients. These factors also complicate
attempts to realistically model the transmission of schistosome parasites. The approach
that we haveused to date has focused on analyzing how these factors in isolation affect
the interplay between drug treatment and parasite genetic diversity (i.e., the number of
different parasite strains in the population). Such analyses provide estimates for the various
model parameters that are needed to yield biologically intuitive results, as well as drive
hypothesis testing in laboratory and field-based studies of these parasites. For example,
the results presented above suggest that it will be important to determine the extent
of protection that a male schistosome can impart to his mate based on his genetically
determined drug resistance.

In the current model, such protection allows a drug resistant male to shelter a
more susceptible (but also more fertile) female, thereby leaving more offspring that
carry his genes in the next generation.The male worm benefits by mating with a
more fecund female from the susceptiblestrain, and the female worm benefits by
out-living (and out-producing) her peers that were mated to, and not protected by,
males from the susceptible strain. While this feature of the model is based on our
understanding of how drugs like Praziquantel kill schistosomes, further experimentation
is needed to determine if protection occurs to the extent described in our model, if
at all.

Other areas of biological research are also highlighted by our current model as being
important for further refinement of the model, and to improve our understanding of
schistosome population dynamics and the control of schistosomiasis. Further studies of
inter-strain matings are needed that investigate factors such as mate choice by male and
female worms, and the sex ratio of the offspring produced. The need for further genetic
studies of natural schistosome populations is also indicated. Such studies will provide
critical insight into the range of genetic polymorphism present in these populations on
different geographic scales, and the likely impact of gene flow and selection imposed by
control efforts on the spread of drug resistance.

In summary, the current model describes how the interaction between schistosome
strains with a range of susceptibility to drug treatments can lead to a stable genetic
polymorphism in the population. It also predicts parameters and features that would be
required to allow drug resistant worms to invade, become established within, and perhaps
even replace a formerly susceptible population of worms. The results of the deterministic
model for two strains have also been extended through numerical studies and shown to
be qualitatively similar for three strains. Further refinement of the model might attempt
to incorporate further elements of complexity in the schistosomiasis system, such as
the interactions among the larval stages of various strains within the snail intermediate
hosts.
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