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Foreword

In the latter half of the twentieth century, research directed toward obtaining a mechanistic
understanding of the causes and effects of plant anti-herbivore defense became the focus of
intense research in ecology and evolution. Part of this research effort has been the develop-
ment of a diverse set of mathematical models of these mechanisms. The intent of this book
is to introduce and summarize the current state of these modeling efforts. Professor Feng
and Dr. DeAngelis have admirably achieved this.

This book begins with a sound introduction to basic mathematical theories of general
predator-prey interactions such as the Rosenzweig–MacArthur equations. This introduc-
tion is followed by consideration of how these equations have been used to mathematically
analyze interactions between plants and their herbivore predators. Then more recent math-
ematical models of plant herbivore interactions, such as linear programming models, are
discussed, and in this introduction the notion of plant chemical anti-herbivore defense is
introduced. Following the introduction into mathematical models of the idea that plant
chemical defenses could constrain herbivore attack of plants, a more recent set of models is
introduced. These are based upon the effects that plant toxins could have on the functional
response of herbivores to plant biomass. This toxin-determined functional response model
(the TDFRM), which has been successfully tested at least once in a long-term ecological
research project, provides a potentially very powerful theoretical basis for plant chemical
defense theory, especially as it applies to generalist herbivores such as browsing mammals.

The TDFRM is founded upon two observations that I made in Alaska over forty years
ago. The first observation was on winter browsing mammals such as the snowshoe hare
(Lepus americanus), the moose (Alces alces gigas), and ptarmigan (Lagopus spp.). These
fed preferentially upon woody plant species, the ontogenetic stages (juvenile versus mature)
of these species, and parts of the twigs of ontogenetic stages that were not rich in lipid-
soluble substances that were potentially toxic. They tended to avoid eating much of the
biomass of species, ontogenetic stages, and twig parts that were comparatively rich in these
potential toxins. This observation suggested that the browsing mammals that I was familiar
with were attempting to minimize toxin intake. The second observation was that, when a
generally little-browsed species that was rich in lipid-soluble toxins, such as the Siberian
green alder (Alnus viridis subsp. fruitcosa), occurred in low biomass in a forest patch,
snowshoe hares browsed it to an extraordinarily high degree. I could come up with only
one explanation for this observation: Even though an individual snowshoe hare could eat
only a few grams of the twig biomass of green alder, if the biomass of green alder was a
relatively small fraction of the forest vegetation and multiple hares each fed on the few
green alder plants available to them, the combined effect of numerous hares would result
in severe browsing of the few green alders. But, if the biomass of green alder was greater
and the biomass of hares was constant, then, as generally observed, green alder would be
lightly browsed. This observation again suggested that toxins, in this case the stilbenes
pinosylvin and pinosylvin mono-methyl ether of green alder, were regulating the rate at
which the herbivores, in this case snowshoe hares, were eating the biomass of their prey. If
this was the case, then the rate of intake of green alder biomass by snowshoe hares could
be modeled as some sort of Michaelis–Menten function in which detoxification processes

xiii



xiv Foreword

were controlling the herbivore’s rate of predation on its plant prey. Subsequent experiments
using snowshoe hares and a toxic defense of the juvenile stage of the Alaska paper birch
(Betula neoalaskana), the dammarane triterpene papyriferic acid, strongly supported this
hypothesis.

With this information in hand, I was fortunate enough to meet with Professor Feng and
to mention this possibility to her. Professor Feng immediately suggested that a good way
to mathematically describe what I explained to her was to add a term to C. S. Holling’s
functional response predator-prey model that enabled toxicity to regulate the intake of plant
biomass by a generalist herbivore. This was the beginning of the TDFRM theory developed
in later chapters of this book. Subsequent to the building of the initial TDFRM, the effects
of predators of herbivores such as wolves in a tritrophic system were developed, and the
results of this extension now appear to accurately predict the dynamics of a woody plant-
moose-wolf system in interior Alaska. Additionally, the notion of herbivore evasion of their
predators has been coupled to the initial TDFRM, and this coupling could well provide a
powerful tool in analyzing the “landscape of fear” hypothesis that predicts that, at the level
of the landscape, toxin-determined foraging and the fear of predation interact to determine
the foraging behavior of herbivores.

So, to summarize, this book begins with an excellent introduction of predator-prey the-
ory as it applies to plant-herbivore interactions and ends with what now appears to be
a powerful mathematical model of how plant toxins affect the dynamics of these interac-
tions at levels extending from individual plant parts and individual herbivores to tritrophic
interactions across entire landscapes.

John P. Bryant

Cora, Wyoming (Institute of Arctic Biology, University of Alaska Fairbanks, retired)



Preface

This book arose out of a long collaboration between the authors on attempting to use
mathematical modeling to describe and understand the effects that plant defenses have
on plant-herbivore dynamics. The core of the book involves a toxin-determined functional
response model (the TDFRM) that was formulated with specific reference to mammalian
browsers in the boreal forest confronted with plant communities in which species could
have varying degrees of defense. This model and its elaborations itself spans a great range
of dynamic behaviors. However, we felt it was not enough to constitute a complete book.
Therefore, we have expanded the book both to include other plant-herbivore work we have
been involved with and to provide an even broader context of modeling plant-herbivore
interactions.

The book is divided into two halves, one a mathematical overview and the other selected
applications. We begin in Chapter 1 with a very general conceptual overview of the modeling
of plant growth and resource allocation, as well as of herbivore foraging, and then briefly
review the resultant plant-herbivore interactions. Chapter 2 derives the basic Holling type
2 functional response and some of the general properties of predator-prey interactions with
the functional response. In Chapter 3, well-known ecological models are used to illustrate
five key concepts in herbivore-plant interactions. The TDFRM is described in detail in
Chapter 4, including extension to spatial situations.

The applied half of the book begins with models related to a plant’s dealing with her-
bivory, both through allocation of energy to inducible defenses and its ability to compensate
for various levels of herbivory (Chapter 5). In Chapter 6, the emphasis is on herbivores’ for-
aging strategies in response to the problems posted by low plant quality (low nutrient
concentration) toxins, and predators. The use of the TDFRM to describe effects of toxicity
at the food chain and ecosystem levels is covered in Chapter 7. In Chapter 8, we try to
provide a broader conceptual view of how the prevalence of fire is related to the strong
presence of plant toxicity in the boreal biome and how this shapes species distributions.
Chapter 9 is a primer on the use of Mathematica in simulating the models described here.
Particularly, we demonstrate the feature that allows the simultaneous visualization of model
outcomes as parameter values are varying, which is especially useful for decision making in
management.

This book is intended for graduate students and others who have some background in
nonlinear differential equations, but we hope that the material in Chapters 2 and 3 is a
relatively easy introduction that will make the rest of the book accessible to many readers.
The book is not intended to be a complete textbook, as the topics by no means cover all
the vast field of modeling of plant-herbivore interactions but to some extent reflect both
the authors’ primary experience with mammal browsers in the boreal forest. Also, we have
generally avoided large, complex simulation models in favor of mathematical models of
moderate complexity. But many of the key ways that nonlinear differential equations are
used to describe plant-herbivore interactions are represented here.

We are indebted to our many collaborators on earlier works and publications, some of
which are represented here. The TDFRM initially was developed as a collaboration between
John Bryant, Zhilan Feng, and Robert Swihart, motivated by John’s conjectures based on

xv



xvi Preface

field observations and experiences in real ecological systems. This collaboration was later
joined by Donald DeAngelis and Rongsong Liu. An NSF grant that supported this project
(DMS-0920828) helped to establish the collaboration with a team from the University of
Alaska in Fairbanks, including F. Stuart Chapin III, Tim Glaser, Knut Kielland, Mark
Olson, and Jennifer Schmidt, and to provide support for students at Purdue University
including Jorge Alfaro-Murillo, Matthew Barga, Muhammad Hanis B. Ahamad Tamrin,
and Yiqiang Zheng. The inducible defense modeling described in Chapter 5 was the result
of a collaboration of DeAngelis and a team of empiricists and modelers led by Matthijs Vos.
The snowshoe hare dynamics modeling was done with Rongsong Liu, Stephen Gourley,
and John Bryant. A model of plant compensation was the work of DeAngelis with Shu Ju.
Some of the results for the TDFRM described in Chapters 4 and 7 involved collaborations
of DeAngelis and Feng with Carlos Castillo-Chavez, Xiuli Cen, Wenzhang Huang, Ya Li,
Zhipeng Qiu, and Yulin Zhao.




