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To treat or not to treat: the case of tuberculosis
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Abstract. Incomplete treatment of patients with infectious tuberculosis (TB)
may not only lead to relapse but also to the development of antibiotic
resistant TB — one of the most serious health problems facing society today. In
this article, we formulate one-strain and two-strain TB models to determine
possible mechanisms that may allow for the survival and spread of naturally
resistant strains of TB as well as antibiotic-generated resistant strains of TB.
Analysis of our models shows that non-antibiotic co-existence is possible but
rare for naturally resistant strains while co-existence is almost the rule for
strains that result from the lack of compliance with antibiotic treatment by TB
infected individuals.
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Introduction

Infectious diseases like measles, influenza, chicken pox, and rubeola have
several features in common; for example, they cause recurrent epidemic
outbreaks and transmission rates depend strongly on age-dependent contact
rates. The etiological agents of these communicable diseases are viruses from
different families but all capable of generating similar epidemiological re-
sponses at the level of the individual (symptoms). Common responses include
relatively short latent periods, followed by also relatively short infectious
periods and permanent immunity after recovery. It is not completely clear
when individuals become infectious (that is, capable of transmitting the
disease) as some may become infectious while symptomless. Effective vaccines
have been developed for these communicable diseases (to some degree only
influenza remains the major challenge, as the family of viruses responsible for
the ‘‘flu’’ experiences continuous minor and major genetic changes). A dense



and mature literature associated with the use of mathematical models to study
communicable diseases such as measles, influenza, rubeola, and chicken pox is
already in place (see Hethcote 1976; Dietz 1979; Hethcote, Stech, and van den
Driescsche 1981; Anderson 1982; Anderson and May 1982, 1991; Dietz and
Schenzle 1985; Dietz 1985; Anderson and May 1983; Schenzle 1984; Hethcote
and Van Ark 1987; Castillo-Chavez et al. 1988, 1989; Feng 1994; Feng and
Thieme 1995). The situation of tuberculosis, despite its fundamental role in the
development of bacteriology and modern epidemiology, is paradoxically
different.

Tuberculosis (TB) is a bacterial disease with about one third of the world
human population as its reservoir (Bloom 1994; Miller 1993). It is one of the
oldest recorded human diseases (it seems clear that TB has afflicted animal
populations before the origin of the human species). Evidence that supports
human cases of TB as well as its role in human mortality goes back for
centuries (petrified bones 8000 B.C., Hindu texts from 2000 B.C. and mummi-
fied reliquiae from Egypt and pre-Columbian America including an Incan
child 700 A.D.). TB was so devasting that it became the motivating force in the
development of the fields of bacteriology, modern epidemiology, and public
health. TB or TB associated symptoms appear to have been the source of
inspiration for Frascatorius’ theory of contagion (18th century). However,
a search for a cause without a clear understanding of the sources and nature of
disease, naturally led to what Ayvazain (Ayvazain 1993) calls ‘‘centuries of
nonscientific chaos.’’

The situation changed when Villeman (19th century) used animal models
to establish TB as a specific infection due to an inoculable agent (Reichman
and Hershfield 1993). On March 29, 1882, Robert Koch presented to the
Berlin Physiologic Society the results of his research on the causes of disease.
Koch’s fundamental research identified the mechanisms for disease transmis-
sion and the agents responsible for some diseases, including the etiological
agent of TB (Reichman and Harshfield 1993). Koch’s research opened new
doors and eventually led to the discovery by various investigators of other
bacteriological disease agents including the bacilli for typhoid, glanders, and
diphtheria.

Despite its sociological and historical importance, the study of the spread
of TB using statistical and mathematical models has not received enough
attention. In fact we have observed only an extremely limited use of math-
ematical models in the study of the transmission dynamics of TB in human
populations (personal communication with Blower during the meeting of
Mathematical Modeling of Tuberculosis in 1995). Tuberculosis is caused by
Mycobacterium tuberculosis. The disease is most commonly transmitted from
a person suffering from infectious (active) tuberculosis to other persons by
infected droplets created when the person with active TB coughs or sneezes.
Among generally healthy persons, infection with TB is highly likely to be
asymptomatic. Data from a variety of sources suggest that the life time risk of
developing clinically evident TB after being infected is approximately
10%, with 90% likelihood of the infection remaining latent (Hopewell 1994).
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Individuals who have a latent TB infection are not clinically ill nor capable of
transmitting TB (Miller 1993). At greater ages, the immunity of persons who
have been previously infected may wane, and they may be then at risk of
developing active TB as a consequence of either exogenous reinfection (i.e.,
acquiring a new infection from another infectious individual) or endogenous
reactivation of latent bacilli (i.e., re-activation of a pre-existing dormant
infection) (Styblo 1991; Smith 1994).

The epidemiology of TB disease is not simple. For the purpose of this
article we only provide a superficial view which we believe is sufficient for
a rough understanding of the dynamics of TB transmission at the population
level. General sources of information on TB dynamics suggest that TB is hard
to transmit. Transmission (it is said) occurs only when there is prolonged close
contact between a susceptible person and a person who has an active case of
TB. Nonetheless, under the right conditions a single person with active TB can
infect many other people (Salyers 1994). For example, it seems that about 13
persons were infected with TB per year by one source of infection in a Nether-
lands community in the period 1921—1938 (Styblo 1991). However, it is not
clear that TB is in fact hard to transmit. Recent documented cases of TB
transmission during lengthy plane trips (Kolata 1995; MMWR 1995) seem to
indicate that transmission may be highly facilitated in a modern society. It is
not at all unlikely that the risk of infection may be quite high in public places
where there are actively infected TB individuals present. Recently mathemat-
ical models have been developed to estimate the probability of transmission of
TB in close public environments. These models support the view that the
acquisition of TB infection may not be as difficult as previously thought
(Edward Nardell 1995). A naive look at the fact that one third of the world
population is actually infected suggests that either the tubercle bacillus is easy
to acquire, or that in many parts of the world exposure and re-exposure to TB
is extremely persistent, or both. Current epidemiological studies strongly
support the claim that exposed individuals are unable to transmit the tubercle
bacillus and that only individuals with ‘‘active’’ TB are capable of spreading
this bacteria. Therefore, exposed individuals provide a tremendously large
reservoir for the tubercle bacillus but as latent carriers of this bacillus they are
uncapable of transmission. What are the epidemiological consequences of this
situation in a world where populations become closer and closer? Here lies
one of the central issues associated with the study of TB dynamics.

Exposed TB individuals may remain in this latent stage for variable
periods of time (in fact, many die without ever developing active TB). Appar-
ently, the longer that we carry this bacteria the less likely we are to develop
active TB unless our immune system becomes seriously compromised by
other diseases. Consequently, age of infection as well as chronological age are
important factors in disease progression. How important are these factors as
predictors or measures of spread at the population level? Because it has been
estimated that 10% of those infected with TB actually develop active TB
during their life time then the 10% rule has become a useful measure for rough
and immediate public health measures. This rule is useful but at the same time
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it is also superficial. It is well known that TB progression is not uniform but in
fact is closely linked to various other factors such as nutritional status and/or
access to decent medical care and living conditions (Bloom 1994). The good
news is that latent and active TB can be treated with antibiotics. The bad news
is that its treatment has side effects (sometimes quite serious) and takes a long
time. Carriers of the tubercle bacillus who have not developed TB disease can
be treated with a single drug INH ; unfortunately, it must be taken religiously
for 6—9 months. Treatment for those with active TB requires the simultaneous
use of three drugs for a period of at least 12 months. Lack of compliance with
these drug treatments (a very serious problem) not only may lead to a relapse
but to the development of antibiotic resistant TB — one of the most serious
public health problems facing society today.

TB remains the leading cause of death by an infectious disease in the
world. TB is also the most prevalent infection in the world (Bloom 1994;
Miller 1993). As stated before, a third of the world’s population is a carrier of
tuberculosis and is at risk for developing active TB. It is estimated that there
are between 8 and 10 million new cases per year, of which about 3 million
people die (Kochi 1991). In the United States, the estimated total number of
TB infections lies between 10—15 million persons (Miller 1993). However,
dramatic increases in the incidence of TB (new cases per year) have occurred
within the United States over the past few years. From 1985 to 1991, the
number of reported cases of TB has increased 18% with 26,283 cases reported
in 1991 (Kent 1993). In 1991, a large California prison with 5,421 inmates and
1,500 staff members had 18 cases of active TB (Salyers 1994). Against the
backdrop of an increasing incidence of TB in the United States there is
a second problem, namely that of multi-drug resistant TB (MDR-TB). Resis-
tant-TB develops when the treatment of a TB patient is inadequate or
incomplete, thereby allowing some of the stronger/resistant bacilli to survive
and prosper. Outbreaks of MDR-TB in the United States have begun to
alarm doctors and public health officials. Over 80% of the patients in these
outbreaks have died, often within weeks of being diagnosed as having tu-
berculosis. These problems are compounded by economics, as the cost of
treating a patient with MDR-TB can exceed $250,000: nearly 100 times the
cost of treating most other TB cases (Press release WHO/89 Nov. 1994). The
emergence of the HIV epidemic has dramatically increased the risk of
developing clinical TB in infected persons, substantially increasing TB rates
globally (Miller 1993).

A TB vaccine called BCG (Bacillus of Calmette and Guérin) has been
available for many decades. The BCG vaccine is cheap, costing about 10 cents
per dose but its effectiveness in preventing TB is controversial (Salyers 1994).
Results of field trials of the vaccine have differed widely, some indicating
protection rates as high as 70% to 80%, others indicating the vaccine was
completely ineffective in preventing TB (Salyers 1994). Potential problems
associated with the generalized use of the BCG vaccine in some populations
are closely associated to the fact that vaccinated individuals will test positive
for TB. It becomes therefore nearly impossible to be able to detect the
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prevalence of a disease in a population (like the Argentinian population)
where most individuals are vaccinated.

The purposes of this paper are quite specific. We formulate a basic
transmission model to study the dynamics of TB in as simple a setting as
possible. The advantage of this approach is that using this simple setting, we
are able to fully analyze the effects of basic epidemiological factors such as the
latent and infectious periods on the dynamics of TB on a homogeneously
mixing population. This model then becomes our basic structure to begin the
study of the effects of resistant-TB on the same population. The difficulties in
treating these infectious patients and their role in spreading drug-resistant
bacilli to others is incorporated in our model.

This paper is organized as follows: Sect. 1 introduces a ‘‘simple’’ TB model.
We compute its basic reproductive number and study its role on the dynamics
and stability properties of this model. In Sect. 2 we introduce a two-strain TB
model and study its dynamics under two distinct assumptions. First, we
assume that we are only dealing with two competing strains and we find that
co-existence is possible but ‘‘rare’’. Secondly we assume that the second strain
is the result of antibiotic resistance and find that co-existence is common. Our
mathematical results are based on quasi-steady state approximations. The
time scales involved in the process (length of latent period, average life span of
individuals) are not small enough to properly support this assumption. How-
ever, our extensive numerical simulations of the full model support our
analytical conclusions. Our numerical bifurcation analysis of the full model
also support our analysis. Section 3 is devoted to the discussion of numerical
simulations that support or complete our analytical results. Our simulations
involve the construction of bifurcation diagrams that support the results of
Sect. 2. Section 4 details some of our current efforts and extensions including
the incorporation of distributed delays, re-infection, and the effects of age-
dependent contact rates. An appendix collects some of the mathematical details.

1 A simple TB model

In this section we introduce a simple model for the transmission of TB. The
host population is divided into the following epidemiological class or sub-
groups: Susceptibles (S), Latent (¸, infected but not infectious), Infectious (I),
and (effectively) Treated (¹ ) individuals. N denotes the total population.
Using Fig. 1a we formulate the following model for TB:

d

dt
S"K!bcS

I

N
!kS

d

dt
¸"bcS

I

N
!(k#k#r

1
)¸#b@c¹

I

N

d

dt
I"k¸!(k#d )I!r

2
I (1.1)
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Fig. 1a. A diagram for one strain TB disease transmission. S stands for susceptible,
¸ — exposed (latent), I — infectious, ¹ — treated. K is the recruitment rate, k is the per capita
death rate, d is the disease-induced death rate (per capita), r

1
and r

2
denote the treatment

rates for latent and infectious individuals, respectively. Individuals in S and ¹ classes can be
infected only through contacts with infectious individuals

Fig. 1b. A diagram for two-strains TB transmission. ¸
1

and ¸

2
denote individuals exposed

to typical TB and antibiotic resistant TB, respectively. J stands for infectious individuals
with resistant TB. p#q is the proportion of those treated infectious individuals who did not
complete their treatment. The proportion p modifies the rate that departs from the latent
class, and hence qr

2
I gives the rate at which individuals develop resistant-TB because they

did not complete the treatment of active TB. p70, q70 and p#q61. K, k, d, r
1
, r

2
have

the same meanings as in Fig. 1a and d@ is the disease (resistant TB) induced death rate.

d

dt
¹"r

1
¸#r

2
I!b@c¹

I

N
!k¹

N"S#¸#I#¹ .

K is the recruitment rate, b and b@ are the probabilities that susceptible and
treated individuals become infected by one infectious individual per contact
per unit of time, respectively; c is the per-capita contact rate; k is the per-capita
natural death rate; k is the rate at which an individual leaves the latent class by
becoming infectious; d is the per-capita disease induced death rate, and r

1
and

r
2

are per-capita treatment rates. We assumed that an individual may be
infected only through contacts with infectious individuals.
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The basic reproductive number for (1.1) is

R
0
"A

bc

k#d#r
2
B A

k

k#k#r
1
B ,

that is, the basic reproductive number is given by the product bc/(k#r
2
#d),

the average number of susceptibles infected by one infectious individual
during his or her effective infectious period and k/(k#r

1
#k), the fraction of

the population which survives the latent period. ThereforeR
0
gives the number

of secondary infectious cases produced by an infectious individual during his or
her effective infectious period when introduced in a population of susceptibles.

There are two possible equilibria, i.e., the disease-free equilibrium denoted
by E0 and the endemic equilibrium denoted by E* ifR

0
'1 (the expression of

E* is given in Appendix).
System (1.1) is similar to some existing SEIR, SEI or SIRS models with

different assumptions on either immunity or latent periods, or the disease-
induced death rate (see, for example, Gao and Hethcote (1992); Pugliese (1991);
Greenhalgh (1992)). Our model is sort of like a SEIS model with individuals
(latent or infectious) going back to the ‘‘susceptible’’ class by treatment and with
variable population size due to an extra mortality in the infectious class.

If we assume that the infection probabilities per contact for the treated
class is the same as that of the susceptible class, i.e., b@"b, then the dynamics
of System (1.1) is qualitatively similar to that of a SEIS model. We have
established the following result:

Theorem 1. If R
0
(1 then the disease-free equilibrium is globally asymp-

totically stable (g.a.s.). ¼hile if R
0
'1 then the unique endemic equilibrium is

locally asymptotically stable (l.a.s.).

A proof of Theorem 1 can be found in the Appendix.
From the proof of Theorem 1 it is easy to see that if there is no treatment,

that is, if r
1
"r

2
"0 in System (1.1), then the qualitative dynamics are

identical to those of the model with positive treatment rates (r
1
'0, r

2
'0).

However, because R
0

is a decreasing function of r
1

and r
2
, and because the

value of R
0

decreases when we increase the treatment rates, then the disease
levels (quantitative dynamics) are different. Treatment — as expected — reduces
prevalence while increasing the fraction of non-infected individuals (see the
expression for the endemic equilibrium in the proof of Theorem 1 found in the
Appendix). We observe that no quasi-steady state approximation is needed for
the proof of Theorem 1.

2 A two-strain TB model

The increasing recent number of outbreaks of active TB signal the creation of
new opportunities for the development of resistant strains. In this section we
modify our earlier model (System (1.1)) to take into account the possible
appearance of resistant strains due to the deficient compliance with treat-
ment schedules. We add two additional classes ¸

2
(latent) and J (infectious)
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Fig. 2a. A bifurcation diagram for
the system (2.5) in the case q"0.
There are four regions I, II, III, and
IV in the parameter space (R

1
,R

2
).

In the region I E
1

is a global attrac-
tor and other equilibria are unstable
when they exist. In regions II and IV
E
3

does not exist and E
2

and E
4

are
l.a.s., respectively. In the region III
E
3

exists and is l.a.s.

Fig. 2b. A bifurcation diagram for
the system (2.5) in the case q'0.
There are three regions I, II and III
in the parameter space (R

1
,R

2
) (E

4does not exist.), and they correspond
to stabilities of E

1
, E

2
, and E

3
,

respectively

representing the developmental stages of resistant strains. Since it is very hard
to cure a patient with resistant TB we ignore the treatment of the resistant
strain. Furthermore, we assume that J individuals can infect S, ¸

1
, and

¹ individuals. From the disease transmission diagram (see Fig. 2b) we can
write the following system of ordinary differential equations:

d

dt
S"K!bcS

I

N
!b*cS

J

N
!kS

d

dt
¸

1
"bcS

I

N
!(k#k)¸

1
!r

1
¸
1
#pr

2
I#b@c¹

I

N
!b*c¸

1

J

N
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d

dt
I"k¸

1
!(k#d)I!r

2
I

d

dt
¹"r

1
¸

1
#(1!p!q)r

2
I!b@c¹

I

N
!b*c¹

J

N
!k¹

d

dt
¸

2
"qr

2
I!(k#k@)¸

2
#b*c (S#¸

1
#¹ )

J

N

d

dt
J"k@¸

2
!(k#d@ ) J

N"S#¸
1
#I#¹#¸

2
#J , (2.1)

where b* is the probability that treated individuals become infected by one
resistant-TB infectious individual per contact per unit of time; d@ and k@ have
similar meanings as d and k; p#q is the proportion of those treated infectious
individuals who did not complete their treatment. The proportion p modifies
the rate that departs from the latent class; qr

2
I gives the rate at which

individuals develop resistant-TB because they did not complete the treatment
of active TB. Therefore p70, q70 and p#q61.

For System (2.1) the first octant in the state space is positively invariant.
By adding the equations in (2.1) we get the equation for d

dt
N :

d

dt
N"K!kN!dI!d @J . (2.2)

Since d
dt
N(t)(0 for N'K/k, all solutions of (2.1) with nonnegative initial

data approach, enter, or stay inside the subset X defined by 06S#¸
1
#I#

¹#¸
2
#J6K/k. Hence, without loss of generality, we can only consider

solutions of (2.1) on X. Using Lemma 1 found in the Appendix we get the
inequality

N
=
7

K

k#d#d{
.

Since the right hand side of (2.1) is continuously differentiable there exists
a unique solution on a maximal forward time interval for any nonnegative initial
data, and hence the initial value problem (2.1) with initial data in X is well posed.

The basic reproductive numbers for the two-strain model are given by

R
1
"A

bc#pr
2

k#d#r
2
B A

k

k#k#r
1
B

and

R
2
"A

b*c

k#d@B A
k@

k#k@B ,

respectively. We can interpretR
1
andR

2
as the average numbers of secondary

infectious cases produced by an ordinary TB strain and one resistant-TB
strain infectious individual during his or her effective infectious period, respec-
tively.
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If we let
R

0
"maxMR

1
, R

2
N ,

then R
0
"1 gives a threshold condition. The disease will die out if R

0
(1

while the disease may become endemic if R
0
'1.

Next we consider the case when the infection probabilities per contact for
the treated class is the same as that of the susceptible class, i.e., b@"b. Then
System (2.1) together with (2.2) is equivalent to the following system:

d

dt
N"K!kN!dI!d@J ,

d

dt
¸
1
"bc (N!¸

1
!I!¸

2
!J)

I

N

!(k#k)¸
1
!r

1
¸
1
#pr

2
I!b*c¸

1

J

N
,

d

dt
I"k¸

1
!(k#d )I!r

2
I , (2.3)

d

dt
¸
2
"qr

2
I!(k#k@)¸

2
#b*c(N!I!¸

2
!J )

J

N
,

d

dt
J"k@¸

2
!(k#d@)J .

To simplify future expressions we introduce the following notation:

R
1a
"

bc

k#k#r
1

, R
1b
"

k

k#d#r
2

,

When q90, the system (2.3) has three equilibria E
i
, i"1, 2, 3. (In this case

there is no boundary equilibrium, that is, an equilibrium where only the first
strain is present.) E

1
is the disease-free equilibrium

E
1
"A

K

k
, 0, 0, 0, 0B .

E
2

describes the case where only the second strain is present, that is,

E
2
"AN2

, 0, 0, (k#d@)mA1!
1

R
2
BN

2
, k@mA1!

1

R
2
BN

2B ,

where

N
2
"

K

k#d @k@m (1! 1R
2
)
, m"

1

k#d@#k @
.

E
2
exists only whenR

2
'1 (for anyR

1
'0). E

3
describes the case where both

strains are present:

E
3
"(N*,¸*

1
, I*,¸*

2
, J*) .

The expression of E
3

and the region where E
3

exists are described explicitly in
the Appendix.
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The case q"0 gives the boundary equilibrium E
4

(if R
1
'1):

E
4
"AN4

,
e(R

1
!1)

R
1"

N
4
, e(R

1
!1)N

4
, 0, 0B ,

where

N
4
"

K

k#de(R
1
!1)

, e"
1

R
1a

(1#R
1b

)
. (2.4)

To conduct an analytical analysis of asymptotical behaviors of the
equilibrium points we assume that there is no disease-induced death rate, i.e.,
d"d@"0. For d'0 and d@'0 our numerical simulations support similar
results (see Sect. 3). Hence we have that

d

dt
N"K"kN ,

and, consequently, N (t)PK/k as tPR. Without loss of generality (see
Thieme 1992, 1994) we assume that our population has reached its limiting
value, i.e.,

N,K/k,¼#¸
1
#I#¸

2
#J .

By introducing the fractions

x
1
"

¸
1

N
, x

2
"

I

N
, y

1
"

¸
2

N
, y

2
"

J

N
,

and eliminating the equation for d
dt

N we obtain from (2.3) the equivalent
limiting system

d

dt
x
1
"bc (1!x

1
!x

2
!y

1
!y

2
)x

2
!(k#k#r

1
)x

1
#pr

2
x
2
!b*cx

1
y
2

d

dt
x
2
"kx

1
!(k#r

2
)x

2
(2.5)

d

dt
y
1
"qr

2
x
2
!(k#k@)y

1
#b*c(1!x

2
!y

1
!y

2
)y

2

d

dt
y
2
"k@y

1
!ky

2
.

Obviously
06x

1
#x

2
#y

1
#y

2
61 (2.6)

for all time t70. With this notation, we are able to establish the following
result:

Theorem 2. Assume that q"0, d"d@"0. ¹hen
(a) ¹he disease-free equilibrium E

1
of System (2.5) is g.a.s. if R

0
(1, i.e., if

R
1
(1 and R

2
(1.
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(b) IfR
1
'1, then there exists a threshold curve given by the function f (R

1
)

such that the boundary equilibrium E
4
of (2.5) is l.a.s. ifR

2
(f (R

1
) and unstable

if R
2
'f (R

1
). Moreover, f (R

1
)'1 for all R

1
'1 and f (1)"1.

(c) If R
2
'1, then there exists a second threshold curve given by the

function g (R
1
) such that the boundary equilibrium E

2
of (2.5) is l.a.s. ifR

1
(1 or

ifR
1
'1 andR

2
'g(R

1
). E

2
is unstable ifR

1
'1 andR

2
(g(R

1
). Moreover

g(R
2
)'f (R

1
)'1 for all R

1
'1 and g (1)"1.

(d) ¹he equilibrium E
3
of (2.5) exists ifR

1
'1 and f (R

1
)(R

2
(g(R

1
). At

the quasi-steady state d
dt
x
2
"d

dt
y
2
"0, i.e., when x

2
"R

1b
x
1

and y
2
"R

2a
y
1
,

the corresponding positive equilibrium is l.a.s. when it exists.

The proof of Theorem 2 is given in the Appendix. Our numerical simula-
tions suggest that E

3
is l.a.s. not only at the quasi-steady state (when

the conditions in (d) are satisfied) but possibly in general. Theorem 2 states
that using R

1
and R

2
as parameters the existences as well as the stabilities

of all possible equilibria of (2.5) can be completely determined by threshold
conditions R

0
"1, R

2
"f (R

1
), and R

2
"g (R

1
) under the assump-

tions of the theorem. Figure 2a gives a bifurcation diagram for the case
q"0.

Remarks: 1. We see, from the proof of Theorem 2, that the functions f (R
1
)

and g (R
1
) can be determined by fixing all parameter values related to the first

strain except b. HenceR
1
can be varied by varying b. Furthermore, sinceR

2
is

a monotone increasing function of b*, the bifurcation diagram can be drawn
using b and b* instead of R

1
and R

2
.

2. Our numerical simulations suggest that non-trivial equilibria
E
i
(i"2, 3, 4) are g.a.s. whenever they are l.a.s. when the quasi-steady state

assumption is dropped.

We now consider the case q'0. In this case System (2.5) has only three
equilibrium E

1
, E

2
and E

3
. We have established the following result:

Theorem 3. Assume that q'0, d"d@"0. ¹hen
(i) ¹he disease-free equilibrium E

1
of (2.5) is g.a.s. if R

0
(1, i.e., if R

1
(1

and R
2
(1.

(ii) If R
2
'1, then the boundary equilibrium E

2
of (2.5) is l.a.s. if R

1
(1 or

if R
1
'1 and R

2
'g (R

1
). (g is the function given in ¹heorem 2(c)). E

2
is

unstable if R
1
'1 and R

2
(g (R

1
).

(iii) ¹he equilibrium E
3

of (2.5) exists iff R
1
'1 and R

2
(g(R

1
). (In this

case E
2

is unstable.) ¼hen it exists, E
3

is l.a.s. at the quasi-steady state
d
dt
x
2
"d

dt
y
2
"0, i.e., when x

2
"R

1b
x
1

and y
2
"R

2a
y
1
.

The proof of Theorem 3 can be found in the Appendix. Figure 2b
gives a bifurcation diagram for the case q'0. For the case when d'0, d@'0
our numerical simulations and bifurcation diagram also support similar
results (see Fig. 5) when the quasi-steady state approximation assumption is
dropped.

640 C. Castillo-Chavez, Z. Feng



3 Numerical results

In this section we study the system (2.3) numerically to support our analytical
results as well as to provide evidences that our results are likely to hold in
more general situations. First we ‘‘extend’’ the result of Theorem 2(d) numer-
ically. Our simulations support the stability of the interior equilibrium E

3
for

the system (2.5) not only at the quasi-steady state but in general (see Fig. 3).
Figure 3 presents some phase portraits for the system (2.5) which show that
(for parameters in a clearly defined region (see Fig. 2)) the corresponding
‘‘l.a.s.’’ equilibria E

i
(i"2, 3, 4) attract all solutions with positive initial data

(see Fig. 3). Similar simulations have been carried out when q'0 to support
the same conclusion (see Theorem 3) that the interior equilibrium E

3
is

asymptotically stable whenever it exists not only at the quasi-steady state. The
non-trivial equilibrium switches stability as the parameters change as speci-
fied in the bifurcation diagram (see Fig 2b and Fig. 4). We also ‘‘extend’’ the
results of Theorem 3 numerically to the case when d'0 and d@'0. This is
done by establishing explicit functional relationship between b and b@ and by
showing numerically that this function plays a role similar to that of the
function g in Theorem 3 (see Fig. 5).

For the construction of Fig. 3 we have selected for illustration purposes
the following parameter values: k"0.0143 (1/k"70 years), b"13, c"1,
k"1, q"0, p"0.5, r

1
"1, r

2
"2, k@"1, K"35, d"d@"0. This choice of

parameter values givesR
1
"3.45. Using the formula for f (R

1
) and g (R

1
) (see

the Appendix) we get

(R
1
, R

2
)3III iff 1.34(R

2
(4.13 ,

(R
1
, R

2
)3II iff R

2
'4.13 ,

(R
1
,R

2
)3IV iff R

2
(1.34 .

The value of R
2

for Fig. 3a is chosen to be 2. Our simulations show that
E
3
attracts all solutions with positive initial data. Values ofR

2
for Fig. 3b and

Fig. 3c are 4.5 and 1.2, and our simulations support the global stabilities of
E
2

and E
4
, respectively.

Figure 4 is for the case when q'0, and d"d@"0. The parameter values
used in Fig. 4 are k"0.5, k@"1, k"0.0143, q"0.01, p"0.4, r

1
"2, r

2
"1,

d"0, d@"0, K"500. bM is chosen to be 13 as it corresponds to RM
1
"2.627

andRM
2
"2.7364. This last selection implies that E

2
is l.a.s. ifR

2
(2.7364 and

it also implies that E
3
exists and is l.a.s. ifR

2
'2.7364. In Fig. 4, the values for

R
2

are chosen to be (a) R
2
"0.9, (b) R

2
"1.5, (c) R

2
"2, and (d) R

2
"3.

Our analytic results for the stabilities of equilibria E
2
and E

3
(see Theorem

3) hold only for d"0 and d@"0. Since the death rate d@ from resistant-TB
may be high, one would like to know if similar results hold when d'0 and
d@'0. Our numerical simulations suggest that this is the case. We first find
from (2.3) a necessary condition under which the interior equilibrium E

3
exists
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Fig. 3a–c. Phase portraits of solu-
tions to (2.5). The parameter values
for all three graphs are chosen to be:
k"0.143, b"13, c"1, k"1, q"0,
p"0.5, r

1
"1, r

2
"2, k@"1, K"35,

d"d@"0. This choice of parameters
gives a fixed value R

1
"3.45. In

a R
2
"2 and hence (R

1
,R

2
)3III. In

b R
2
"4.5 and hence (R

1
,R

2
)3II.

In c R
2
"1.2 and hence

(R
1
,R

2
)3IV. Circle ‘‘L’’ indicates

a stable equilibrium, and triangle ‘‘*’’
indicates an unstable equilibrium.
(Graphs are given by Phsplan)
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Fig. 4a–d. Plots of fractions of infected and infectious population versus time in the case
q'0, d"d@"0. Parameters for all graphs are chosen to be: k"0.143, b"13, c"1,
k"0.5, q"0.01, p"0.4, r

1
"2, r

2
"1, k@"1, K"500, d"d@"0. In a R

2
"0.9 and

hence (R
1
,R

2
)3III. In b R

2
"1.5 and (R

1
,R

2
)3III. In c R

2
"2 and (R

1
,R

2
)3III. In

d R
2
"3 and (R

1
,R

2
)3IV

(see (25) in the Appendix). Using b and b* as parameters we can estab-
lish a functional relationship between b and b*, that is, b*"h (b)
where

h (b)"
1

2c
(D

2
#JD2

2
#4D

1
b )

with

D
1
"cR

1bA1#
1

R
2a
B

k#k@
R

2a

,

and

D
2
"

k#k@
R

2a

#(pr
2
R

1b
!(k#k#r

1
)) A1#

1

R
2a
B .
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Fig. 5a–d. Plots of fractions of infected and infectious population versus time in the case
q'0, d'0, d@'0. Parameters for all graphs are chosen to be: k"0.143, b"13, c"1,
k"0.5, q"0.01, p"0.4, r

1
"2, r

2
"1, k@"1, K"500, d"0.1, d@"0.5. In a R

2
"0.9

and hence (R
1
,R

2
)3III. In b R

2
"1.5 and (R

1
,R

2
)3III. In c R

2
"2 and (R

1
,R

2
)3III.

In d R
2
"3 and (R

1
,R

2
)3IV

Then we have that u*"a!bv*'0 (a necessary condition for E
3

to exist, see
(11) and (14) in Appendix) iff

b*(h (b),R
1
'1 . (3.1)

By analogy with the proof for the case d"d@"0 (see the proof of
Theorem 3 in the Appendix) we would guess that E

3
exists and is l.a.s. if (3.1)

holds and E
2

is l.a.s. if b*'h (b). Our guess is clearly supported by Fig. 5.
The parameter values used in Fig. 5 are the same as those used in Fig. 4

except that d"0.1 and d@"0.5. We choose bM to be 13 (corresponding to
RM

1
"2.39) and therefore bM *"h(bM )"1.116 (corresponding to RM

2
"2.139).

We conclude that E
2

is l.a.s. if b*(1.116 (or R
2
(2.139) and E

3
exists and is

l.a.s. if b*'1.116 (or R
2
'2.139). In Fig. 5 the values for b* are chosen to be
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(a) b*"0.4695(R
2
"0.9), (b) b*"0.78(R

2
"1.5), (c) b*"1.04(R

2
"2),

and (d) b*"1.565(R
2
"3).

4 Discussion

In this paper we introduced a basic model to study the dynamics of resistant
TB. First we analyzed a one-strain TB model in order to understand its
transmission dynamics in the absence of resistance. We proceeded to analyze
a two-strain model for TB and resistant-TB with the purpose of determining
the role that lack of drug treatment compliance by TB patients plays on the
maintenance of antibiotic resistant strains. To make the role of antibiotic
resistance transparent, we first studied a special version of our two-strain
model with two competing strains of TB: the typical strain plus a resistant
strain that was not the result of antibiotic resistance. In this last situation, we
found that co-existence is possible but rare while later we noticed that
co-existence is almost certain when the second strain is the result of antibiotic
resistance. In our two-strain model there is a superinfection-like term
b * c¸

1
J/N. Is this necessary to obtain the co-existence result since it is well

known that superinfection can cause co-existence (see Levin and Pimentel
(1981) and Nowak and May (1994))? The answer is no. In fact is can be shown
that in the absence of the superinfection-like term co-existence is still almost
the rule when the second strain is the result of antibiotic resistance. Our
mathematical analysis was based on quasi-steady state approximations. This
kind of assumption usually can be justified analytically by using small para-
meter methods. But all parameters in Model (2.1) are of about the same order
of magnitude. For example, the latent period 1/k for TB can range from 1 year
to more than 20 years, the treatment period 1/r can range from 1/2 to 2 years,
and the life expectancy 1/k is about 70 years. Therefore we can not really use
small parameter method to support the assumption of quasistationary state.
Our results under the quasi-steady state assumption were confirmed with the
help of numerical simulations and the construction of bifurcation diagrams
that support the plausibility of our hypotheses.

Our results show that coexistence of naturally resistant strains is limited.
Deterministic models such as the one we have used here in fact suggest that
competitive exclusion is the preferred outcome and not coevolution. Our
results do not differ significantly from those developed by Levin and Pimentel
(1991) in which it was found that coexistence of two strains of maxoma were
only possible within a window of opportunity in parameter space. The recent
work on super-infection by May and Nowak (1994) and Nowak and May
(1994) suggest that super-infection would enhance coexistence and presum-
ably coevolution. However, their models assume that the population size of
the competing hosts are constant. If this assumption is removed then again the
size of the region of coexistence shrinks and may even become a disconnected
set (see Castillo-Chavez and Velasco-Hernández (1996); Mena-Lorca,
Velasco-Hernández and Castillo-Chavez (1995)). In fact, we strongly believe
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that the key mechanism for the support of species diversity is driven by spatial
heterogeneity (see Durrett and Levin (1994); Bolker and Pacala (1995)).

In this article, we have just looked at the basic transmission dynamics of
TB on a homogeneously mixing population (the null model). Our results are
clear: such populations cannot support pathogen diversity, that is, competi-
tive exclusion seems to be the preferred outcome. Furthermore, we found that
antibiotic resistant (just as pesticide resistance) enhances — (one may even say
promotes) — coexistence. This is not surprising but reminds us of the chal-
lenges facing public health officials. Resistant TB will remain a serious threat
to our communities as long as many members of our society do not have
regular access to medical care. The cost of treating individuals with active TB
is over $20,000 while the price of infection with resistant strains of TB is very
often death. Obviously more work needs to be done with models that incor-
porate more realism. We outline our progress on three fronts in the rest of this
conclusion.

A natural criticism of our basic model is that it did not take into account
long and variable periods of latency — a key feature of TB. We have in fact
looked at the effects of long and variable periods of latency (rather than the
exponentially distributed delays used in this article) and we have found that
their addition makes no difference in the qualitative dynamics of TB (see
Castillo-Chavez and Feng (1996a)). However, we chose not to incorporate this
analysis in this article as its emphasis is on the study of resistant TB. The
incorporation of distributed delays would have obscured the objective of this
article while making the mathematics ugly. The coupling of a two-strain
model with different distributed delays for their latent periods is at this point
under investigation. However, we are not hopeful that we will be able to fully
analyze such a complex model. Nevertheless, we plan to publish some prelimi-
nary results in this direction in the near future.

A person infected with TB may develop active TB in a variety of ways. One
possibility is that such a person may develop active TB as a consequence of
exogenous reinfection (i.e., acquiring a new infection from another infectious
individual; Smith 1993). We have begun to look at the role that exogenous
reinfection has on the transmission dynamics of common strains of TB (see
Castillo-Chavez and Feng (1996a)). Our preliminary results seem to support
our hypothesis that exogenous reinfection has a drastic effect on the qualita-
tive dynamics of TB. More explicitly, the incorporation of exogenous reinfec-
tion into the basic TB model of Sect. 1 allows for the possibility of a subcritical
bifurcation. That is, not only an endemic equilibrium may occur at the critical
value of the reproductive number R

0
"1 but our system can have multiple

endemic equilibria for R
0
(1. This type of behavior has been observed in

recent epidemiological models but in the context of sexually-transmitted
diseases (see Hadeler and Castillo-Chavez 1995, (1995)). Our analysis is almost
complete and we plan to publish these results elsewhere in the near future.

Finally, it is clear that mixing plays a key role in TB transmission. We are
particularly interested in looking at the effects of age-dependent contact rates
on TB dynamics. The formulation of models with age-dependent contact

646 C. Castillo-Chavez, Z. Feng



rates, even under the assumption of proportionate mixing, leads to hyperbolic
systems of partial differential equations that are difficult to analyze. Neverthe-
less, we have managed to obtain some preliminary results and we have used
them to study optimal vaccination policies for the BCG vaccine on age-
structured populations (see Castillo-Chavez and Feng (1996b)).
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Appendix

In this Appendix we provide the details of the proofs of Theorems 1, 2 and 3 as
well as the statements of needed preliminary results.

For a bounded real-valued function f on [0,R) we define

f
=
"lim inf

t?=

f (t), f ="lim sup
t?=

f (t) .

Lemma 1 [Thieme (1993)]. ¸et f : [0,R)PR be bounded and twice
differentiable with bounded second derivative. ¸et t

n
PR and f (t

n
) converge to

f= or f
=

for nPR. ¹hen
f @ (t

n
)P0, nPR .

Proof of ¹heorem 1: Let R
0
(1. Choose a sequence t

n
PR such that

I (t
n
)PI=,

d

dt
I(t

n
)P0 .

Using the equation for d
dt
I in (1.1) and Lemma 1 we have

I=6

k

k#r
2
#d

¸= . (1)

Similarly, choosing a sequence s
n
PR such that

¸ (s
n
)P¸=,

d

dt
¸ (s

n
)P0 ,

and using the equation for d
dt
¸ in (1.1) we get

06bcI=!(k#k#r
1
)¸=

6(k#k#r
1
) (R

0
!1)¸= .

This implies that ¸=60 (since R
0
(1). But since ¸

=
70, we have that

¸="¸
=
"0, and

¸ (t)P0, tPR .

By (1) we also have that

I (t)P0, tPR .
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Adding equations in (1.1) gives

d

dt
N"K!kN!dI .

Using Lemma 1 we have

N
=
7

1

k
(K!dI=)"

K

k
.

Note that d
dt

N (t)(0 for N'K/k. Hence, without loss of generality, we can
consider only solutions of (1.1) with N(t)6K/k (it is easy to check that
solutions of (1.1) are nonnegative for nonnegative initial data). Then N=6

K

k .
It follows that

N
=
"N="

K

k
.

Hence E0 is g.a.s. when R
0
(1.

Let R
0
'1.

Note that under the assumption b@"b (1.1) is equivalent to the following
system:

d

dt
N"K!kN!dI

d

dt
¸"bc(N!¸!I )

I

N
!(k#k#r

1
)¸ (2)

d

dt
I"k¸!(k#d#r

2
) I .

The unique endemic equilibrium of (2) is given by E*"(N*,¸*, I*), where

N*"
aR

0
K

dk (R
0
!1)#kaR

0

¸*"
k#d#r

2
k

I*

I*"
k (R

0
!1)

aR
0

N* ,

and

a"k#d#r
2
#k .

Noticing that

(N*!¸*!I* )

N*
"

1

R
0
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we can write the Jacobian of (2) J at E* as

J"A
!k 0 !d

a (R
0
!1) !(aR

0
#k#r

1
#k) bcR

0
!aR

0
0 k !(k#d#r

2
)B ,

where

a"
bc

R
0

I*

N*
.

The characteristic equation is

j3#Aj2#Bj#C"0 ,
where

A"aR
0
#3k#k#r

1
#r

2
#d ,

B"aR
0
(2k#k#r

2
#d )#k (2k#k#r

1
#r

2
#d ) ,

C"kaR
0
(k#k#r

2
#d )#kad (R

0
!1) .

It is clear that A, C'0. Since it can be easily checked that

AB'C ,

then the Routh-Hurwitz stability conditions are satisfied. It follows that
E* is l.a.s..

Proof of ¹heorem 2: (a) Let R
1
(1, R

2
(1. By Lemma 1 and the d

dt
x
2
,

d
dt

y
2

equations in (2.5) we have

x=
2
6R

1b
x=
1

, x
2=

7R
1b

x
1=

(3)
y=
2
6R

2a
y=
1

, y
2=

7R
2a

y
1=

Using the d
dt

y
1

equation in (2.5) and choosing t
n
PR such that

y
1
(t
n
)Py=

1
,

d

dt
y
1
(t
n
)P0, tPR ,

we get
06!(k#k@) y=

1
#b*c (1!x

2
!y

1
!y

2
)= y=

2
.

Using (3) and (2.6) we get
06y=

1
(R

2
!1) ,

and it is shown that y=
1
60 sinceR

2
(1. As y=

1
70, we have that y=

1
"0. The

inequalities in (3) also imply that y=
2
"0. Similarly, using (2.6), the equation

for d
dt
x
1

in (2.5), and the inequalities in (3) we conclude that

06x=
2

(R
1
!1) .

Since R
1
(1, we have that x=

2
60. It follows that x=

1
"x=

2
"0. Hence

lim
t?=

x
1
(t)"lim

t?=

x
2
(t)"lim

t?=

y
1
(t)" lim

t?=

y
2
(t)"0 .
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(b) Let R
1
'1. Denote the corresponding equilibrium E

4
for (2.5) by

(xN
1
,xN

2
, yN

1
, yN

2
). Recall that

R
1a
"

bc

k#k#r
1

, R
1b
"

k

k#d#r
2

,

Then

(xN
1
, xN

2
, yN

1
, yN

2
)"A

e(R
1
!1)

R
1b

B , e (R
1
!1), 0, 0) ,

where e is given by (2.4). The eigenvalues of the Jacobian of (2.5) at E
4

are
given by the following two equations (keeping in mind that q"0):

j2#(bcxN
2
#2k#k#r

1
#r

2
)j#bcxN

2
(k#r

2
#k)"0 ,

(4)
j2#(2k#k@)j#k(k#k@)#k@b*c(xN

2
!1)"0 .

The first equation in (4) always has two eigenvalues with negative real parts.
Both roots of the second equation in (4) have negative real parts if and only if
the constant term is positive which is equivalent to

R
2
(

1

1# (1!R
1
)

R
1a

(1#R
1b

)

.

Let

f (R
1
)"

1

1# (1!R
1
)

R
1a

(1#R
1b

)

, (5)

it follows that E
4

is l.a.s. if R
2
(f (R

1
). If R

2
'f (R

1
), then the second

equation in (4) has one root with positive real part, and hence E
4
is unstable. It

is easy to show that f (R
1
)'1 for all R

1
'1 and f (1)"1.

(c) Let R
2
'1. Note that the corresponding equilibrium E

2
now is

(xN
1
,xN

2
, yN

1
, yN

2
)"A0, 0, A1!

1

R
2
B

k
k#k@

, A1!
1

R
2
B

k@
k#k@B .

The eigenvalues w of the Jacobian of (2.5) at the correponding equilibrium
E
2

are given by the following two equations:

w2#(k#k#r
1
#kR

2
#r

2
)w#a"0 ,

(6)
w2#(2k#k@#k (R

2
!1)) w#k (k#k@) (R

2
!1)"0 ,

where

a"(k#k#r
1
) (k#r

2
) (1!R

1
)#k (k#r

2
) (R

2
!1)#kbcA1!

1

R
2
B .

To simplify expressions we introduce the following two notations

R
2a
"

k@
k#d @

, q
1a
"

k
k#k#r

1

.
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In the second equation of (6), since the coefficients are all positive there are
always two roots with negative real parts. In the first equation of (6), both
roots have negative real parts iff a'0 which is true ifR

1
(1 or ifR

1
'1 and

q
1a
R2

2
#(1!R

1
!q

1a
#R

1a
R

1b
)R

2
!R

1a
R

1b
'0 . (7)

As a quadratic function ofR
2
, the left hand side of (7) has exactly one positive

root which we denote by R`
2
"g(R

1
). Then a'0 iff R

1
(1 or

R
1
'1 and R

2
'g(R

1
) , (8)

where

g(R
1
)"

1

2q
1a

(R
1
!1#q

1a
!R

1a
R

1b

#J(R
1
!1#q

1a
!R

1a
R

1b
)2#4q

1a
R

1a
R

1b
) . (9)

To check that g(R
1
)'1, let F (z) be the function defined by the left hand side

of (7) (as a function of R
2
). Then F(R`

2
)"0, and z(R`

2
iff F (z)(F (R`

2
) or

F(z)(0. If R
1
'1, then it is easy to see that F (1)(0. Hence 1(R`

2
, i.e.,

g(R
1
)'1. Then we conclude that E

2
is l.a.s. if R

1
(1 or if (8) holds.

IfR
1
'1 andR

2
(g (R

1
), then a(0 and the first equation in (6) has one

root with positive real part, and hence E
2

is unstable.
Note that

F ( f (R
1
))"R

1a
(R

1
!1) (q

1a
#q

1a
R

1b
#R

1
!1!R

1a
!R

1a
R

1b
)

6

R
1a

(1!R
1
)

(k#k#r1)(k#r2)
(kr

2
(1#p )#(r

1
#bc) (k#r

2
)) ,

60

for all R
1
'1. If follows that g (R

1
)'f (R

1
) for all R

1
'1. It is easy to see

that g(1)"1.
(d) To solve for E

3
(for any q70), let

u"
I

N
, v"

J

N
. (10)

From the third and the fifth equations in (2.3) we have

¸
1
"

k#d#r
2

k
I, ¸

2
"

k#d@
k@

J.

Substituting into the second equation in (2.3) and using (10) we get

R
1a

(1#R
1b

)u#AR1a
R

1bA1#
1

R
2a
B#

b*

b
R

1aB v#1!R
1
"0 .

This gives
u"a!bv , (11)

where

a"
R

1
!1

R
1a

(1#R
1b

)
, b"

R
1b

(1# 1
R2a

)#b*

b
(1#R

1b
)

. (12)
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Substituting into the fourth equation in (2.3) we get

Av2#Bv#C"0 , (13)
where

A"1#
1

R
2a

!b ,

B"

1

R
2

#

bqr
2

b*c
#a!1 ,

C"!

aqr
2

b*c
.

The positive real roots v* of (13), if there are any, are given by

v*"
1

2A
(!B$JB2!4AC) . (14)

E
3

can be expressed (for any q70) as

N*"
K

k#du*#d@v*
,

¸*
1
"

k#d#r
2

k
u*N* ,

I*"u*N* , (15)

¸*
2
"

k#d@
k@

v*N* ,

J*"v*N* ,

where v*, u* are given by (14) and (11).
We next look at the feasibility of E

3
in the case q"0. E

3
is feasible iff

u*'0 and v*'0. Note that q"0 implies C"0. Hence

v*"!

B

A
.

The equivalent condition for v*'0 is that A and B have opposite signs which
turns out to be if the following condition is satisfied:

f (R
1
)(R

2
(

bc

k
. (16)

Here we have used the fact that f (R
1
)(bck . Expression (16) implies that A'0

and B(0. By (11) the equivalent condition for u*'0 is that a/b'v* which
is satisfied when the inequality (7) or (8) change direction, i.e., when

R
2
(g (R

1
) . (17)

652 C. Castillo-Chavez, Z. Feng



It can be checked that g (R
1
)"R`

2
(bck . Then (16) and (17) imply that

f (R
1
)(R

2
(g(R

1
), which also implies by part (c) that R

1
'1. It follows

that E
3

exists iff
R

1
'1, f (R

1
)(R

2
(g (R

1
) . (18)

At the quasi-steady state, x
2
"R

1b
x
1
, y

2
"R

2a
y
1
, System (2.5) reduces to

a two dimensional system:

d

dt
x
1
"(k#k#r

1
) (R

1
!1)x

1
!bc (R

1b
#R2

1b
)x2

1

!(bcR
1b

(1#R
2a

)#b*cR
2a

)x
1
y
1

d

dt
y
1
"(k#k@)R

2AA1!
1

R
2
B y

1
!R

1b
x
1
y
1
!(1#R

2a
)y2

1B . (19)

The positive equilibrium of (19) corresponding to E
3

is

x
1
"

u*

R
1b

, y
1
"

v*

R
2a

. (20)

One can show that the Jacobian of (19) at (20) has two eigenvalues with
negative real part(s) iff

R
2
(

bc

k
. (21)

Notice that R
2
(R`

2
(bck . The local stability follows.

This finishes the proof.

Remark. Functions f (R
1
) and g (R

1
) can be written in different forms depend-

ing on which parameter(s) we want to vary. For example if we want b to be
a varying parameter with other parameters fixed, we can write f and g as the
following (noticing that R

1
is a function of b):

f (R
1
(b))"

1

1#(1!R
2
(b)) ((1#R

1b
) (R1

(b)
R

1b
)!

pr
2

k#k#r
1
))~1

,

g(R
1
(b))"

1

2q
1a

(!l#Jl2#4q
1a

(R
1
(b)!n) ) ,

where

l"
k(k#r

1
)#r

1
r
2
#(1!p)kr

2
(k#k#r

1
) (k#r

2
)

,

n"
kpr

2
(k#k#r

1
) (k#r

2
)
.

Proof of ¹heorem 3: (i) is true since the proof of part (a) in Theorem 2 is valid
for any q70.

Notice that q does not appear in both the expression of E
2

and the
Jacobian of (2.5) at E

2
. Also q is not involved in the proof of theorem 2(c).

(ii) follows immediately.
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For part (iii), recall that v* is the solution of (13). As C(0 there exists
a unique positive real root v* iff A'0, which (after some algebra) is equiva-
lent to

R
2
(

bc

k
. (22)

As bv*'0, a necessary condition for u*'0 is that a'0, i.e., that

R
1
'1 . (23)

Let G(z)"Az2#Bz#C (a function given by the left hand side of (13)), then
G(v*)"0. Since G is a parabola with A'0, and since v* is the only positive
root, u*'0 (or a/b'v* ) iff

GA
a

bB'G(v*)"0 .

This is equivalent to

A1#
1

R
2a
B

a

b
#

1

R
2

!1'0 . (24)

After some algebra we can see that (24) is equivalent to

q
1a
R2

2
#(1!R

1
!q

1a
#R

1a
R

1b
)R

2
!R

1a
R

1b
(0 . (25)

Note that (25) has just the opposite direction as that of the inequality (7) which
implies that

R
2
(g (R

1
) . (26)

Hence u*'0 iff (23) and (26) hold. Also noticing that g(R
1
)"R`

2
(bck , we see

that (26) implies (22), i.e., u*'0 implies that v*'0 exists and is unique.
Hence E

3
exists iff R

1
'1 and R

2
(g (R

1
). The proof of the local asymp-

totical stability is similar to the one in Theorem 2 (d). This finishes the proof.
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