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ABSTRACT

The recurrent outbreaks of measlies and other childhood discases have previously
been explained by an interaction of intrinsic epidemiologic forces generating damp-
ened oscillations and of seasonal and/or stochastic excitation. We show that
isolation (i.c., sick individuals stay at home and have a reduced infective impact) can
create self-sustained oscillations provided that the number of per capita contacts is
largely independent of the number of individuals present. This means that the
bilinear mass action term for disease incidence is modified by dividing it by the
number of nonisolated individuals.

1. INTRODUCTION

The recurrent outbreaks of measles and other childhood diseases
have fascinated mathematical modelers of infectious diseases for many
vears, and different mechanisms have been suggested to explain their
occurrence. See [1-7] for reviews.

Dietz [8], Hethcote [9], and Anderson and May [10] consider simple
models involving three or four epidemic classes that display dynamics
that converge to an epidemic equilibrium in damped oscillations with
the quasi-periods being surprisingly close (considering the simplicity of
the model) to observed values in some of the childhood diseases [6,
Table 6.1; 10]. It has been argued that these damped oscillations can be
excited to undamped oscillations either by stochastic or periodic deter-
ministic forcing. The impact of stochastic forcing was studied by Bartlett
[11, 12] and London and Yorke [13]. The influence of periodic forcing
leading to periodic solutions, with the periods being multiples of the
period of the forcing, was studied numerically by London and Yorke
[14] and Dietz [15], formally by Grossman et al. [16] and Grossman [17],
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and analytically by Smith [18, 19] and Schwartz and Smith [20]. Periodic
forcing can even lead to a sequence of period-doubling subharmonic
bifurcations and finally chaos [21-25]. See [1] and [5] for more detailed
reviews.

Schenzle [2] (see also [1]) convincingly argues that a one-year peri-
odic forcing is provided by the school system where long summer
vacations interrupt or weaken the chain of infections and new suscepti-
bles are recruited at the beginning of every school year (with the second
being apparently more important than the first). Schenzie’s work [2],
which also incorporates age structure and mainly consists of numerical
simulations, has motivated several authors [26—40] to study the question
of whether the introduction of age structure alone can be responsible
tor undamped oscillations in endemic models that have a stable en-
demic equilibrium without age structure. Andreasen [30], Enderle [34],
and Thieme [40] have shown that this can indeed be the case, but the
conditions they have found so far are rather extreme.

Dietz and Schenzle [1] assess that “up to the present day the problem
of recurrent epidemics has not been definitely settled” (p. 185) and that
there is “reason to think of still another mechanism causing endemic
incidence fluctuation to be sustained” (p. 190).

In this article we (partially) rehabilitate the opinion of Hamer [41]
and Soper [42] that autonomous internal forces may be responsible for
undamped oscillations in childhood diseases. Standard epidemic models
have neglected that infected children who become infective at the end
of the latency period get severe symptoms at the end of the incubation
period that cause them to stay at home. Though they may still infect
their relatives when they are at home, their infectious impact is largely
reduced because they are kept from making contacts outside their
families. Isolation alone would not create oscillations; traditional mod-
els simply merge isolated and immune individuals into one class, and
the model behavior is, of course, the same as without discriminating
isolated individuals. The point is that immune individuals go back into
public life, whereas isolated individuals do not. This may have an effect
if, as we suspect, the per capita rate of contacts is basically independent
of the number of children present unless this number is quite small.

Adding these two features to standard childhood disease models
amounts to adding a new class——isolated individuals (those who stay at
home because they are too sick to go out}—and modifying the standard
bilinear mass action infection term by dividing it by the number of
active (i.e., nonisolated) individuals. The importance of this modifica-
tion has become apparent before in the study of sexually transmitted
diseases, and its destabilizing potential was already discovered in an
HIV /AIDS model with infection-age-dependent infectivity (see [43] and
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references therein). Other infection laws that deviate from the usual
bilinear mass action term and can lead to undamped oscillations have
been considered by Cunningham [44] and Liu et al. [45, 46]. It is not
clear, however, what kind of mechanisms they represent in childhood
diseases.

In infectious diseases that are not of the type considered here,
undamped oscillations can be excited by other mechanisms; see [5, 7,
43] for surveys and references.

To give a preview of our results, let us first mention that the basic
replacement ratio %, (or basic reproduction number, number of sec-
ondary cases produced by one infective individual in an otherwise
completely susceptible population) turns out to be independent of the
length of the isolation period. It is more or less proportional to the
mean length of the effective infectious period, that is, the part of the
infectious period before isolation occurs. As with many other epidemic
models, the disease dies out if the basic replacement ratio is smaller
than 1 and becomes endemic if .9, strictly exceeds 1. Further, if %, > 1,
there exists a uniquely determined endemic equilibrium. As %, does
not depend on the length of the isolation period, one may fix %, at
some value strictly bigger than 1 and consider the length of the isolation
period as a variable parameter. If the average length of the isolation
period is either very long or very short, the disease dynamics always
converge to the endemic equilibrium (global stability). Analytically we
have found two different parameter values at which periodic solutions
bifurcate from the endemic equilibrium via a (presumably supercritical)
Hopf bifurcation. Numerical studies using Auto [48] show that, for a
wide range of the other parameters, there are no other Hopf bifurcation
points. This means that for short isolation periods the endemic equilib-
rium is asymptotically stable and that increasing the length of the
isolation period makes the endemic equilibrium less stable and even
leads to its instability with a simultaneous rise of stable periodic
oscillations. If the length of the isolation period is further increased,
however, the endemic equilibrium gains its stability back at long isola-
tion periods. Though there are many data for the length of the latency,
incubation, and infection periods of the common childhood diseases, we
have not seen any data for the length of the isolation period. Presum-
ably, sick children do not leave home immediately after they stop being
infective but spend some more time recovering from the debility caused
by the disease. Comparison to data is further hampered by vague
knowledge of the key parameter .+%,. Most estimates of %, determine
the force of infection from the mean age of infection assuming a
constant infective force in spite of the fact that the observed forces of
infection undergo heavy oscillations. We give estimates from below and
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above for the time average of periodic forces of infection, which may
themselves be of interest. They suggest that the above procedure
typically underestimates %, but not dramatically. In Section 8, we
present some concrete lengths of the isolation period that are associ-
ated with sustained oscillations and discuss whether they are realistic.

The paper is organized as follows. In Section 2 we formulate and
explain the model. Section 3 contains the relation between the existence
of an endemic equilibrium and the basic replacement ratio. Some global
results concerning disease extinction or persistence and convergence
toward the endemic equilibrium are presented in Section 4. Section 5
contains our bifurcation analysis, and Section 7 presents the numerical
results. In Section 6 we present our estimates of the temporal mean of a
periodic force of infection from the mean age at infection and comparc
our findings to scarlet fever data from England and Wales, 1897-1978
[6]. In Section 8 we discuss the relevance of our findings.

This paper is dedicated to Stavros Busenberg—to gratefully remem-
ber his friendship and to appreciate his highly contagious agency for the
application of mathematics in the biosciences.

2. THE MODEL

We split the population (the size of which we denote by N) into
individuals who are susceptible to the disease, S; infective nonisolated
individuals, I; isolated individuals Q (Q as in quarantine); and recov-
ered and immune individuals, R. At this point we neglect a latency
period (but compare Section 6.2) and assume that immunity is perma-
nent. By A=8+ 71+ R we denote the active, that is, nonisolated,
individuals. The basic idea consists in assuming that sick individuals stay
at home and so undergo some kind of isolation (or quarantine) that
reduces their ability to infect others. For simplicity we assume that they
do not infect anybody. We further assume that the disease is basically
nonlethal (a realistic assumption for most childhood diseases in devel-
oped countries). The model takes the following form:

%szAuMS—a&%, (2.1a)
Cr=—(ury)itost. (2.1b)
GOt E)Q L. (2.10)
%R: —uR+ &0, (2.1d)

A=S+1+R. (2.1¢)
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A 1s the rate at which individuals are born into the population; all
newborns are assumed to be susceptible. w is the per capita mortality
rate, o is the per capita infection rate of arn average susceptible
individual provided that everybody else is infected, and y and ¢ are the
rates at which individuals leave the infective and isolated classes; they
are all positive constants, 1/y and 1/¢ give the respective mean
lengths of the infective and isolation periods; 1/ p is the average life
expectation. //A4 gives the probability that a given contact actually
occurs with an infective individual.

Notice that we have assumed that the per capita number of contacts
is basically independent of the number of active individuals. This
assumption is widely accepted for sexually transmitted diseases, but
there is growing evidence that it is not a bad assumption for otherwise
transmitted diseases either (unless the number of active individuals is
very small). See Section 1.1 in [49] or the Introduction in Gao et al. [50].
A possible explanation is that the number of contacts depends on the
density of active individuals rather than on their absolute numbers [51].
When there are a few children on a playground or in a schoolyard, for
example, they will gather in one part of it, whereas when there are many
they will spread out over it; so the per capita number of contacts
cssentially remains the same unless the number of children becomes
very small.

More generally one could replace & by a contact function C(A) (see
[43, 49, 50, 52, 53] and the literature cited there). As far as applications
are concerned, this amounts to introducing at least one, but typically
several, more parameters that have to be estimated. We know of only
one attempt that has been taken in this direction, namely for

C(A) = oA4°

(see [6, Section 12.1] and the reference there). FEstimates for five
childhood diseases in communities of various sizes provide that « is
between 0.03 and 0.07, and our choice a =0 turns out to be a much
better approximation than the traditional a = 1.

Adding the differential equations in (2.1), we find for the population
size N=A+Q0=S+ 1+ 0+ R that

d

Hence N(t)— A /p as t -, We assume that the size of the popula-
tion has reached its limiting value, that is,

N=A/u=S+1+Q+R=A+0Q.
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Using A=N-Q and S=A4—-1—-R in (2.1} we can eliminate §
from the equations. Further we can scale time such that o =1 by
introducing a new, dimensionless, time 7 = o t. This gives us the system

1’:—(u+0)1+(1—]f/—+_%)1, (2.22)
Q'=—(v+)Q+ 81, (2.2b)
R'=—vR+ {0, (2.2¢)
where
M Y _¢
V:E’ 9:;, é——o_-, (23)

and the prime denotes the derivative in 7.
To transform (2.2) into a system with linear and quadratic relation-
ships only, we introduce the fractions

uz% y=%, qz% z=§ (2.4)
and note that
A'=-Q'=(v+{)0— 061
and
A—uS=u(I+Q+R).
Hence, by differentiating (2.4) and using (2.1), we have
u'=v(y+g+z)—u+u(dy—(v+7{)q), (2.5a)
Y= (v 8)y+uy+y(0y —(v+)q), (2.5b)
¢'=(+q)(0y —(v+{)q), (2.5¢)
z'={q-vzt+z(0y (v+I)g). (2.5d)
The relation 4 =S5+ I+ R implies that
uty+z=1. (2.6)

Using (2.6) we can eliminate the equation for u’ in (2.5) and obtain

y=y[l-v-0-y-z+08y—(v+{)q], (2.7a)
g =(1+q)[oy—(v+{)gl. (2.7b)
' =¢qg—-vz+z[oy —(v+{)q]. (2.7¢)
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THEQOREM 2.1

Let uy, vy, 20,40 =0, u,+ v, + z, = 1. Then there exists a unique solu-
tion u, y, z, q of (2.5) with initial data u,, v,, z,, g, at time 0 that Is
defined for all forward times. u, y, q, z are nonnegative, and u +y + z = 1.
If yo=0, then y=0. If y,> 0, then u(t), v(t), (1), 2(t) are strictly
positive for t > 0. q is bounded from above by the maximum of q, and
0/(v+7)

Proof.  As the right-hand side of (2.7) is locally Lipschitz, there exists
a unique local solution y, g, z to (2.7) with initial data y,, q,, z, that is
defined on a maximum forward interval of existence. (See [54], Secticns
L1-1.3.) If we set u=1—y — z, we see that u satisfies the first equation
in (2.5). From the form of the y equation we sec that if y, is
nonnegative (positive), so is y. We now sequentially realize that ¢q, z, u
are nonnegative (positive for positive times). As 1=u+ y + z, all of
y,z,¥ + z are bounded by 1. Equation (2.7b) now provides the upper
bound for g. Hence the maximum forward interval of existence is [0,%).

Remark. Once we have uniquely solved (2.7) we find unique solu-
tions of (2.2) by the relations

o A A YN
I=yA=yNgG=YNaT05" 174
and, similarly,
_ gN _zN
Q_Hq’ R I+gq

3. ENDEMIC EQUILIBRIUM AND BASIC REPLACEMENT
RATIO

Looking for nonnegative equilibria of (2.5) and (2.6) we discover that
there is always the disease-free equilibrium

]
u' =1, y”:q“=z(':0.

Any other possible nonnegative equilibrium satisfies

—(v+0)+u*=0,
Oy*~(v+{)g*=0,
—vz*+{qg* =0,
u+y*+zt=1.
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This system is solved by
u*=v+49, yi=v{v+{)xk, q* = vbk, z* = 0k
I e S bt (3.1)
v(v+{)+6 wv(v+)+600

K

In order to obtain a nonnegative equilibrium that is different from the
disease-free equilibrium, we need to assume that

v+ o<l (3.2)

This condition becomes epidemiologically more meaningful if we intro-
duce

1 o
v+8 u+y

Sy = (3.3)
As 1/Cu+v) is the effective length of the infectious period (also
including the possibility of death) and ¢ is the per capita rate of
transmitting the disease, %, gives the total number of secondary cases
an average infective individual will induce given that the rest of the
population is susceptible. %, 1s called the basic replacement ratio. The
endemic equilibrium makes epidemiological sense only if v + 0 < 1.

THEOREM 3.1

If #, <1, then system (2.5) has only the disease-free equilibrium u" = 1,
y'=g"=2"=0. If R, > 1, there is a uniquely determined nonnegaiive
equilibrium that is different from the disease-free equilibrium that is given by
3.1.

The second equilibrium, if <%, > 1, is called the endemic equilibrium.
Theorem 3.1 states that there is an endemic equilibrium if an average
infective individual entering a completely susceptible population re-
places itself by at least one other infected individual.

4. SOME GLOBAL RESULTS INCLUDING DISEASE
EXTINCTION OR PERSISTENCE

The fact that there is an endemic equilibrium only if the basic
replacement ratio %, strictly exceeds 1 suggests a relation to disease
extinction or persistence. Actually, the following holds.

THEOREM 4.1
(a) Let #, < 1. Then, for any solution of (2.5) with nonnegative initial

data satisfying u,+ v, + z, =1, we have u(t)—-1, y(1)—0, g(t) -0,
z2(t) >0 ast > =
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(b) Let #, > 1. Then there exists some € > 0 such that

liminfy(t) > ¢, liminfg(?) > &,
- = I o
liminfz(¢) > &, limsupu(t) <l—e
> x

>

for all solutions to (2.5) with nonnegative initial data satisfying u, + y, + z,
=1, y,>0.

Hence, if an average infective individual does not replace itself, the
disease dies out. If the individual replaces itself, the disease persists in
the population. Details will be presented by Feng [55] using the ap-
proach to persistence of Thieme [52, 53].

As we will see in the next section, if %, > 1, the disease dynamics do
not always tend to their endemic equilibrium values as time tends to
infinity. However, the time average of the ratio of susceptible to active
individuals converges toward the equilibrium value. Let

u(r) =%fotu(s)ds.
THEOREM 4.2
Let #,>1 and y(0) > 0. Then
u(t) - u*, t >,
Proof. Let #,>1. Since I=yA=yNA/N=yN[A/(A+Q)]=

yNI[1/(1+ q)], we have that I is bounded away from O because ¢ is
bounded by Theorem 2.1. From the equation for df /dt in (2.1) we have

&

1
T‘“‘t—= OU— LY.
This implies that
ﬁ(t)—v-—9=—1- -l—)[lnl(t)—lnI(O)]—)() t o
o t » 2

because [ is bounded above by N and bounded away from O. [

We notice that the basic replacement ratio %, that determines the
extinction or persistence of the disease is independent of the length of
the quarantine period. Our main interest is in the relation between the
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length of the quarantine period and the stability of the endemic
equilibrium,

THEOREM 4.3

Let #,> 1. If the quarantine period is very short or very long, the
endemic equilibrium attracts all solutions of (2.5) with nonnegative initial
data such that u, +y, +z,=1, y,> 0.

We give a heuristic argument. A rigorous proof can be found in [55].
Let us first assume that the scaled length of the isolation period
e=1/¢ is short. In (2.7) we introduce the new dependent variable
w = {q and obtain the system

yi=y[l-v—0-—y—z+8y—(ve+1)w],
ew'=(1+ew)[0y —(ve +1)w],
Z'=w-—-wvz+z[0y —(ve+1)w].
As ¢ is very small, we suspect that this system has the same large-time
behavior as the system for & = (:
y=y(l-v—0-y—z+60y—w),
0=06y—w,

Z'=w—vz+z{(0y —w).
We substitute the second relation into the others:
y=y(l-v—-60-y—z), z'=0y—vz. (4.1)

The equilibria of (4.1) are (0,0) and y*=(v/6)z*, z*=[0 /(v + 6)]X
(1— v — ), which corresponds to equilibrium (3.1) for ¢ — . Dulac’s
criterion reveals that the nonzero equilibrium attracts all nonnegative
solutions with y(0) > 0. Singular perturbation arguments [56] show that
the endemic equilibrium of (2.7) attracts all solutions of (2.7) with
y(0) > 0 provided & is sufficiently small.

Let us now assume that ¢ is small. We first consider (2.7) for z =0,

=0
y'=y(l-v—0—y+0y—vq),
qg'=(1+q)(8y—vqg).

This system has the trivial equilibrium (0,0) and the nonzero equilib-
rium g*=(6/vX1—v —6), y*=1—- v — 6, which corresponds to the
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limiting values of (3.1) for { — 0. Again Dulac’s criterion implies that
the nonzero equilibrium attracts all nonnegative solutions with y(0) > 0.
Moreover, it is locally asymptotically stable. In a next step we consider
the asymptotically autonomous system

y'=y(l-v—-0—-y—z+0y-vrq),
q'=(1+4g)(6y —vq)

with z(r) — 0, t = =. A result by Markus [57, Theorem 2] implies that
all solutions with y(0)> 0, ¢g(0) > 0 converge toward the equilibrium
y* gt

We now consider (2.7) with { =0 or, equivalently, (2.2). In (2.2),
R(t)—0, t >». Hence z=R/A=(R/NXN/A)=(R/NX1+q)—
0, >, as g is bounded by Theorem 2.1. Hence the endemic equilib-
rium attracts all nonnegative solutions of (2.7) with y(0)> 0 provided
¢ = 0. Moreover, it is locally asymptotically stable. As the solutions of
(2.7) depend continuously on the parameter ¢ (on any finite interval),
and as one can show that liminf, . y(#)> & > 0, where & >0 can be
chosen independently of small ¢, the endemic equilibrium attracts all
nonnegative solutions of (2.7) with y(0) > 0 provided that { > 0 is small
enough. For details see [55].

5. STABILITY OF THE ENDEMIC EQUILIBRIUM AND
SUSTAINED OSCILLATIONS

To study the stability of the endemic equilibrium and its possible loss
due to a Hopf bifurcation (giving rise to sustained oscillations), we
linearize our system of ODEs around this equilibrium. Let U={(y, g, )7,
and rewrite (2.7) as U’'= F(U). The Jacobian of F at the endemic
equilibrium U* is given by

(6 —1L)y* (v )yt -y
DF(U*)=|68(1+qg*) —(v+)(1+g%) 0
fz* {—(v+{)z* —v

The characteristic polynomial has the form

|wl — DF(U*)|=w’+aw? + bw + ¢,
where
a=2v+{+y*, (5.1a)
b=(v+)r+vy*+0z5y*+(v+)y*(1+4q*), (5.1b)
c=(vi+ vl +00)y*(1+q%). (5.1c)
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Note that w =1/D and D is the mean life expectation, whereas 1/y
and 1/¢ are the mean lengths of the effective infective and isolation
periods. The mean life expectation is on the order of some decades,
whereas the infective and isolation periods are on the order of days or
at most weeks. Hence w is much smaller than y or £, and so v is much
smaller than € or (.

From (3.1) we realize that y*, g*, z* are analytic functions of v > ~8
for some 8 > 0 and

y*=v1_6+0(v2), q*=v

5 +0(v?),

{ (5.2)

z2¥=1-0+0(v).

Thus the coefficients (5.1) of the characteristic polynomial are analytic
functions of v > —§ and have the form

a=§+1;6v+0(v2), (5.3a)
b=(—g+(]—6)z)v+0(v2), (5.3b)
c={(1-8)v+0(v?). (5.3¢c)

Note that if U* exists, then R, > 1, that is, v + 6 <1; so we have
6 <1land 1— 6> 0. a, b, and c are all positive; hence the characteristic
equation has either three negative roots or one negative root and two
complex conjugate roots. One easily checks that for small v > 0 there
are three distinct roots.

In the limiting case, v = 0, the characteristic equation is

wi+ Iw? =0.

It has the double root 0 and the simple root w = —¢.

It follows from Rouché’s theorem that we have three continuous
branches w, (v), w_(v), w.(v) of roots of the characteristic equation
that are defined for small v > 0 and satisfy w, (0) =0, w,(0) = —{.

The analytic version of the implicit function theorem implies that
we(v) is an analytic function of v and has a series expansion

we(v)=—{+ Y wjv".

j=1
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It follows from Kato [58, 11, §1, Section 2] that the roots w, (») with
w , (0) = 0 have either an expansion

w(v)= ) w’

=1

Or an expansion

w(v) = i w2, (5.4)
j=1

Fitting these expansions into the characteristic equation rules out the
first possibility, whereas (5.4) with £ =»'/? yields

szl.fwlz + (1 6)] + ,93[w%+2§w1w2 +(%+(1— 9)2)w1] =0(&?).
Hence,

wi=0-1, wzz—zig[wlz+%+(1—8)2].

Note that as 6 <1, we have

wo=+i(1-6)7% w,= (¢ +0°—62).

1
2{0
Hence the three roots are

1

W, =ii(1‘"9)]/2V1/2+2—§6

(60°—6° =)y +0(v*7?), (55a)

and

w, = —{+O(v). (5.5b)

Using ¢ as a bifurcation parameter, we see that the roots w, cross the
imaginary axis from left to right when ¢ crosses a number close to
62(1—6) from right to left. Analyzing the dependence on ¢ more
closely and using the implicit function theorem, one can show that this
crossing is transversal. As nonresonance holds, we can conclude that
there is a Hopf bifurcation close to ¢ = 62(1— ).
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THEOREM 5.1
There is a function {(v) defined for small v >0,

L(v)=86°(1—0)+0(v'?),

with the following properties:

(a) The endemic equilibrium is locally asymptotically stable if { > £ (v)
and unstable if ¢ < {(v), as long as { does not become too small.

(b) There is a Hopf bifurcation of periodic solutions at { = {(v) for
small enough v > 0. The periods are approximately

T_ 2T 2 _ 27
3wl (1-0)" 0 oy*

in the neighborhood of the Hopf bifurcation point.

The second approximation of the period T follows from (5.2). It
coincides with the quasi-period found in the model without isolation
(see [1}, e.g., formula (4.5)).

The global theory of Hopf bifurcation for differential equations (see,
e.g., [39-62]) suggests that there is a branch (connected set) of periodic
solutions emanating at {,(v) that is global in the following sense. Either
the parameter { associated with the periodic solutions tends to infinity,
or the amplitudes of the solutions tend to infinity, or the periods tend to
infinity (in a certain generalized sense), or the branch connects to
another Hopf bifurcation point. Qur a priori bounds (see Theorem 2.1)
preclude that the amplitude tends to infinity. The fact that the endemic
equilibrium is globally asymptotically stable for very small and very
large positive values of ¢ (see Theorem 4.3) excludes that the parameter
¢ tends to infinity. Though we cannot rule out that the periods tend to
infinity, we may guess the existence of a second Hopf bifurcation point.
This second Hopf bifurcation point cannot exist for values of [ that are
large compared to v, for our previous procedure would have detected it.
Hence we suspect that there is a second Hopf bifurcation point for
positive ¢ that are of the same order of magnitude as v. (Actually we
did not at first find the second Hopf bifurcation point by this reasoning,
but by numerical calculations with Auto [48])

We look for ¢ in the order of magnitude of v, i.e., we substitute

=y
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and consider 7 as a variable parameter. Then, from (3.1),

y*=v(l+n)k, q* = bk, z* = Ok,
_ 1—v—28
v(l+mn)+6n’

At

that is,

R

q*=1;,,,9+0(r/),

2 =1-0+0(v).

107

(5.6a)

(5.6b)

(5.6¢)

Hence the coefficients (5.1) of the characteristic polynomial take the

form

|

a=(2+n+(1+n) t9)u+0(1/"),

o7

b= (1+n)1(71_6)zv+()(v2),

1—86

c=(1+n)(1—8)(1+

\

)v2+0(y3).

Thus the characteristic equation takes the form

w? + pA(v)w? + vB(v)w + v C(v) =0

(5.7a)

(5.7b)

(5.7¢)

(5.8)

with functions A(v), B(v), C(v) that are analytic in v > —6 for some

& > 0 (which may depend on 7) and

A =2+ 5+ (1= m) 15,
B(O)=(1+n)£’]A6)b,

C(0)=(1+n)(1—9)(1+ %}

In the degenerate case v =0, the characteristic equation (5.8) has the
triple root w =0. The arguments in [58, II, §1, Section 2] suggest
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looking for the roots of (5.8) in the form

o€
— i’k
w= Z o v/,

i=1
with k being either 1, 2, or 3. We first look for roots of the form
w=rprw,
Substitution into (5.8) and division by »? yields
vw? 4+ vA(v)Ww? + B(v)w + C(v) =0. (5.9)

As A(0), B(0), and C(0) > 0, the analytic version of the implicit function
theorem (see [63, Theorem 2.3, Section 2.2]) tells us that (5.9) has a
unique root w for small » > 0 that is strictly negative. Moreover, W is
an analytic real-valued function of v. Hence, for small » > 0, there is a
unique root w = yw(w») of (5.8).

We now look for roots w of the form w = W, & = v!/2. Substitution
into (5.8) and division by £* yields

W3+ eA(e?)WE + B(e)W + eC(&2) =0. (5.10)

For £ =0, (5.10) has the three distinct solutions

W =0, +iy/B(0) .

The analytic version of the implicit function theorem implies that for
small £ > 0, there are three distinct roots w,,, w_ of (5.10). These roots
depend analytically on &; w,(0)=0, w ,(0) = + iy B(0) . The root ew,
of (5.8) is actually of the form »w and so coincides with the strictly
negative root we have found before. The roots w, = ew , of (5.8) have
expansions B R

>x
wo(e)= ) as’

=1

with

R
+

il
H+
o
—
)
"

I
H-

i(1+n)(1—9)2]1/2_ (5.11)

]
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In order to determine a," we substitute
W=af+ ate+0(e?)

into (5.10). Using (5.11) and noticing that (o] )* =(a; )* = af, this
yields

safas +[2en+ LEDU=0) ) op (1+n)(1—9)

'r;-i-l—B

+(1+79)(1-8)————=0.

After some algebra we obtain

(12+=m[ﬁzn2+(9~1)n—(l—6)2].

Summarizing our calculations, we obtain that

2

ﬂwi(8)=32a2+0(83)=2(1__8—h9)9n
x[0%07 + (6 —1)n - (1- 0] + O(£?),
(5.12a)
57172
Jw,(e)=+e¢ (1+71)£)1_9) ] +0(&%)

— /oy (1= 0) +O(&?). (5.12b)

In the last equality we have used the first equation in (5.6). In order to
detect a potential Hopf bifurcation point we consider the equation

Rw_ (g)=0.

We see that for small £ >0, Rw (&) =0 occurs for n being close to

— P (1+V14467)+ O(e),

KSEYE

where 7, > 0 is the epidemiologically relevant one. Further we see that
the roots w, (&) cross the imaginary axis from left to right when 7%
crosses a number close to n, from left to right. Analyzing the depen-
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dence on n more closely and using the implicit function theorem, one
can show that this crossing is transversal. Returning to our original
parameterization ¢ = vm, we can formulate the following result con-
cerning a second Hopf bifurcation point.

THEOREM 5.2
There is a function {(v) defined for small v > 0,

_6(l+v]+492)v+()(u3/2),

1
20°

{i(v) =

with the following properties:

(a) The endemic equilibrium is locally asymptotically stable if £ < {(v)
and unstable if { > {(v), as long as { does not become too large.

(b) There is a Hopf bifurcation of periodic solutions at { = ¢(v) for
small enough v > 0. The periods are approximately

T =

2w 2w ( 1 )
Sw_ 1 yey* \Wi-9

in the neighborhood of the Hopf bifurcation point.

6. BACK TO THE “REAL” WORLD

The analytical results of Section 5 suggest that there is a wide range
of lengths of the isolation periods for which sustained oscillations exist
provided that the other parameters are chosen appropriately. In this
section we will check what happens for a realistic choice of parameters.
Our results in Section 5 are formulated in a scaled time, and going back
to real time requires knowledge of the unknown rate o or, equivalently,
of the basic replacement ratio %, = 1 /6. In models without an isolation
period, the so-called mean age at infection (or mean sojourn time in the
susceptible class) has been used to estimate .%, [8, 10] (see [1] and [6]
for more references). This approach requires, however, that the disease
dynamics be at their endemic equilibrium. It has also been applied
to highly oscillating endemic diseases, nevertheless, and Dietz and
Schenzle [1] seem to be only ones who mention that the estimates
obtained this way may be biased. In the following we will investigate
how far the mean age at infection can be used for parameter estimation
if the force of infection is periodic rather than constant.
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6.1. ESTIMATING THE TEMPORAL MEAN OF A PERIODIC INFECTIOUS
FORCE

Following Dietz and Schenzle [1] we consider a cohort of individuals
who have been born into the susceptible class at the same time s. Let a
denote their age, which coincides with the time they have spent in the
susceptible class. Let p(s,a) be the proportion of this cohort that are
still susceptible at age a (or equivalently at time s + @). Then, in analogy
to Equation (2.1a), we have

%
=g P(s.a) = —op(s,a)y(s+a). (6.1)
We have discarded the mortality rate because the data are collected

from individuals who leave the susceptible class by infection. Further we
have the initial condition

p(s,0)=1. (6.2)

Integration yields

p(s.a) =exp(—f0aa-y(s+b)db). (6.3)

Assume that y is periodic with period T. Then p(s,a) is T-periodic
in s for any a > 0. This implies that

1 (7 1 (7
pla) == s+t.a)dt == t,a)dt 6.4
pa) =7 [ pl yai = [ p(1.a) (6.4)
is independent of s and is the temporal mean of the probability of being

still susceptible at age 4. The mean sojourn time in the susceptible
class, D¢ (or mean age at infection), is then given by

D, = —f:adﬁ(a) j:ﬁ(a)da. (6.5)

If y = y* is constant, then p(a)= p(s,a)=e 7% and Dg=(ay*) " If
v is T-periodic, let

7= [ vty (6.6)

such that ¢y is the temporal mean of the periodic infectious force o y.
Jensen’s inequality, applied to (6.4), (6.3), implies that

pla) > e T
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By (6.5),

1
D, <7V

(6.7)

To obtain an estimate of ¢y from above, we make the following
calculation:

fp(s a)da= i f(T”I)T (s,a)da= Z f p(s,a+ jT)da

j=0
=) fTexp( cry(s+b)db) da
i=0 0

fTexp(—jayT fay(s—%b)db)da
j=070

1 T a
=——— | exp|l—]| oy(s+b db)da
e vl [

Hence, by (6.4) and (6.5),

Dy =+

,N( )f[exp( faay(s+b)db)a’ads.

This yields the estimate

T
D <

1—e 9%

Combining this estimate with the one in (6.7) we obtain

A <op<—sin[1- 4
DS oy Tn DS .

(6.8)

This shows that

_ 1
O'y'-":D—S,

provided that 7'/ D was small enough, which typically is not the case.
No further progress in estimating the parameters can be made unless
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we make the plausible, but potentially unrealistic, assumption that the
temporal mean of y is roughly the same as its equilibrium value,

y=yr. (6.9)

As pointed out in Section 5, Equation (5.2a) presents a good approxi-
mation of y* in the real situation. Solving for 6 yields

v I 1

B:y’“rv: O'y*+,u=Da'y*+1’

(6.10)

where D =1/ p is the life expectation. The results of Section 5 suggest
that we have sustained oscillations for ¢, < ¢ < {,. If

1
T

denotes the mean length of the isolation period, we have sustained
oscillations if

0
Dj <Dy < Dy,

where DJ), D/, are the necessary minimum and maximum lengths of the
isolation period. By Theorems 5.1 and 5.2, they are approximately given
by

- 267
(1-8)(1+V1+467)

b1
I, 0(1-0)"

o2

yDg = . (6.11)

6.2. A MODEL WITH A LUMPED LATENCY PERIOD

In our original model, 1/y is the length of the effective infectious
period. This model does not allow comparison to real data, however,
because, for mathematical simplicity, we have neglected the latency
period (period between moment of infection and moment of becoming
infectious), which may be as long or even longer than the infectious
period (see [6, Table 3.1]).

Rather than redoing the complete analysis for a model with latency
period (though this can be done), we lump the exposed individuals (i.e.,
those in the latency period) and the infectious individuals by a brute
force argument. 1/y then becomes the sum of the latency period and
the effective infectious period.
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The model with latency period takes the form

d |
ES:A—MS—G'SZ,

d |
FE=—(u+y)E+ oS5,
d

ail= ety +yE,
d

0= (1t 60+,
d

ER: —uR+ £Q,

A=S+E+1+R.

The notation is the same as in Section 2 except for the following: £
denotes the number of exposed individuals, that is, the number of
individuals in the latent period, 1/, is the mean length of the latent
period, and 1/, is the mean length of the effective infectious period.
For notational reasons that become apparent later, the per capita rate
of infection has been denoted by & rather than o. We introduce the
sum of the exposed and infectious individuals, J,

J=FE+1

The differential equation for 7 then takes the form

d
gl =—(pryi +ty) [+,
whereas by adding the differential equations for E and I we obtain

d o
EJ:_M1_721+USZ-

The brute force assumption consists in taking the quasi-steady state for
the [ differential equation, which could rigorously be justified if v,
were large compared with the other parameters:

Yi
[=———J.
KLYty
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Replacing the differential equations for £ and I by the equation for J
and substituting the last expression for 7 yields

d J
ES'—‘/\—,LLS—O'S—,
d J
gt-J=—(;L+y)J+(rSZ,

GO=—(utE)0+vl.

d
TR=— uR+ £Q,
A=S+J+ R,
with
y= Y172 o =0 Yi
Lyt mty tyo

This system is of the same form as system (2.1), the only difference
being that
1

1 1
—=—+—=D.+ D,
Y Y Y2 -

is approximately the sum of the mean length of the latency (exposed)
period D, and the mean length of the effective infectivity period D,.
Hence 1/v is at least as large as the mean length of the incubation
period (period from infection to appearance of symptoms). In diseases
where symptoms show up in a pronounced and severe form, 1/y may
more or less correspond to the mean length of the incubation period
plus perhaps 1 day. Whatever 6 may be in its feasible range between 0
and 1, formula (6.11) provides the estimate

DB;4(DE+D,),

with this estimate being an equality if and only if 6 =1/2. So the
minimum length of the mean isolation period required for sustained
oscillation is at least four times as large as the mean length of the
incubation period. For some childhood diseases this appears too large
to be realistic, but it may still be of the right order of magnitude.

6.3. COMPARISON TO SCARLET FEVER IN ENGLAND AND WALES,
1897-1978

Anderson and May [10, Tables 1 and 2; 6, Table 6.1] report an
average age of infection between 10 and 14 years, a mean interepidemic
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period of 4.4 years, and an average life expectation that rises from 60 to
70 years. Hence we assume

D =65 yr, D¢=12yr, T=44yr.
We further identify the temporal mean j defined in (6.6) with the

endemic equilibrium value y* (which is potentially not justified) and so
obtain from the estimates in {6.8) that

1 .1 T
D—S<O'y <—'T1n(1—‘D—S). (612)

In numbers,

0.0833 < ory*[yr '] < 0.1038.

The approximate formula (6.10), 8 = (Do y*+1)~', implies the approxi-
mate estimates

0.1291 < 6 < 0.1559.
As

1 1 1 1
ﬁoZeﬂ:@(Trm)'*@*

we obtain the following lower and upper bounds for the basic replace-
ment ratio .%,:

6.4 <R, <7.7.

Our estimate for 6 implies 6 <1/2, that is, the formula

6 1
Dy=~—"r
Yo o 9(1 — 9)
in (6.11) is decreasing in 6, whereas the formula

D~ (1= 9)(1+V11467)

in (6.11) is increasing in 6. This makes it possible to give upper and
lower bounds for Dj and D)):

1

Dy
0.0188 < D < {.0281.

7.6 < yDQU, < 8.9,
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Notice that the lower and upper estimates for %, are associated with
the lower and upper estimates of yD°, respectively, whereas the lower
estimate for %, is associated with the upper estimate for Dl /D, and
the upper estimate for %, with the lower estimate for D / D

Anderson and May [6, Table 3.1] report a latent period of 1 or 2 days,
an infectious period of 14-21 days, and an incubation period of 2 or 3
days. This suggests an effective infectious period that may be as short as
1 or 2 days, a sum of latent and effective period that is 1/y =3 days,
and an isolation period between 2 and 3 weeks. Anderson et al. [64]
report isolation periods of 2 and 3 weeks or even longer. It is possible,
however, that there are infections without any symptoms or with slight
symptoms such that 1/y may be larger than 3 days. We stick to 1 /y =3
days, which, for the lower estimate %, = 6.4, gives us a window

22.8 days < D, <1.83 yr

for isolation periods that make the endemic equilibrium unstable and a
window

26.7 days < D, <1.22yr

for the upper estimate %, = 7.7. So the minimum isolation periods that
make the endemic equilibrium unstable are of the right order of
magnitude.

The formulas in Theorems 5.1 and 5.2 provide the periods of sus-
tained oscillations in case the length of the isolation period is slightly
larger than the necessary minimum length Dy (Theorem 5.1) or slightly
smaller than the required maximum length DQ (Theorem 5.2). Notice
that, with

1/y=D,+D,

now being the sum of the lengths of the latency period and the effective
infectivity period, the formula in Theorem 5.1 is exactly analogous to
the formulas given by Dietz [15] and Anderson and May [10] for a
model with latency but without isolation period. In real time, the
lengths of the interepidemic periods are given by

T 1/2
—“=2frr( 1/7)

o ay*

if the length of the isolation period is slightly larger than the minimum
period and by

el )
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if the length of the isolation period is slightly smaller than the maximum
period. These formulas provide interepidemic periods that are slightly
less than 2 yr and so are much shorter than the reported average length
of 4.4 yr but still of the right order of magnitude. We emphasize that
the above formulas hold only at the bifurcation points, and we refer to
the numerical results in the next section for isolation periods that are
not close at the bifurcations points.

7. NUMERICAL RESULTS

In this section we study the model equations numerically for the
parameters that we believe mimic the scarlet fever situation in England
and Wales from 1897 to 1978. As in Section 6, we assume a life
expectation of 65 yr and a mean age at infection of 12 yr. We further
assume that the sum of the length of the latency period and the
effective infectious period (which should be equal to or slightly larger
than the length of the incubation period) is 3 days. From these parame-
ters we can calculate v, once we have estimated 6. Indeed,

v _ p_ 3days _
5=y 65yr 0.000126.

In the previous section we estimated the basic replacement ratio %,
to be between 6.4 and 7.7 and 8 =1/.%, to be between 0.1291 and
(0.1559. These estimates were based on the possibly unrealistic assump-
tion that the temporal mean of a periodic solution equals the endemic
equilibrium value.

Calculations with Doedel’s [48] program Auto (see Figure 1) show
that the endemic equilibrium loses its stability for some lengths of the
isolation period if &, is smaller than 14.

The calculations with Auto provide that the endemic equilibrium is
unstable for isolation periods whose lengths are between 23.8 and 629.5
days if %, = 6.4 is at its lower estimate, and for isolation periods whose
lengths are between 28.7 and 419.8 days if %, =7.7 is at its larger
estimate. Recall that the approximate formulas in Section 5 suggest an
unstable endemic equilibrium when the length of the isolation period is
between 22.8 and 667.3 days for R, = 6.4 and between 26.7 and 447 days
for R, =17.7.

In the following numerical calculations we have chosen %, to be at
its lower estimated value, R,=6.4. Recall that the lower estimate
R, =6.4 would be sharp if the endemic were at its (mathematical)
equilibrium state. The lower estimate is the one that is typically taken in
the literature. Compared to the upper estimate, the lower estimate has
the advantage of being independent of the length of the interepidemic
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FiG. 1. (a) The basis replacement ratio %, versus the minimum and maximum
lengths of the isolation period between which the endemic equilibrium is unstable.
Fig. 1.b. Magnification showing %, versus the minimum length.
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period (see the derivation of the estimates in Section 6.1). The Auto
calculations show that the Hopf bifurcation (with the length of the
isolation period being the bifurcation parameter) is supercritical at both
bifurcation points (Figure 2). We conjecture that the two bifurcation
points are connected by a global branch of periodic solutions, though
the Auto calculations do not confirm this.

But we guess that this is due to Auto not working properly in the
respective parameter region rather than to something fancy going on.
Numerical integration according to Gear [65] still provides convergence
toward periodic oscillations in parameter regions where Auto does not
seem to work.

The periods of the periodic solutions depend rather dramatically on
the length of the isolation period (Figure 3). The observed lengths of
interepidemic periods (3—6 yr) according to (6, Table 6.1] are feasible
with isolation periods between 27 and 57 days. These lengths seems to
be unrealistically high, but this may be due to the crudeness of our
model (see Discussion). With a model without an isolation period,
Anderson and May [6, Table 6.1] can mimic interepidemic periods
between 4 and 5 years.

Figures 4 and 5 display numerical solutions {according to [65]) of
system (2.5) in terms of /N, the fraction of infective (nonisolated)
individuals, for various lengths of the isolation period (1 day, 15 days, 25
days, 30 days, and 900 days) in order to illustrate how the stability of the
endemic equilibrium decreases and is finally lost, as the length of the
isolation period increases, and is eventually regained when it becomes
very large.

8. DISCUSSION

Hamer [41], in 1906, believed that autonomous internal forces are
responsible for the sustained oscillations in childhood diseases. His
point of view seemed to be refuted when more precise mathematical
models were developed. In 1921, Martini [66] gave an explicit formula-
tion of the standard model for endemic diseases. This model neglects a
latency period and is equivalent to the limiting case of our model (2.1)
for ¢ —»o. Lotka [67] showed in 1923 that an endemic equilibrium,
whenever it exists, is unique and locally asymptotically stable, allowing
only dampened oscillations. In 1975, Dietz [8] established the connec-
tion between the quasi-periods of these oscillations and the mean age at
infection (mean sojourn time in the susceptible class) and extended the
model to include a latency period [15] in 1976. Inclusion of the latency
period does not change the local stability properties of the endemic
equilibrium but gives a more realistic relation between the length of the
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FIG. 2. (a) An Auto plot of the lower and upper amplitudes of the periodic
solutions (in terms of the fraction of infective (nonisolated) individuals) versus the
length of the isolation period. #; is chosen at its lower estimate, 6.4. HB, Hopf
bifurcation point; sss, (locally asymptotically) stable steady state; uss, unstable steady
state; sp, (locally asymptotically orbitally) stable periodic solution. (b) Magnification
of the left branch.
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F1G. 3. An Auto plot of the periods of the periodic solutions versus the length of
the isolation period. .4, is chosen at its lower estimate, 6.4

interepidemic periods {periods between two peaks or valleys of disease
prevalence) and the mean age at infection. Global asymptotic stability
of the endemic equilibrium was not shown until recently [68]. Thicme
and Castillo-Chavez [43, Theorem 5(c)] showed that the introduction of
arbitrary (rather than exponential) distributions of the lengths of la-
tency and infection periods and even of infection-age-dependent infec-
tivity cannot destroy the local stability of the endemic equilibrium as
long as permanent immunity and nonfatality of the disease are assumed.

Autonomous explanations of recurrent measles outbreaks had a
short comeback in the work by Soper [42] in 1929, but his model is
structurally unstable and his sustained oscillations are only marginally
stable. According to Bailey [69, p. 12], the failure of deterministic
models to reproduce undamped oscillations “led to their abandonment
in many quarters and consequent replacement by corresponding proba-
bility, or stochastic representation.” For childhood diseases the replace-
ment was initiated by Bartlett {11, 12] in the late 1950s. In the early
1970s, deterministic explanations of recurrent outbreak were revived,
however, in the numerical work by London and Yorke [13, 14], which
introduced an external periodic forcing and led Yorke et al. [70] to
“believe that stochastic effects play a role, but only one which is
secondary to seasonal variation in transmissibility.” Their findings
were supported by later formal and analytic work by various authors
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FiG. 4. Numerical integration of the model equations according to Gear. The
fraction of infective (nonisolated) individuals is plotted versus time. %, is chosen at
its lower estimate, 6.4, The length of the isolation period has been chosen (from
above to below) to be | day, 15 days, 25 days, 30 days. 900 days.
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Fi16. 5. The fraction of infective (nonisolated) individuals versus time in a time
window 100—-120 yr after the start. 9%, is chosen at its lower estimate, 6.4. The length
of the isolation period has been chosen (from above to below) to be 25 days and 30
days. The dashed lines represent the fractions of infective individuals at the endemic
equilibrium. For an isolation period of 25 days, this fraction is 0.000108; for an
isolation period of 30 days, it is 0.000112.

(see the Introduction). Other ingredients that have been shown to
destabilize the endemic equilibrium are nonlinear incidence rates and
age-dependent infection rates (see the Introduction). The nonlinear
incidence rates that have been considered so far are difficult to explain
for childhood diseases, and the assumptions required for age-dependent
infection rates to produce sustained oscillations are rather extreme.
Schenzle’s [2] complex model that combines seasonal forcing with age
dependence by incorporating the school system has led to very good
agreements with observations. (For a more detailed historical review,
see [1].)

Seasonal variation in the transmission rate does not restore the
validity of Hamer and Soper’s opinion that autonomous (deterministic)
forces can generate sustained oscillations. Yorke et al. [70, p. 114]
compare the level of susceptibles in a deterministic model “to a pendu-
lum swinging back and forth past equilibrium. Seasonal variation gives
the pendulum a shove every year and these regular shoves are required
to keep the pendulum in motion.”

In this paper we consider an autonomous mechanism that seems to
have been neglected so far: isolation (or quarantine), which takes
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account of the fact that sick individuals stay at home afier they show
sufficiently severe symptoms. Traditional models have merged isolated
and immune individuals into one class. We distinguish them because
immune individuals, though they do not play an active ¢pidemiological
role, may play a very important passive one. Immune individuals act as a
buffer, because any contact of an infective with an immune individual is
wasted from the infective agent’s point of view. The presence of the
immune individuals introduces some kind of friction that dampens the
oscillations of the endemic pendulum described by Yorke et al. [70]. In
contrast to immune individuals, isolated individuals do not act as a
buffer because, by their very nature, they are not on the epidemic scene.
Splitting off the isolated class reduces the buffering impact of the
immune class provided that an individual’s rate of contact with other
individuals is largely independent of the number of individuals avail-
able. We think this is a realistic assumption as long as the number of
available individuals is rather large (see the model explanation in
Section 2). Mathematically this feature is incorporated by dividing the
usual bilinear mass action incidence term by the number of active, that
is, nonisolated, individuals. We find that in a suitable range of the other
parameters the endemic equilibrium is locally asymptotically stable for
small isolation periods and that enlarging the mean length of the
isolation period (in a range of a realistic order of magnitude) makes the
endemic equilibrium less stable until it loses its stability, giving rise to
sustained oscillations. The range of isolation periods for which sus-
tained oscillations exist typically extends from a certain minimum length
to a considerably larger maximum length beyond which the endemic
equilibrium gains back its stability. Heuristically the destabilizing effect
of increasing the mean length of the isolation period can be understood
via the decrease in the buffering role of the immune individuals as
explained above. Removing this buffer altogether (by making the isola-
tion period extremely long) has a stabilizing effect, however, which
seems difficult to explain.

In order to check whether the parameter range for sustained oscilla-
tions is realistic, we compare our results with data of the scarlet fever
endemic in England and Wales from 1897 to 1978 [6]. Unfortunately, a
crucial parameter, the basic replacement ratio %, cannot be deter-
mined precisely because of the periodic behavior of the scarlet fever
endemic. This complication has been neglected in the literature so far.
The formulas derived in Section 5 suggest that sustained oscillations are
possible for a length of the isolation period between 23 and 668 days at
the lower estimate of . %, #, = 6.4, and between 27 and 447 days at the
upper estimate of .#,, #, = 7.7. The numerical results indicate that the
isolation period should have a length between 24 and 630 days for the
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lower estimate of %, to guarantee undamped oscillations, and a length
between 29 and 420 days for the upper estimate of %,,.

The interepidemic periods we have numerically found depend strongly
on the length of the isolation period. The empirically observed interepi-
demic periods stretch from 3 to 6 yr [6, Table 6.1]. We obtain an
interepidemic period of 3 yr for an isolation period of about 27 days,
and an interepidemic period of 6 yr for an isolation period of about 57
days. In particular, the latter value is unrealistically large. This does not
rule out isolation as an explanation for the observed undamped oscilla-
tions. To keep the analysis relatively simple, we have chosen a model in
which the durations of the various stages of the disease (latency,
infectiousness, isolation) and the overall sojourn time in the system are
exponentially distributed. Exponentially distributed durations have a
standard deviation that is as large as their mean value, a property that is
certainly not satisfied in reality. Introducing other than exponentially
distributed durations of the various stages typically has a destabilizing
effect. It is well known that standard endemic models in which infective
individuals become susceptible again (possibly after a period of tempo-
rary immunity) have a locally asymptotically endemic equilibrium if the
durations of the latency, infectious, and immune periods are all expo-
nentially distributed (see [71], for example) but that the endemic equi-
librium can be unstable if some of the periods have durations for which
the standard variation is significantly lower than their mean (see [5] for
a survey and references; see also [72, 73]). We therefore expect that
replacing the exponentially distributed durations of the various disease
stages by more realistically distributed durations will presumably push
the required parameter values into a more realistic range.

Generalizing our experience with the scarlet fever data, we anticipate
that our model will work quite well as an explanation for sustained
oscillations for childhood diseases in which the mean age at infection is
relatively large (above 10 yr) and the incubation period is short. We
found that our model works particularly poorly for measles, where the
mean age at infection is about 4.5 yr and the incubation period lasts
from 8 to 13 days [6, Tables 6.1, 3.1]. A possible explanation consists in
the fact that real populations are split up into various age groups such
that the contact rates within these groups are much higher than be-
tween these groups, whereas in our model we have assumed homoge-
neous contact rates. We conjecture that this simplification provides
worse quantitative agreements with data the lower the mean age at
infection.

To summarize, we can state that our model shows that an isolation
period makes the endemic equilibrium less stable and has the potential
to lead to sustained oscillations. Whatever the main factor may be in



RECURRENT OUTBREAKS AND ISOLATION 127

generating sustained oscillations (if there is a main factor at all), the
other factors (seasonal forcing, age-dependent infection or susceptibility
rates, stochastic effects, all of which we have neglected in our model)
will also play an important role and will change the parameter ranges at
which the oscillations occur as well as modify the interepidemic periods.
It is obvious from this analysis, however, that the isolation period (in a
realistic range) has a destabilizing effect and, if it is not sufficient to
induce sustained oscillations by itself, certainly makes it easier for other
factors to drive the disease dynamics into undamped oscillations. Hamer
and Soper may not be that wrong after all.
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in part (H.R.T.) by National Science Foundation grani 9101979.
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