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Due to the increasing risk of drug resistance and side effects with large-scale antiviral use, it has been
suggested to provide antiviral drugs only to susceptibles who have had contacts with infectives. This
antiviral distribution strategy is referred to as ‘targeted antiviral prophylaxis’. The question of how effec-
tive this strategy is in infection control is of great public heath interest. In this paper, we formulate an
ordinary differential equation model to describe the transmission dynamics of infectious disease with tar-
geted antiviral prophylaxis, and provide the analysis of dynamical behaviours of the model. The control
reproduction number Rc is derived and shown to govern the disease dynamics, and the stability analysis
is carried out. The local bifurcation theory is applied to explore the variety of dynamics of the model. Our
theoretical results show that the system undergoes two Hopf bifurcations due to the existence of multiple
endemic equilibria and the switch of their stability. Numerical results demonstrate that the system may
have more complex dynamical behaviours including multiple periodic solutions and a homoclinic orbit.
The results of this study suggest that the possibility of complex disease dynamics can be driven by the
use of targeted antiviral prophylaxis, and the critical level of prophylaxis which achieves Rc = 1 is not
enough to control the prevalence of a disease.
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1. Introduction

Vaccination and antiviral drugs, along with non-pharmaceutical measures (case isolation, house-
hold quarantine, school or workplace closure, restrictions on travel), constitute a powerful line to
defend against influenza outbreaks [9]. However, a vaccine can only protect against the strains of
diseases that are expected to circulate in the next year. It is possible that a strain becomes common
for which the vaccine does not provide protection since the virus changes rapidly. For example,
in the 2003–2004 season, the vaccine did not protect against a predominant flu strain, A/Fujian
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[26]. Thus, antiviral drugs would be an attractive first line of defence in the first wave of pandemic
infectious disease.

Antiviral drugs can be used to relieve the symptoms and lower infectiousness of the infected
cases, and to prevent the suspectibles from being infected as well. For example, neuraminidase
inhibitors and M2 inhibitors (adamantane derivatives) are two classes of antiviral drugs against
influenza. The two classes of antiviral drugs can not only hasten infection clearance and lower
infectiousness, but also reduce the probability that the suspectibles or exposed individuals infect
with influenza [8]. Recently, there have been several literatures focusing on the impact of antiviral
drugs as strategies for mitigating an influenza outbreak ( see [10, 22] and references therein). Mer-
ler et al. [22] used a stochastic, spatially structured individual-based model to evaluate the efficacy
of interventions based on the age-prioritized use of antiviral drugs, and Gani et al. [10] studied
the potential impact of antiviral drug use during an influenza pandemic. However, widespread
use of antiviral drugs has the potential to promote the emergence of resistant strains [21], and
resistance to the antiviral drugs is more commonly associated with therapeutic than with prophy-
lactic use [12]. Accordingly, the best use of these antiviral drugs would be prophylactic rather
than therapeutic [18]. Since the use of antiviral drugs for prophylaxis is expensive, supplies will
be limited, and prolonged use will increase the risk of side effects, antiviral drugs should be
offered to susceptibles who have had contact with infectives. We will refer to this antiviral distri-
bution strategy as ‘targeted antiviral prophylaxis’ [18]. Longini et al. [18] pointed out that targeted
antiviral prophylaxis has potential as an effective measure for containing influenza until adequate
quantities of vaccine are available. Hence, assessing the effectiveness and implications of the
targeted prophylaxis intervention strategy can potentially help guide us to globally eliminate the
infectious diseases and is of great public heath interest.

The use of mathematical models has proved a powerful tool for exploring the complex landscape
of intervention strategies [9]. There have been several published mathematical models focused on
exploring the impact of the various preventive and control strategies on transmission dynamics
of the infectious diseases [2–4, 16, 20, 21, 23]. These models have provided many useful insights
into preventing and containing the spread of the infectious diseases. Studies on mathematical
models with targeted antiviral prophylaxis are also available in the literature. Longini et al. [18]
used a stochastic epidemic simulation model to investigate the effectiveness of targeted antiviral
prophylaxis to contain influenza. In 2005, Longini et al. [19] used an extension of the model in
paper [18] to investigate the effectiveness of targeted antiviral prophylaxis, quarantine, and pre-
vaccination on containing an emerging influenza strain at the source. McCaw and McVernon [20]
developed novel deterministic models which introduce the contact class tracking the number of
individuals in the population who have recently been in close contact with an infected person and
who are therefore eligible to receive antiviral drugs as prophylaxis, and investigated the optimal
use of an antiviral stockpile during an influenza pandemic. Soon after, McCaw et al. [21] extended
the model formulated in paper [20] and considered the impact of emerging antiviral drug resistance
on influenza containment and spread by using the extended model. Thieme et al. [24,25] studied a
model, which is structured by a treatment age a, with targeted antiviral prophylaxis (referred to as
treatment) under the assumptions that infected individuals who receive treatment do not transmit
the disease, and that uninfected exposed individuals who receive treatment either have a reduced
susceptibility (by a factor q(a) ≥ 0) [24] or become permanently immune (q = 0) [25].

The purpose of this paper is to analyse the dynamics of an epidemic model with targeted antivi-
ral prophylaxis. In this paper, we firstly formulate a model with targeted antiviral prophylaxis,
which allows (i) a fraction of treated infectious individuals to transmit the disease; (ii) the possi-
bility that for the fraction of treated infected individuals whose transmission was blocked, further
infection may still occur if they continue to have contacts with infectious individuals; and (iii)
treated individuals (either infected or uninfected) may lose their immunity. We then studied the
mathematical properties of the model both analytically and numerically. Threshold conditions are
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derived in terms of key parameters such as the treatment fraction f and the reduction of suscep-
tibility in treated uninfected individuals γ . These conditions are shown to determine qualitative
behaviours of the model. It is shown that multiple endemic equilibria exist in a certain parameter
region, and that an endemic equilibrium may exist even when the reproduction number is less
than one.

The local bifurcation theory is applied to prove that the system may undergo multiple Hopf
bifurcations which lead to the appearance of two concentric limit cycles. The rich variety of
dynamics of the system is also confirmed by numerical simulations. Our numerical results not
only confirm the stability switches of the endemic equilibria, leading to the appearance of two
periodic orbits, but also suggest the existence of a homoclinic orbit.

It is significant to point out that in the absence of targeted antiviral prophylaxis, our model
reduces to a standard SIRS model, which has much simpler dynamics (e.g. there is no Hopf
bifurcation or homoclinic orbit, and the endemic equilibrium is unique). This suggests that the
introduction of targeted antiviral prophylaxis is responsible for the complex disease dynamics.

The paper is organized as follows. In Section 2, we introduce the model that incorporates targeted
antiviral prophylaxis. Section 3 includes the derivation of the control reproductive number Rc

and a detailed classification of the equilibria of the system. In section 4 we present a bifurcation
analysis including stability switches and the appearance of periodic solutions. Section 5 is devoted
to the numerical study of the system, which confirms/extends our theoretical results and illustrates
the possible existence of a homoclinic orbit. The paper ends in section 6 with a discussion of the
results.

2. Model description

The total population (N) is divided into five epidemiological classes: susceptible (S), treated
(or prophylaxed) (P ), untreated infectious (IU ), treated infectious (IP ), and recovered (R).
A transmission diagram of the model is shown in Figure 5.

Assume that there is a constant recruitment rate � into the susceptible class, and that there
is a constant per capita natural death rate μ. The forces of infection for susceptibles (S) from
untreated and treated infectious individuals are respectively

λU(t) = βk
IU

N
and λP (t) = δβk

IP

N
, (1)

where k denotes the average number of contacts per individual per unit of time, β denotes the
probability that an infection occurs per contact, and δ represents a reduction in the infectiousness
in treated individuals. The rates at which susceptibles are exposed but uninfected, from contacts
with untreated and treated individuals, are

λ∗
U(t) = (1 − β)k

IU

N
and λ∗

P (t) = (1 − δβ)k
IP

N
, (2)

respectively. Assume that a fraction f of all exposed individuals will receive prophylaxis. Then,
the rate at which susceptibles are moved into the P class due to treatment is

f [λ∗
U(t) + λ∗

P (t)].
For those exposed infected individuals who are treated, the transmission can be blocked with
probability c, in which case they will be moved into the P class at the rate f c[λU(t) + λP (t)].
The rest of the newly infected individuals (from the susceptible class) will enter the infectious
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untreated class (IU ) at the rate (1 − f )[λU(t) + λP (t)] and will enter the infectious treated class
(IP ) at the rate f (1 − c)[λU(t) + λP (t)]. Since prophylaxis does not provide complete protection
against the infection, individuals in the treated uninfected class (P ) can still become infected (in
this paper, we refer to this as reinfection) at a possibly reduced rate. Let 1 − γ , 0 ≤ γ < 1,
represent the level of protection by prophylaxis (i.e. γ = 1 for no protection and γ = 0 for
complete protection), then the infection rate for individuals in the P class is γ [λU(t) + λP (t)]
(for ease of reference, we refer to this as reinfection and γ as reinfection coefficient). A treated
individual returns to the susceptible class at the rate σ . An infected individual in the (IU ) and
(IP ) class recovers at the rate η and θη, respectively. Here, θ ≥ 1, or 0 ≤ 1/θ ≤ 1 represents the
reduction in infectious period due to treatment. A recovered individual may lose immunity at the
rate ω (ω = 0 represents the case of permanent immunity). Under the assumption of exponentially
distributed stage durations, 1/η represents the average infectious period absent of treatment, and
1/ω and 1/σ represent the average durations of immunity acquired from infection and prophylaxis,
respectively. All parameters are non-negative.

Let

λ(t) = λU(t) + λP (t) and λ∗(t) = λ∗
U(t) + λ∗

P (t). (3)

Based on the transfer diagram in Figure 1, our model consists of the following ordinary differential
equations: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S ′ = � − [λ(t) + f λ∗(t)]S − μS + ωR + σP,

P ′ = f cλ(t)S + f λ∗(t)S − γ λ(t)P − (σ + μ)P,

I ′
U = (1 − f )λ(t)S − (η + μ)IU ,

I ′
P = f (1 − c)λ(t)S + γ λ(t)P − (θη + μ)IP ,

R′ = ηIU + θηIP − (μ + ω)R.

(4)

All parameters are described above and summarized in Table 1.
Although some analytical results, in addition to numerical simulations, for the full system (4)

will be obtained in the following sections, most of the analytical results will be derived for a reduced
system, in which treated and untreated individuals are assumed to have the same transmission and
recovery rates, i.e. δ = θ = 1. In this case, by letting I = IU + IP , the system (4) reduces to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S ′ = � − [λ̃(t) + f λ̃∗(t)]S − μS + ωR + σP,

P ′ = f cλ̃(t)S + f λ̃∗(t)S − γ λ̃(t)P − (σ + μ)P,

I ′ = (1 − f c)λ̃(t)S + γ λ̃(t)P − (η + μ)I,

R′ = ηI − (μ + ω)R,

(5)

Figure 1. Disease transmission diagram of the model. The natural death rate from each class is not shown. All rates are
per capita except ωR, which represents the rate at which recovered individuals becomes susceptible again after losing
immunity.
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Table 1. Definitions of frequently used symbols.

Parameter Description

S(t) Number of susceptible individuals at time t

P (t) Number of treated (prophylaxed) individuals at time t

IU (t) Number of untreated infectious individuals at time t

IP (t) Number of treated infectious individuals at time t

R(t) Number of recovered individuals at time t

x(t) Fraction of susceptible individuals at time t

y(t) Fraction of infectious individuals (untreated and treated) at time t

z(t) Fraction of recovered individuals at time t

� Recruitment rate of individuals
1/μ Average life-span
1/ω Period of immunity acquired by infection
1/σ Average time of losing drug-induced protection
k Number of contacts per individual per unit time
β Probability of becoming infected per contact
δ Reduction factor in infectiousness due to the antiviral treatment
1/η Infectious period of untreated individuals
1/θ Reduction in infectious period from treatment
c Probability that transmission is blocked in an infected individual due to treatment
f Proportion of exposed individuals that receive prophylaxis
γ Relative susceptibility due to administration of prophylaxis

where

λ̃(t) = βk
I

N
and λ̃∗(t) = (1 − β)k

I

N
. (6)

Notice that the total population size N satisfies the equation

N ′ = � − μN,

and that N(t) → �/μ as t → +∞. Thus, the biologically feasible region for system (7) is

� =
{
(S, P, I, R) : 0 ≤ S, P, I, R, S + P + I + R = �

μ

}
,

which is positively invariant. We will restrict our attention to model behaviours in � and assume
that the total population has stabilized at N = �/μ. In this case, it is easier to use fractions

x = S

N
, y = I

N
, z = R

N
,

and

w = P

N
= 1 − x − y − z,

and thus, system (5) is equivalent to the following three-dimensional system:
⎧⎪⎨
⎪⎩

x ′ = μ − [λ̃(t) + f λ̃∗(t)]x − μx + ωz + σ(1 − x − y − z),

y ′ = (1 − f c)λ̃(t)x + γ λ̃(t)(1 − x − y − z) − (η + μ)y,

z′ = ηy − (μ + ω)z.

(7)

where λ̃(t) and λ̃∗(t) are given in Equation (6) with N being replaced by �/μ.
A detailed analysis of system (7) will be carried out in the following sections. Numerical sim-

ulations of the full system (4) suggest that all the behaviours identified for the reduced system (7)
are also present in system (4). The results will be used to assess the effectiveness and implications
of targeted antiviral prophylaxis strategy for disease control.
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3. Reproduction numbers and equilibria

In this section, we consider the existence and stability of possible equilibria and determine how
they depend on the reproduction numbers of the disease.

3.1. Reproduction numbers and the disease-free equilibrium of system (4)

The basic reproduction number (when f = 0) and the control reproductive number (when f > 0)
for the full system (4) are

R0 = βk

η + μ
and RcF = (1 − f )βk

η + μ
+ f (1 − c)δβk

θη + μ
, (8)

respectively (the subscripts c for control and F for full system). Note that βk represents the
average number of secondary infections produced by one untreated infectious person per unit
time in a susceptible population, and 1/(η + μ) represents the average infectious period of such
an individual. Thus, R0 gives the average number of secondary infections produced by an untreated
infectious individual during the entire infectious period in a susceptible population. Similarly, (1 −
f )βk/(η + μ) and f (1 − c)δβk/(θη + μ) represent the average number of secondary infections
generated by an untreated and treated (but transmission is not blocked) infectious individual,
respectively. Thus, RcF gives the reproductive number in the presence of treatment. Clearly,
RcF ≤ R0, and RcF = R0 if f = 0.

System (4) always has the disease-free equilibrium (DFE) E0 = (S0, 0, 0, 0, 0), where S0 =
�/μ. The Jacobian matrix at E0 has three negative eigenvalues −μ, −(σ + μ), −(ω + μ), and
two other eigenvalues determined by the matrix

M =
(

(1 − f )βk − η − μ (1 − f )δβk

f (1 − c)βk f (1 − c)δβk − θη − μ

)
.

It can be easily checked that both eigenvalues of M are negative if and only if RcF < 1. Thus,
the following result holds.

Theorem 3.1 The DFE E0 is locally asymptotically stable if RcF < 1 and unstable if RcF > 1.
Theorem 3.1 implies that when RcF < 1 the infection level will go to zero if the initial popu-

lation sizes are near E0 (lie in the basin of attraction of E0), which, however, does not guarantee
that the disease will die out for arbitrary initial conditions. In fact, as shown in later sections, a
stable endemic equilibrium is possible when the control reproductive number is less than one.

Assume that R0 > 1. The threshold condition RcF < 1 leads to the following critical value of
treatment level

fc = 1 − (1/R0)

1 − δ(1 − c)(η + μ/θη + μ)
> 0, (9)

such that E0 is l.a.s. if and only if f > fc. We observe from Equation (9) that the possibility of
reducing RcF to be less than 1 by treatment f depends on several quantities, including the basic
reproduction number R0 = β/(η + μ), the effect of treatment on the reduction of infectiousness
(δ) and infectious period (θ), and the probability of transmission block (c). For example, if δ > 0
and c < 1, then the quantity on the right-hand side of (9) is greater than 1 if

R0 >
1

δ(1 − c)(η + μ/θη + μ)
. (10)

In this case, it is impossible to achieve RcF < 1 by treatment alone as f ≤ 1.
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512 Z. Qiu and Z. Feng

3.2. Endemic equilibria for reduced system (7)

As the analysis about endemic equilibria of the full system (4) is very difficult due to the high
dimension, the analytic results in this section will focus on the reduced system (7). Using δ =
θ = 1 in Equation (8), we get the control reproductive number for Equation (7):

Rc = (1 − f c)βk

η + μ
= (1 − f c)R0. (11)

Note that, neither R0 nor Rc depend on γ (the reduction in susceptibility for individuals in
the treated class P ). However, as will be shown below, the existence and the number of endemic
equilibria will depend on γ . In fact, as shown in the next result, γ = 1/R0 will provide a threshold
value. In addition, another critical value,

γ̄ = 1 − f c. (12)

also plays a key role in the analysis. Then the following relationships hold:

γ < (> or =)γ̄ ⇐⇒ γR0 < (> or =)Rc. (13)

Let E∗(x∗, y∗, z∗) denote an endemic equilibrium of system (7), i.e.

0 < x∗, y∗, z∗ < 1.

Using the second and third equations in Equation (7) we have

y∗ = μ + ω

μ + ω + η

[(
γ̄

γ
− 1

)
x∗ +

(
1 − 1

γR0

)]
,

z∗ = η

μ + ω
y∗. (14)

Using Equation (14) and the first equation of Equation (7), we have

F(x∗) = A(x∗)2 + Bx∗ + C = 0, (15)

with

A = [f k + (1 − f )(μ + η)R0] μ + ω

μ + ω + η

(
1 − γ̄

γ

)
,

B = 7 − μ − [f k + (1 − f )(μ + η)R0] μ + ω

μ + ω + η

(
1 − 1

γR0

)

− ηω

μ + ω + η

(
1 − γ̄

γ

)
− γ̄ σ

γ
,

C = μ + μ + ω

μ + ω + η

(
1 − 1

γR0

)
+ σ

γR0
. (16)

If A = 0, i.e. γ = γ̄ , then Equation (15) has a unique solution x̂∗ = −C/B. Let

Ê∗(x̂∗, ŷ∗, ẑ∗) (17)

denote the endemic equilibrium with

x̂∗ = −C

B
, ŷ∗ = μ + ω

μ + ω + η

(
1 − 1

Rc

)
, ẑ∗ = η

μ + ω
ŷ∗. (18)
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If A 
= 0, i.e. γ 
= γ̄ , denote the two solutions of Equation (15) by

x∗
1 = −B − √

B2 − 4AC

2A
, x∗

2 = −B + √
B2 − 4AC

2A
. (19)

Let

E∗
i (x

∗
i , y∗

i , z∗
i ), i = 1, 2, (20)

denote the endemic equilibrium with x∗
i being given in Equation (19), and y∗

i and z∗
i given by

Equation (14) for the corresponding x∗
i (i = 1, 2). As mentioned above, in order for Ê∗ or E∗

i to
exist, we need to check that their components are between 0 and 1.

For ease of presenting the results for the existence of endemic equilibria, we need to introduce
a threshold value of treatment fm as defined below. Consider the case when R0 > 1 and Rc =
(1 − f c)R0 < 1. Let fm ∈ (0, 1) be the treatment fraction for which Rc = 1, i.e.

(1 − fmc)R0 = 1. (21)

The following result on the existence of endemic equilibria for system (7) can be established.

Theorem 3.2 Let Rc be defined as in Equation (11) and let γ > 0.

(a) If Rc > 1, then system (7) has a unique endemic equilibrium.
(b) If Rc ≤ 1, then system (7) has either no endemic equilibrium if γ is small, or possible multiple

endemic equilibria if γ is large. More specifically,
(i) if γ ≤ 1/R0, then there is no endemic equilibrium;

(ii) if γ > 1/R0, then system (7) may have 0, 1, or 2 endemic equilibria.

Proof For the proof of part (a) we consider two cases, γ > 1/R0 and γ ≤ 1/R0.

Case 1 γ > 1/R0. We first show that Equation (15) has a unique solution. Since γR0 > 1,
from Equation (16) we have C > 0. Thus,

F(0) = C > 0. (22)

If we assume that σ > ω (i.e. the immunity gained from infection (1/ω) lasts longer than the
immunity obtained from treatment (1/σ), which is a reasonable assumption), then from Rc > 1,

F(1) =
[
(f k + (1 − f )(μ + η)R0)

μ + ω

μ + ω + η
+ η(σ − ω) + σ(μ + ω)

μ + ω + η

]
1 − Rc

γR0
< 0. (23)

Conditions (22) and (23) imply that the quadratic function F(x) has a unique positive root x∗
in (0, 1). If γ 
= γ̄ (either γ > γ̄ , in which case A > 0, or γ < γ̄ in which case A < 0), then
x∗ = x∗

1 as given in Equation (19). If γ = γ̄ then A = 0, in which case x∗ = x̂∗, which is given in
Equation (18). It is clear from Equation (18) that ŷ∗ > 0 and ẑ∗ > 0. We now check the positivity
of y∗ and z∗.

If γ > γ̄ , from the y∗ equation in (14) and x∗ = x∗
1 < 1 we have

y∗ >
μ + ω

μ + ω + η

[(
γ̄

γ
− 1

)
+

(
1 − 1

γR0

)]

= μ + ω

μ + ω + η

Rc − 1

γR0

> 0.

It is clear that z∗ > 0 when y∗ > 0. If γ < γ̄ , it is easy to see from Equation (14) that y∗ and
z∗ are positive whenever x∗ > 0. Therefore, there is a unique endemic equilibrium when Rc > 1
and γ > 1/R0.
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Case 2 γ ≤ 1/R0. From Rc = γ̄R0 > 1 and γR0 ≤ 1, we know that γ < γ̄ and A < 0. Let

ψ = 1 − γR0

Rc − γR0
. (24)

Then 0 ≤ ψ < 1, and it can be checked that

F(ψ) = (σ + μ)(Rc − 1)

(γ̄ − γ )R0
> 0. (25)

From (23), (25), and A < 0 we know that F(x) has the unique root x∗ = x∗
1 in (ψ, 1). Using

x∗
1 > ψ , γ̄ > γ , and (14) we have

y∗
1 >

μ + ω

μ + ω + η

[(
γ̄

γ
− 1

)
ψ +

(
1 − 1

γR0

)]

= (μ + ω)ψ

(μ + ω + η)γR0
[(γ̄ − γ )R0 + γR0 − Rc]

= 0.

It is clear that z∗
1 > 0. Thus, E∗

1 is the unique endemic equilibrium.

Proof of part (b). First we show part (i) that there is no endemic equilibrium when γ ≤ 1/R0.
If γ ≥ γ̄ , then both terms in y∗ given in (14) are either negative or zero if x∗ > 0. Thus, E∗

does not exist. If γ < γ̄ , from Rc ≤ 1 we know that for 0 < x∗ < 1,

y∗ <
μ + ω

μ + ω + η

[(
γ̄

γ
− 1

)
+

(
1 − 1

γR0

)]

= (μ + ω)(Rc − 1)

(μ + ω + η)γR0

≤ 0.

Thus, there is no endemic equilibrium.
Now we consider part (ii) and let γ > 1/R0. Consider two cases, Rc < 1 and Rc = 1.

Case 1 Rc < 1. From Rc = γ̄R0 < 1 and γR0 > 1, we know that γ > γ̄ . Notice that A > 0,
B < 0, and C > 0. Notice also that

F(0) = C > 0 and F(ψ) > 0,

where ψ ∈ (0, 1) is defined in Equation (24). Thus, F(x) has the two roots x∗
i ∈ (0, ψ) (i = 1, 2)

as given in Equation (19) if and only if

B2 − 4AC ≥ 0 and 0 <
−B

2A
< ψ, (26)

one root x∗
1 = x∗

2 if B2 − 4AC = 0, and no root in (0, ψ) otherwise.
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Since x∗
i < ψ(i = 1, 2) and γ̄ < γ , from Equation (14) we have

y∗
i >

μ + ω

μ + ω + η

[(
γ̄

γ
− 1

)
ψ +

(
1 − 1

γR0

)]

= (μ + ω)ψ

(μ + ω + η)γR0

[
(γ̄ − γ )R0 + γR0 − Rc

]

= 0, i = 1, 2.

It follows that z∗
i > 0(i = 1, 2). Thus, both E∗

1 and E∗
2 exist if γ > 1/R0 and conditions in

Equation (26) hold.
Clearly, x∗

1 = x∗
2 if B2 − 4AC = 0; and thus, F(x) has a unique root in (0, ψ), which cor-

responds to the unique endemic equilibrium E∗
1 . It is also easy to see that if B2 − 4AC < 0 or

−B/2A > ψ , then F(x) has no root in (0, ψ).
Since ψ < 1, it remains to show that there is no endemic equilibrium E∗ with x∗ ∈ [ψ, 1).

Note that, for any x∗ < ψ , from Equation (14) and using a similar estimate as above, we can
show that y∗ < 0. Hence, there is no E∗ with x∗ ∈ [ψ, 1).

Case 2 Rc = 1. Since γR0 > 1, we have γ > γ̄ . In this case, A > 0, B < 0, and C > 0.
Note that F(0) = C > 0 and F(1) = 0. Thus, the equation F(x) = 0 has a unique root x∗ which
lies in (0, 1) if and only if conditions in Equation (26), in which case x∗ = x∗

1 .
The proof of Theorem 3.2 is completed. �

It will be useful to rewrite the conditions in Equation (26) in terms of model parameters, e.g.
the treatment fraction f and the reinfection coefficient γ . It is important to notice that R0 and
Rc do not depend on γ . Notice also that Rc < 1 requires f > fm (fm is given in Equation (21).
It is not easy to obtain such expressions from Equation (26) analytically. Nonetheless, using
parameter values in the next section (Table 2), our numerical calculations suggest that for each
fixed γ > 1/R0, the condition B2 − 4AC = 0 determines a threshold value f ∗ = f ∗(γ ) such
that fm ≤ f ∗(γ ) ≤ 1 and that

f < (= or >)f ∗(γ ) ⇐⇒ B2 − 4AC > (= or <)0 (27)

(Figure 2). Note that Rc = (1 − f c)R0. Let

R∗
c (γ ) = (1 − f ∗(γ )c)R0,

then R∗
c (γ ) > (= or <)1 if f < (= or >)fm, and the conditions in Equation (27) can be

rewritten as

Rc > (= or <)R∗
c ⇐⇒ B2 − 4AC > (= or <)0. (28)

Table 2. Parameter values used in simulations (values are
appropriate to influenza).

Parameter Estimated value Unit

�
μ

10,000 –

μ 0.00005 Days−1

ω 0.006 Days−1

σ 0.05 Days−1

β 0.01417 –
k 30 –
c 0.85 –
η 0.1667 Days−1
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In addition, for the set of parameter values used, the condition B2 − 4AC > 0 implies
−B/(2A) < ψ . It follows that, when Rc < 1, an endemic equilibrium exists if and only if
Rc ≥ R∗

c (γ ).

Figure 2. A bifurcation diagram in the (f, γ )-plane for system (7). Other parameter values are given in Table 2. No EE
denotes no endemic equilibrium, 1EE stands for only one endemic equilibrium, 2EE stands for two endemic equilibria. It
shows that for Rc > 1 (on the left of Rc = 1, which is equivalent to f < fm), there is a unique endemic equilibrium. For
Rc < 1 (which corresponds to f > fm), if γ ≤ 1/R0 then there is no endemic equilibrium. However, when γ > 1/R0,
there is a curve f ∗(γ ) (which corresponds to the curve determined by B2 − 4AC = 0) such that the system has two
endemic equilibria if f < f ∗, one endemic equilibrium if f = f ∗, and no endemic equilibrium if f > f ∗.

Figure 3. Bifurcation diagrams for the endemic equilibria x∗
i versus γ . In the top figure, γ < 1/R0 and it shows that

there is no endemic equilibrium for Rc < 1. In the bottom figure, γ > 1/R0 and shows that there is a unique endemic
equilibrium x∗

1 for Rc > 1. For Rc ≤ 1, there are two endemic equilibria (x∗
1 and x∗

2 ) for Rc ∈ (R∗
c , 1), one equilibrium

(x∗
1 = x∗

2 ) for Rc = R∗
c , and no endemic equilibrium for Rc < R∗

c . The value of R∗
c depends on γ .
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The two endemic equilibria are given by E∗
1 and E∗

2 , and E∗
1 = E∗

2 if Rc = R∗
c (γ ). There is no

endemic equilibrium if Rc < R∗
c (γ ).

Results stated in Theorem 3.2 are also summarized in the bifurcation diagrams shown in Figure 3.
We observe that there is a backward bifurcation for γ > 1/R0, i.e. endemic equilibria exist when
the reproductive number Rc is less than unity. Moreover, when Rc < 1, stable periodic solutions
also exist for (f, γ ) in a certain region.

4. Stability and bifurcation

In this section, we mainly apply the local bifurcation theory to explore the dynamics of system
(7). We shall show that system (7) may undergo Hopf bifurcation. In order to show that system
(7) may undergo Hopf bifurcation, we first investigate the local stability of the endemic equilibria
for system (7). Let E∗(x∗, y∗, z∗) be an endemic equilibrium of system (7). Linearizing around
the endemic equilibrium E∗, we obtain the matrix

J (E∗) =
⎛
⎜⎝

−μ − (f + β − fβ)ky∗ − σ −(f + β − fβ)kx∗ − σ ω − σ

(1 − f c − γ )βky∗ −γβky∗ −γβky∗

0 η −(μ + ω)

⎞
⎟⎠ . (29)

After extensive algebraic calculations, its characteristic equation is given by

λ3 + A1(E
∗)λ2 + A2(E

∗)λ + A3(E
∗) = 0, (30)

where

A1(E
∗) = 2μ + σ + ω + (f + γβ + β − fβ)ky∗ > 0;

A2(E
∗) = (μ + σ + (f + β − fβ)ky∗)(μ + ω + γβky∗) + γβky∗(μ + ω + η)

− (σ + (f + β − fβ)kx∗)(f c + γ − 1)βky∗;

A3(E
∗) = −(μ + ω + η)γβky∗ 2(f c + γ − 1)(μ + ω)(f + β − fβ)k

γ (μ + ω + η)
x∗ − μ − σ

− (f + β − fβ)k(μ + ω)(γR0 − 1)

γR0(μ + ω + η)
+ (f c + γ − 1)(σ (μ + ω + η) − ηω)

γ (μ + ω + η)

)

= −(μ + ω + η)γβky∗(2Ax∗ + B),

where A and B are given in Equation (16).
For the sake of the convenience, we define

H(E∗) = A1(E
∗)A2(E

∗) − A3(E
∗),

and let Wu(E∗) be the unstable manifold of E∗, Ws(E∗) be its stable manifold and Wc(E∗) be
its centre manifold. Then we have

Theorem 4.1 Let E∗
1 and E∗

2 be the endemic equilibria of system (7) as defined before.

(1) Assume that Rc > 1. Then,
(a) if H(E∗

1 ) > 0, then dim Ws(E∗
1 ) = 3, i.e. the unique positive equilibrium is locally

asymptotically stable;
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(b) if H(E∗
1 ) < 0, then dim Ws(E∗

1 ) = 1, dim Wu(E∗
1 ) = 2, i.e. the unique endemic equilib-

rium E∗
1 is unstable; and

(c) if H(E∗
1 ) = 0 then dim Wc(E∗

1 ) = 2 and dim Ws(E∗
1 ) = 1.

(2) Assume that Rc < 1 and that both E∗
1 and E∗

2 exist. Then,
(a) dim Ws(E∗

2 ) = 2, Wu(E∗
2 ) = 1, i.e. the endemic equilibrium E∗

2 is unstable;
(b) if H(E∗

1 ) > 0, then dim Ws(E∗
1 ) = 3, i.e. E∗

1 is locally asymptotically stable;
(c) if H(E∗

1 ) < 0, then dim Ws(E∗
1 ) = 1, dim Wu(E∗

1 ) = 2, i.e. E∗
1 is unstable; and

(d) if H(E∗
1 ) = 0, then dim Wc(E∗

1 ) = 2, dim Ws(E∗
1 ) = 1.

Proof Let λ1, λ2, λ3 be the roots of Equation (30) and, without the loss of generality, assume
that λ1 ≤ λ2 ≤ λ3.

Assume that Rc > 1, then Theorem 3.2 indicates that system (7) has a unique endemic equilib-
rium E∗

1 (x∗
1 , y∗

1 , z∗
1), where x∗

1 is a root of Equation (15) and satisfies F ′(x∗
1 ) = 2Ax∗

1 + B < 0.
It follows from the relations between the roots and the polynomial coefficients that

λ1 + λ2 + λ3 = −A1(E
∗
1 ) < 0,

λ1λ2λ3 = −A3(E
∗
1 )

= (μ + ω + η)γβky∗(2Ax∗
1 + B) < 0.

This means that either λi < 0 for j = 1, 2, 3 or λ1 < 0 ≤ λ2 ≤ λ3. If H(E∗
1 ) > 0, then

the Routh–Hurwitz conditions indicate that λi < 0 for j = 1, 2, 3. By the Hartman–Grobman
Theorem, we have dim Ws(E∗

1 ) = 3, i.e. the unique positive equilibrium is locally asymptotically
stable. If H(E∗

1 ) = 0, then we have A2(E
∗
1 ) < 0 since A1(E

∗
1 ) > 0, A3(E

∗
1 ) < 0. It is easy to ver-

ify that ±√−A2(E
∗
1 )i are two roots of Equation (30). This, together with the fact λ1 < 0, implies

that λ1 < 0, λ2 = −√−A2(E
∗
1 )i, λ2 = +√−A2(E

∗
1 )i. It also follows from Hartman–Grobman

Theorem that dim Ws(E∗
1 ) = 1, dim Wc(E∗

1 ) = 2. If H(E∗
1 ) < 0, then the Routh–Hurwitz con-

ditions indicate that λ1 < 0, λ2 > 0, λ3 > 0. By the Hartman–Grobman theorem, we have
dim Ws(E∗

1 ) = 1, dim Wu(E∗
1 ) = 2, i.e. the unique positive equilibrium E∗

1 is unstable. The proof
of part 1 is finished.

Assume Rc < 1 and system (7) has two endemic equilibria, E∗
1 (x∗

1 , y∗
1 , z∗

1) and E∗
2 (x∗

2 , y∗
2 , z∗

2).
From the proof of Theorem 3.2, we have that x∗

1 and x∗
2 are the roots of Equation (15) and

F ′(x∗
1 ) = 2Ax∗

1 + B < 0,

F ′(x∗
2 ) = 2Ax∗

2 + B > 0.

The stability results for E∗
1 can be obtained using the same argument as in the proof of part 1

above, which will be omitted here.
Now we consider the local stability of E∗

2 . It follows from the relations between the roots and
the polynomial coefficients that

λ1 + λ2 + λ3 = −A1(E
∗
2 ) < 0,

λ1λ2λ3 = −A3(E
∗
2 )

= (μ + ω + η)γβky∗(2Ax∗
2 + B) > 0.

This implies that λ1 < 0, λ2 < 0, λ3 > 0. It follows from the Hartman–Grobman Theorem
that dim Ws(E∗

2 ) = 2, dim Wu(E∗
2 ) = 1, i.e. the endemic equilibrium E∗

2 is unstable. This
completes the proof of Theorem 4.1. �

We remark that in Theorem 4.1, for the case Rc < 1, the merging of E∗
1 and E∗

2 constitutes
a limit point (LP) (saddle-node) bifurcation. While Hopf bifurcation has been shown to occur
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along the E∗
1 branch of solutions, it is also possible that a codimension-2 bifurcation may occur

when the Hopf and LP bifurcations merge, leading to a Bogdanov–Takens bifurcation. This kind of
analysis has been done for an SIRS model in [1, Figures 5.4 and 5.7]. Theorem 4.1 also shows that
dim Wc(E∗

1 ) = 2 when H(E∗
1 ) = 0. It then follows that any exchange stability of E∗

1 will undergo
Hopf bifurcation. As was done in the existence results, we choose γ (reduction in susceptibility
for individuals in the treated class P ) to be the bifurcation parameter. For simplicity, we introduce
new notions. Let E∗

1 (x∗
1 (γ ), y∗

1 (γ ), z∗
1(γ )) be the corresponding endemic equilibrium of system

(7), and let

λ3 + A∗
1(γ )λ2 + A∗

2(γ )λ + A∗
3(γ ) = 0

be the characteristic equation of the variational system associated with Equation (7) about E∗
1 .

Set

H(γ ) = A∗
1(γ )A∗

2(γ ) − A∗
3(γ ).

We can establish the following Theorem 4.2.

Theorem 4.2 Assume that system (7) has either a unique positive equilibrium, which is given by
E∗

1 (x∗
1 (γ ), y∗

1 (γ ), z∗
1(γ )), or two positive equilibria, which are given by E∗

1 (x∗
1 (γ ), y∗

1 (γ ), z∗
1(γ ))

and E∗
2 (x∗

2 (γ ), y∗
2 (γ ), z∗

2(γ )). If there exists γ = γc such that

H(γc) = 0, H ′(γc) < 0(H ′(γc) > 0), (31)

then the endemic equilibrium E∗
1 (x∗

1 (γ ), y∗
1 (γ ), z∗

1(γ )) is locally stable (unstable) if γ < γc and
γc − γ � 1, while it is unstable (locally stable) for γ > γc and γ − γc � 1. Moreover, a Hopf
bifurcation occurs at γ = γc and stable periodic solutions exist for γ > γc and γc − γ � 1.
Although it is not easy to derive an analytic expression for γc, numerical simulations showed that
there exist two critical points γci, i = 1, 2, for parameter values in Table 2.

Proof We only prove the conclusion outside the brackets. The conclusion inside the brackets
can be proved in a similar way. The fact that H ′(γc) < 0 indicates that H(γ ) is a monotonic
decreasing function in the neighbourhood of γ = γc. This, together with H(γc) = 0, implies that
H(γ ) > 0 for γ < γc and γc − γ � 1. Thus, by Theorem 4.1, we have λi < 0 for i = 1, 2, 3;
and thus, the endemic equilibrium E∗

1 (x∗
1 (γ ), y∗

1 (γ ), z∗
1(γ )) is locally stable. The fact that H(γ )

is a monotonic decreasing function in the neighbourhood, γ = γc also implies that H(γ ) < 0
for γ > γc and γ − γc � 1. Then, it follows from Theorem 4.1 that we have λ2(γ ) < 0 and
λ3(γ ) < 0, which implies that the endemic equilibrium E∗

1 (x∗
1 (γ ), y∗

1 (γ ), z∗
1(γ )) is unstable.

According to the result in [17], the conditions H(γc) = 0 and H ′(γc) < 0 imply the occurrence
of a simple Hopf bifurcation at γ = γc.

The identification of an analytic expression for γc and the examination of the conditions
H(γc) = 0 and H ′(γc) < 0 are very difficult. Nevertheless, these can be done numerically (see
Figures 4–7 in the next section). For the set of parameter values listed in Table 2, two critical
points, γc1 and γc2, exist for both the case Rc > 1 (Figure 4) and the case Rc < 1 (Figure 6).

This completes the proof of Theorem 4.2. �

We remark that, although the existence and stability analysis in this section is carried out for
the reduced system (7), our numerical simulations show that similar dynamical behaviours are
also present in the full system (4) (i.e. for the case when δ < 1 and/or θ < 1). More details about
numerical studies are provided in the next section.
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Figure 4. Plot of the unique endemic equilibrium (the component I of infectious individuals, where
I = x × (�/μ) = x · 104) versus γ for the case Rc > 1 for system (7). The value of f is chosen to be f = 0.7 < fm. All
other parameter values are listed in Table 2. SEE stands for the stable endemic equilibrium (solid curve) and UEE stands
for the unstable endemic equilibrium (dash curve). H denotes Hopf bifurcation, and it shows that two Hopf bifurcations
occur at γc1 = 0.543 and γc2 = 0.648.
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Figure 5. Numerical simulations (phase portraits) of system (7) for various γ values chosen according to the bifurcation
diagram in Figure 4 (Rc > 1). Other parameter values are the same as in Figure 4. In (a), γ = 0.51, which is to the left of
the first Hopf bifurcation point γc1 = 0.543. It shows that the unique endemic equilibrium E∗

1 is stable. In (b), γ = 0.56,
which is slightly to the right of the first Hopf bifurcation point γc1 = 0.543. The trajectory shown is a stable period
solution. In (c), γ = 0.63, which is slightly to the left of the second Hopf bifurcation point γc2 = 0.648. It shows that
solutions converge to a stable periodic solution. In (d), γ = 0.7, which is to the right of γc2. It shows that solutions starting
near the endemic equilibrium E∗

1 will converge to E∗
1 (see the short curve near E∗

1 ), while other solutions starting far
away from E∗

1 converge to a stable periodic solutions (the larger orbit).
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Figure 6. Similar to Figure 4 except that Rc < 1. The value of f is chosen to be f = 0.72 > fm. All other parameter
values are listed in Table 2. It shows that there are two branches of endemic equilibria, separated by an LP. The top branch
corresponds to E∗

1 and the bottom one corresponds to E∗
2 . SEE stands for the stable endemic equilibrium (solid curve) and

UEEi stands for unstable endemic equilibrium (dash curve) for E∗
i , i = 1, 2. H denotes Hopf bifurcation, and it shows

that along the top branches two Hopf bifurcations occur at γc1 = 0.460 and γc2 = 0.719.
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Figure 7. Similar to Figure 5 except that various γ values are chosen according to the bifurcation diagram in Figure 6,
in which f = 0.72 and Rc < 1. All other parameters have the same values. In (a), γ = 0.45, which is to the left of the
first Hopf bifurcation point γc1 = 0.46. It shows that depending on initial conditions, solutions will converge to either
endemic equilibrium E∗

1 or the DFE. In (b), γ = 0.47, which is slightly to the right of the first Hopf bifurcation point
γc1 = 0.460. The larger (closed) orbit shown is a stable period solution. We observe that, depending on initial conditions,
solutions may also converge to the DFE. In (c), γ = 0.69, which is not close to either γc1 or γc2. In this case, although
both endemic equilibria are unstable, there is no stable periodic solution. It shows that all solutions converge to the DFE.
In (d), γ = 0.73, which is to the right of γc2. It shows a similar scenario to (a), i.e. solutions converge either to E∗

1 or the
DFE, depending on the initial condition.
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5. Numerical simulations

In this section, we present numerical results from simulations for both the reduce system (7) and
the full system (4). These simulations not only confirm the analytical results described in the last
section, but also extend these results to more general case and illustrate more complex behaviours
of the model system including an homoclinic orbit and bistability scenarios.

The parameter values used in the simulations are chosen for illustration purposes. We choose

� = 0.5, μ = 0.00005, ω = 0.006, σ = 0.05, β = 0.01417, k = 30, c = 0.85, η = 0.1667.

In this case, we have R0 = 2.54. All parameter values used in simulations are summarized in
Table 2. As is shown in the analysis in the last section, the parameters for treatment (f ) and for
reduction in susceptibility by prophylaxis (γ ) will vary in the numerical studies as well.

Using the parameter values listed in Table 2, we can generate a bifurcation diagram in the
(f, γ )-plane as shown in Figure 2. We observe that the number of endemic equilibria of system
(7) is determined by the two curves, γ ∗(f ) (along which B2 − 4AC = 0) and f = fm (along
which Rc = 1). For example, in the region f < fm (in which Rc > 1), there is a unique endemic
equilibrium. In the region f > fm (in which Rc < 1), the number of endemic equilibrium is two
if γ > γ ∗(f ), one if γ = γ ∗(f ), or zero if γ < γ ∗(f ).

We present next simulation results for both the case Rc > 1 (Figures 4 and 5) and the case
Rc < 1 (Figures 6 and 7).

Figure 4 shows a bifurcation diagram for the system (7), with γ as the bifurcation parameter and
a fixed value of f = 0.7 < fm (for which Rc > 1). In this case, analytical results show that there
is a unique endemic equilibrium given by E∗

1 for all γ . This is illustrated in Figure 4 by the curve
I ∗

1 (the number of infectious individuals at the equilibrium) that varies with γ . It also identifies two
Hopf bifurcation points at γc1 and γc2, and indicates that E∗

1 is stable for γ < γc1 and γ > γc2,
and unstable if γc1 < γ < γc2. More specifically, numerically solving the equation H(γ ) = 0
(see Equation 31) gives that γc1 = 0.543 and γc2 = 0.648, and further calculations yield that
H ′(γc1) = −0.00036 < 0 and H ′(γc2) = 0.00043 > 0. Denote E∗

1 by E∗
1 (γ ). By evaluating the

first Lyapunov coefficient (L1(γ )) [15] of system (7) at E∗
1 (γci)), i = 1, 2, we find that

L1(γ
1
c ) ≈ −9.4 × 10−7 < 0 and L1(γ

2
c ) ≈ 1.28 × 10−9 > 0.

Hence, system (7) undergos a supercritical Hopf bifurcation at γ = γc1 and a subcritical Hopf
bifurcation at γ = γc2, where supercritical Hopf bifurcation implies the appearance of a stable
limit cycle when γ passes through γc1 while subcritical Hopf bifurcation implies the appearance
of an unstable limit cycle when γ passes through γc2. These behaviours are illustrated in Figure 5.

In Figure 5, where Rc > 1, various γ values are chosen according to the bifurcation diagram in
Figure 4. These values are γ = 0.51, 0.56, 0.63, 0.70 in Figures 5(a)–(d), respectively. All other
parameter values are the same as in Figure 2. In Figure 5(a), γ = 0.51 < γc1, the unique positive
equilibrium E∗

1 (S∗
1 , I ∗

1 , R∗
1) = (2243.578, 64.6746, 1782.03) is shown to be locally asymptoti-

cally stable. In Figure 5(b), γ = 0.56 is slightly bigger than γc1, and the trajectory shown is a stable
periodic solution, as in this case the unique endemic equilibrium E∗

1 = (1627.89, 89.12, 2455.65)

is unstable. For γ = 0.63, which is lightly less than γc2, Figures 5(c) shows that the unique
endemic equilibrium E∗

1 (1182.21, 117.373, 3234.05) is unstable and the solutions converge to a
stable periodic solution.

In Figure 5(d), γ = 0.70 > γc2. The behaviours of the solutions are very different from those
in Figure 5(a)–(c). The unique endemic equilibrium is E∗

1 (934.59, 140.17, 3862.24), which is
locally asymptotically stable. Simulations indicate that, while solutions starting from near E∗

1
will converge to E∗

1 , other solutions with initial conditions not close to E∗
1 will converge to a

stable periodic solution (Figure 5(d)). Hence, besides the unstable periodic solution bifurcated
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from the equilibrium E∗
1 , there is another stable periodic solution, indicating that the existence of

two periodic orbits is possible.
Figure 6 is a bifurcation diagram similar to Figure 4 but is for the case of Rc < 1. The value of

f is chosen to be f = 0.72 > fm. All other parameter values are the same as those in Figure 5. In
this case, an endemic equilibrium exists only for γ > γ LP

c = 0.44 (here LP denote limit point).
Simulations suggest that when γ < γ LP

c , the DFE is globally asymptotically stable. For γ > γ LP
c ,

there are two branches of endemic equilibria, with the top and bottom branches corresponding to
E∗

1 and E∗
2 , respectively. Denote E∗

i = E∗
i (γ ), i = 1, 2. E∗

2 (γ ) is unstable for all γ . For E∗
1 (γ ),

Numerical calculations show that there are two Hopf bifurcations at γc1 = 0.460 and γc2 = 0.719,
with H ′(γc1) = −0.0006 < 1 and H ′(γc2) = 0.001 > 0. Thus, from Theorem 4.2, E∗

1 (γ ) is stable
for γ LP

c < γ < γc1 and γ > γc2, and unstable for γc1 < γ < γc2. Moreover, dim Ws(E∗
2 ) = 2 and

dim Wu(E∗
2 ) = 1. Evaluating the first Lyapunov coefficient of system (7) at E∗

1 (γci)), i = 1, 2,
we have

L(γc1) = −1.93 × 10−11 < 0 and L(γc2) = 1.94 × 10−9 > 0.

It follows that system (7) undergos a supercritical Hopf bifurcation at γc1 and a subcritical Hopf
bifurcation at γ = γc2.

Figure 7 is similar to Figure 5 except that it shows phase portraits for various γ values chosen
according to the bifurcation diagram in Figure 6. The parameter values used in Figures 7(a)–
(d) are γ = 0.45, 0.47, 0.69, 0.73, respectively. All other parameter values are the same as
in Figure 6. In Figure 7(a), the value γ = 0.45 satisfies γc

LP < γ < γc1, it shows that there
are two positive equilibria, E∗

1 (S∗
1 , I ∗

1 , R∗
1) = (4946.19, 21.07, 580.55) and E∗

2 (S∗
2 , I ∗

2 , R∗
2) =

(8561.20, 3.63, 99.93). We observe that, depending on initial conditions, solutions may either
converge to E∗

1 or converge to the DFE. In Figure 7(b), γ = 0.47 is slightly bigger than γc1.
We observe a stable periodic solutions. Again, depending on initial conditions, solutions may
either converge to the periodic solution or converge to the DFE. Figure 7(c) illustrates solution
behaviours that are very different from those shown in Figure 1 for the case of Rc > 1. This is
for γ = 0.69, which is not close to either γc1 or γc2. It shows that solutions starting near E∗

1 ,
instead of converging to the periodic solution bifurcated from E∗

1 , are converging to the DFE.
This may indicate the possibility that a homoclinic bifurcation exists (Figure 8). Figure 7(d) is for
γ = 0.73 > γc2. It shows that solutions may converge to either the stable endemic equilibrium
E∗

1 or the stable DFE, depending on initial conditions.
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Figure 8. Time plot (a) and phase portrait (b) of system (7) using the same parameter values as in Figure 7 except that
γ = 0.475, which is between γc1 and γc2. It shows that solutions will converge to the DFE, regardless of initial conditions.
It also illustrates the possibility that a homoclinic orbit exists (as a consequence that the stable periodic orbit around E∗

1
merges with the endemic equilibrium E∗

2 ).
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Figure 8 illustrate the possible existence of a homoclinic orbit. The same set of parameter
values as in Figure 7 is used except that γ = 0.475. Figure 8(a) is a time plot of the number
of infectious individuals I (t). It shows two solutions, one with initial value near zero and the
other one with initial condition near E∗

1 . Both solutions are going to the DFE. Figure 8(b) plot
the phase portrait of the solution with initial condition near E∗

1 . The reason for this is that the
stable periodic solution around E∗

1 expends as γ increases, and eventually breaks when it meets the
second endemic equilibria E∗

2 (which has a lower I ∗ component). As a consequence, a homoclinic
bifurcation may occur.

The numerical results mentioned above are for system (7). Simulations suggest that similar
behaviours are also present in the full system (4). Figures 9 and 10 illustrate two examples
corresponding to Figures 7 and 8, respectively. In Figure 9, all parameter values used are the
same as in Figure 7(b) except that δ = 0.98 and γ = 0.46. It shows that, depending on initial
conditions, the solutions may either converge to the stable periodic solution or converge to the
DFE. Figure 10 has all parameter value the same as in Figure 8 except that δ = 0.99. It shows
similar behaviour as that in Figure 8.
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Figure 9. Time plot of the full system (4). All parameter values are the same as in Figure 7 except that δ = 0.98 and
γ = 0.46. IU + IP denotes the total number of infectious individuals. It shows that a stable periodic solution exists.
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Figure 10. Similar to Figure 8 except that this is for the full system (4). All parameter values are the same as in Figure 8
except that δ = 0.99. IU + IP denotes the total number of infectious individuals. It illustrates similar behaviours of
solutions to that in Figure 8.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
2
3
:
2
7
 
7
 
O
c
t
o
b
e
r
 
2
0
1
0



Journal of Biological Dynamics 525

6. Discussion

In this paper, we studied an ordinary differential equation model to explore the effect of the
control strategy named ‘targeted antiviral prophylaxis’ on disease dynamics. Although the model
seems to have a similar structure as that of the model in [24, 25], the key differences (besides
the fact that their model is structured by the age-since-treatment of uninfected individuals)
include the assumption on the infectiousness of individuals who were infected and are being
treated, and the assumption on the susceptibility of treated (infected or uninfected) individuals
to further infection. It turns out that the disease dynamics predicted by our model have very
different qualitative behaviours compared with the model in [24, 25]. More details are provided
below.

Most of our analytical results of the model are carried out using the reduced system (7), which
assumes that all infectious individuals (with and without treatment) have the same transmis-
sion rate (i.e. the assumption that δ = 1) and the same recovery rate (i.e. θ = 1). Under these
assumptions, the dimension of the system is reduced to three. We derived threshold conditions
that can determine the existence and stability of equilibria and periodic solutions of the sys-
tem (7). The bifurcation analysis (using γ and f as bifurcation parameters) can be helpful for
policymaking. For example, the usual threshold condition for disease control, i.e. Rc < 1, may
not be sufficient if the reinfection rate after treatment is sufficiently high (i.e. γ is large). More
specifically, when γ is small, the threshold treatment level is fm (Equation 21) in the sense
that disease control is possible when f > fm (which is equivalent to Rc < 1). However, when
γ is large, the disease may still be prevalent even when the treatment level is higher than fm.
In this case, the new threshold level of treatment for disease control is f ∗ (Equation 27) with
fm < f ∗ < 1.

The results suggest that the system exhibits a backward bifurcation in the sense that stable
endemic equilibria exist for Rc < 1 (Figure 3). Moreover, depending on parameter values, the
system may stabilize at either an endemic equilibrium or an oscillatory state. This is very different
from many of the previous results on backward bifurcations in which bistable equilibria are
expected (i.e. both the disease-free and an endemic equilibria are stable; see for example, [5–7,
11, 13, 14] and references therein). The possibility of stable periodic solutions for γ < 1 (and
Rc < 1) is also a major difference between our model and that in [24, 25] (when the age-structure
is ignored, i.e. when q(a) = q is a constant). The parameter q in their model represents the
reduction in susceptibility in treated individuals (who were exposed but not infected), which is
similar to the parameter γ in our model (except that our treated non-infectious class P includes
those infected individuals whose transmission was blocked by treatment). Their results show
that there is at most one endemic equilibrium if q < 1, whereas our results show that multiple
endemic equilibria are possible when γ < 1. Although backward bifurcation is not present in
[24, 25], numerical studies of our model suggest that, besides the possibility of a stable endemic
equilibrium or a stable periodic solution when Rc < 1, there may also exist a homoclinic orbit
which connects the unstable and stable manifold of E∗

2 .
The main contribution of this study is that it identified the possibility of complex disease dynam-

ics driven by the use of targeted antiviral prophylaxis, provided that the reinfection coefficient
(γ ) is sufficiently large. It is also demonstrated that, although the usual threshold condition for
disease control (Rc < 1) still holds when γ is small (e.g. γ ≤ 1/R0), a new threshold quantity,
R∗

c (with R∗
c < Rc), is required for disease control if γ is large (e.g. γ > 1/R0). That is, if fm is

the critical level of prophylaxis to achieve Rc = 1, the actual threshold level of prophylaxis for
disease control (i.e. f ∗, for which Rc < R∗

c ) needs to be higher than fm. If, however, the level
f ∗ is not possible to achieve, then the increase in f must be determined strategically, depending
on the goal of the control measure. For example, if oscillatory behaviours in infections are not
desirable, then a certain range of f values should be avoided.
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