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The spatial component of ecological interactions plays an important role in shaping ecological communities.
A crucial ecological question is how do habitat disturbance and fragmentation affect species persistence
and diversity? In this paper, we develop a deterministic metapopulation model that takes into account a
time-dependent patchy environment, thus our model and analysis take into account environmental changes.
We investigate the effects that spatial variations have on persistence and coexistence of two competing
species. In particular, we study the local behaviour of the model, and we provide a rigorous proof for the
global analysis of our model. Also, we compare the results of the deterministic model with simulations of
a stochastic version of the model.
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1. Introduction

Understanding the impact of space on species coexistence is a major topic in theoretical and
experimental ecology studies [23]. Over the past decades, lots of mathematical models have been
used to study the impact of spatial heterogeneity on population dynamics of systems of interacting
species (see, e.g. [6,8,14,30,35]). These studies have demonstrated that spatial structure is at
least as important as birth and death processes, competition, or predation [35]. For example,
spatial structure is known to allow two competing species to coexist [30]; stabilize predator–prey
dynamics [9,14], and influence the evolution of cooperative behaviour [24].
There are several ways of incorporating spatial heterogeneity or patchiness into population

models [6]. Space is implicitly included in spatially structured metapopulation models, such as
the Levins model [16]. These models focus on changes in patch occupancy as a function of
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rates of patch colonization and extinction. However, these models have no spatial dimension and
portray patches as equally accessible to one another [26]. More recently, the spatially structured
metapopulation models have been used extensively in studies of formation and conservation of
biodiversity. Furthermore, extensions of these models have been used to describe multi-species
intraspecific competition in patchy environments [6–8,30,35]. Metapopulation models are known
to have many characteristics that are similar to those of epidermic models [4,5,20] if empty and
occupied ‘patches’are represented as susceptible and infected individuals, respectively. Therefore,
some typical results and terminologies in epidemiology will be used in this paper.
In 1983, Hanski and Ranta [8] formulated a two-species model to study intraspecific competi-

tion in water fleas of the genus Daphnia. In their model, the rate of appearance of new habitable
patches is assumed to be constant, and the dynamic process of patch destruction and recreation is
ignored. In real systems, however, habitable patches may be destroyed while destroyed patches
may become habitable again. The rates at which these events occur may depend on many fac-
tors including climate changes, environmental conditions, or human activities. Thus, to capture
this biological reality, we include patch dynamics into our deterministic metapopulation model.
Another major contribution of our study is that we provide a detailed analysis for the global
stability of the system. Our analysis provides significant insights into the outcomes of species
competition. The local stability analysis in Hanski and Ranta [8] is only applicable to special
cases, and the stability conditions (based on the Routh–Hurwitz criteria ) do not provide biologi-
cal insights, and the conditions for coexistence are only verified by numerical simulations instead
of a rigorous mathematical proof. It should be noted that the approaches used in this paper are
very general and can be used to analyse the global dynamics of the model formulated in Hanski
and Ranta [8].
Real biological systems are inevitably subject to stochastic interference. Demographic stochas-

ticity and environmental stochasticity are two familiar types of stochasticity that may significantly
affect a biological system. Demographic stochasticity is the temporal variance in population
density caused by randomness in the reproduction and mortality of individuals [30], and envi-
ronmental stochasticity is the stochastic variation in the physical and biological environment and
thereby in the parameters affecting the system. Many epidemiological and ecological models
with demographic or environmental stochasticity have been studied in the past few decades (see,
e.g. [1,17–19,32]). In this paper, we incorporate such stochastic factors in our model and examine
how these factors may influence the persistence and coexistence of two competing species.
The paper is organized as follows. In Section 2, we formulate the deterministic model. The

model describes changes in the state of patches. Section 3 is focused on stability analysis of the
deterministic model. We prove in Section 3, the local dynamics of the boundary steady states.
Furthermore, we prove that under certain conditions on the ‘invasion reproductive number’ the
model is uniformly persistent. That is, we obtain conditions that guarantee the coexistence of
competing species in a deterministic patchy environment. In addition, we prove a global stability
result for the deterministic model. In Section 4, we introduce two stochastic models that are
based on the deterministic model. We investigate the impact of environmental stochasticity and
demographic stochasticity on the persistence and coexistence of two competing species. We
compare the dynamics of the deterministic model with that of two stochastic models. The paper
ends with a brief discussion of our results in Section 5.

2. Deterministic model

Our deterministic model follows Levin’s framework for metapopulation model, which in the case
of a single species has the form
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dp(t)

dt
= cp(t)(1− p(t)) − ep(t),

wherep(t) denotes the proportion of occupied patches at time t , c is the per capita colonization rate
of empty patches, and e is the per capita extinction rate of occupied patches. This model assumes
an infinite network of homogeneous patches and is spatially implicit. A classic result provided
by this model is that metapopulation persistence is possible if and only if the colonization rate
exceeds the critical threshold set by the extinction rate. This model has been extended to include
two interacting species [8,12,15,21,22] or multiple species [10,11,15,30].
Although our model has a similar structure as that in Hanski and Ranta [8], there are some key

differences between the two models. One of the most significant differences between their study
and ours lies in the biological insights obtained from the analytical results of the models. In terms
of the model structure, their model includes a per capita rate (ν) of pool (patch) disappearance
and a constant rate q of appearance of new pools (patches). Under this assumption, the total
number of pools (N ) satisfies the equation N ′(t) = q − νN(t), and is asymptotically a constant
(q/ν). Our model assumes a constant per capita patch destruction rate d (i.e. the rate at which a
habitable patch becomes nonhabitable) and a constant per capita patch recreation rate r (i.e. the
rate at which an nonhabitable patch becomes habitable). Under this assumption, the number of
nonhabitable and habitable patches are time-dependent while the total number of patches remain
constant for all time.
The analytic results of the model in Hanski and Ranta [8] and our model include the stability

analysis of the nontrivial boundary equilibria (i.e. equilibria at which only one species is present).
It is pointed out in Hanski and Ranta [8] that the local stability conditions expressed by (6c) and
(6d) can be written down using the model parameters but they are uninformative. Consequently,
they considered only some special cases of the expression. Our model allows us to derive general
stability conditions for the system equilibria and are much more informative. Particularly, our
results can be used to compute the criteria for one species to invade a metapopulation in which
the other species has already established itself, as well as to examine the role of patch dynamics
(destruction and recreation) on species invasion and coexistence. Moreover, our analytical results
include both the local and the global stabilities of the nontrivial boundary equilibria as well as the
uniform persistence of the metapopulations of both species.
In our two-species metapopulation model, we divide the total number of patches into five

subtypes of patches.The fractions of these five types of patches are denoted by:u0 for nonhabitable
patches (or destroyed); u1 for habitable but empty (i.e. not colonized by either species); x for
patches occupied by species 1 only; y for patches occupied by species 2 only; and z for doubly
occupied patches (i.e. occupied by both species 1 and species 2). The transition diagram between
patch states is shown in Figure 1. Patch destruction occurs at a constant per capita rate d , and
nonhabitable patches can become habitable at a constant per capita rate r . Species i (i = 1, 2)
colonizes an empty patch at the per capita rate ci , and it goes extinct in a patch absent of the
other species at the per capita rate ei . A patch that is occupied by species i can be colonized by
species j (j �= i) at the per capita rate kj ci with kj ≤ 1 (which represents the assumption that the
colonization of a patch occupied by the other species is more difficult than the colonization of an
empty patch). If a patch is doubly occupied, then there may be an extra extinction rate εi ≥ 0 for
species i so that the total extinction rate is ei + εi . All our model parameters are nonnegative. The
definitions of all variables and parameters are summarized in Table 1. The model is described by
the following system of differential equations:

u′
0 = −ru0 + d(1− u0),

u′
1 = ru0 − c1(x + z)u1 − c2(y + z)u1 + e1x + e2y − du1,

x ′ = c1(x + z)u1 − (e1 + d)x − k21(y + z)x + (e2 + ε2)z,
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Figure 1. Transition diagram between patch states. Nonhabitable patches and empty habitable patches correspond to u0
and u1, respectively. Patch dynamics are governed by destruction and creation rates d and r , respectively. Metapopulation
dynamics are governed by colonization rates ci and kij and extinction rates ei and εi .

Table 1. Model parameters.

Parameter Description

ci Species i colonization rate of an empty patch
ei Species i extinction rate in a patch occupied by a single species
ei + εi Species i extinction rate in a patch occupied by two species
kij ∈ (0, 1) Species i colonization rate of a patch occupied by species j

d Constant rate of patch destruction
r Constant rate of patch creation

y ′ = c2(y + z)u1 − (e2 + d)y − k12(x + z)y + (e1 + ε1)z,

z′ = k21c2(y + z)x + k12c1(x + z)y − (e1 + ε1 + e2 + ε2 + d)z. (1)

Using the fact that u0 + u1 + x + y + z = 1, we can ignore the u0 equation in system (1) and
consider the following equivalent four-dimensional system:

u′
1 = r(1− u1 − x − y − z) − c1(x + z)u1 − c2(y + z)u1 + e1x + e2y − du1,

x ′ = c1(x + z)u1 − (e1 + d)x − k21(y + z)x + (e2 + ε2)z,

y ′ = c2(y + z)u1 − (e2 + d)y − k12(x + z)y + (e1 + ε1)z,

z′ = k21c2(y + z)x + k12c1(x + z)y − (e1 + ε1 + e2 + ε2 + d)z. (2)

Our analytical results will be conducted using system (2).
Adding all the equations in system (2) yields

(u1 + x + y + z)′ = r − (r + d)(u1 + x + y + z).

From the above equation, we know that u1(t) + x(t) + y(t) + z(t) → p as t → +∞, where
p = r

r + d
(3)

represents the long-term proportion of habitable patches. Assume that the system has reached the
asymptotic state, i.e.

u1(t) + x(t) + y(t) + z(t) = p.

Then, the biologically feasible region for system (2) is

� = {(u1, x, y, z) : 0 ≤ u1, x, y, z ≤ 1, u1 + x + y + z = p}.
It can be verified that � is positively invariant, and that the usual results on the existence and
uniqueness of solutions as well as the continuation results hold. In the following sections, we
restrict our analysis to solutions with initial conditions in �.
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3. Stability analysis

System (2) always has the trivial (species-free) equilibrium

E0 = (p, 0, 0, 0).

There are two possible nontrivial boundary equilibria at which only one species is present:

E1 = (ū1, x̄, 0, 0) and E2 = (ũ1, 0, ỹ, 0),

where

ū1 = e1 + d

c1
, x̄ = p − e1 + d

c1
, (4)

and

ũ1 = e2 + d

c2
, ỹ = p − e2 + d

c2
. (5)

Clearly,Ei is biologically feasible (i.e. the components are between 0 and 1) only if the following
quantities

Ri = pci

ei + d
for i = 1, 2, (6)

are sufficiently large or more specifically, if the following conditions hold

Ri > 1 for i = 1, 2.

Note that ci is the rate at which species i colonizes a habitable and empty patch, 1/(ei + d) is
the mean time of patch occupancy by species i (in the absence of the other species), and p is
the long-term fraction of habitable patches. Thus,Ri gives the long-term expected ‘reproduction
number’ of species i in a landscape where the proportion of habitable patches is p.

3.1. Local stability and invasion criterion

The following results show that the reproduction numbersR1 andR2 also determine the stabilities
of the equilibria Ei , i = 0, 1, 2.

Theorem 1 Let Ri be defined as in Equation (6). Then

(i) E0 is globally asymptotically stable (g.a.s.) if Ri < 1 for i = 1, 2, and it is unstable if
R1 > 1 or R2 > 1;

(ii) Ei is g.a.s. if and only if Ri > 1 and Rj < 1 for i, j = 1, 2 and j �= i.

Proof Proof of part (i). Since k1 < 1, adding the second and fourth equations of system (2) gives

(x + z)′ < (x + z)(c1p − (e1 + d1)).

From the above inequality andR1 < 1,we have x(t) + z(t) → 0 as t → +∞; and thus, x(t) → 0
and z(t) → 0 as t → +∞. Similarly, it can be shown that ifR2 < 1 then y(t) → 0 and z(t) → 0
as t → +∞. Therefore, if Ri < 1 for i = 1, 2, then E0 is globally asymptotically stable. This
completes the proof of part (i).
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For the proof of part (ii), noticing the mathematical symmetry between species 1 and 2, we
only need to prove the results for the case of i = 1. From the proof of part (i), we know that if
R2 < 1 then y(t) → 0 and z(t) → 0 as t → +∞. Thus, the limiting system of (2) is

u′
1 = r(1− u1 − x) − c1xu1 + e1x − du1,

x ′ = c1xu1 − (e1 + d)x. (7)

Let E1l = (ū1, x̄) denote the nontrivial equilibrium of system (7). Then the stability of E1l is
equivalent to the stability ofE1 for system (2). It is easy to show thatE1l is locally asymptotically
stable (l.a.s.) whenR1 > 1. For the global stability of E1l , let (f1, f2) be the vector field defined
by system (7). Then using the Dulac function D(u1, x) = u1x and noticing that x < 1, we have

∂Df1

∂u1
+ ∂Df2

∂x
= − r

u21

(1
x

− 1
)

− e

u21
< 0.

Thus, system (7) does not have a limit cycle. Notice that the trivial equilibrium (u1, x) = (0, 0)
of system (7) is unstable asR1 > 1, and that E1l is the only nontrivial equilibrium of system (7).
Therefore, E1l is g.a.s. It follows that the boundary equilibrium E1 of system (2) is g.a.s. Using
a similar argument, we can show that E2 is g.a.s. when R1 < 1 and R2 > 1. This completes the
proof. �

Next, we consider system (2) in the case of R1 > 1 and R2 > 1. In this case, both E1 and E2
exist. However, their stabilities will now depend on other conditions. In fact, these conditions can
be written in terms of the following quantities:

R12 = 1

�1
((c2ū + k2c2x̄)(e1 + e2 + ε1 + d + k1c1x̄) + ε2c2ū), (8)

R21 = 1

�2
((c1ũ + k1c1ỹ)(e1 + e2 + ε2 + d + k2c2ỹ) + ε1c1ũ), (9)

where

�1 = (e2 + d)(e1 + e2 + ε1 + ε2 + d + k1c1x̄) + ε2k1c1x̄,

�2 = (e1 + d)(e1 + e2 + ε1 + ε2 + d + k2c2ỹ) + ε1k2c2ỹ.

The biological interpretations of the quantitiesR12 andR21 are given in Section 3.3.
The local stability results for Ei (i = 1, 2) are described in the following theorems.

Theorem 2 Let R12 and R21 be as defined in Equations (8) and (9), respectively.

(a) If R12 < 1 (R12 > 1) then the boundary equilibrium E1 is l.a.s. (unstable).
(b) If R21 < 1 (R21 > 1) then the boundary equilibrium E2 is l.a.s. (unstable).
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Proof Due to the mathematical symmetry between the two species, we only need to present a
proof for Part (a) of this theorem. The Jacobian matrix of system (2) at E1 is

J1 =

⎛
⎜⎜⎝
−(r + d + c1x̄) −(r + d) −r − c2ū1 + e2 −(r + c1ū1 + c2ū1)

c1x̄ 0 −k2c2x̄ c1ū1 − k2c2x̄ + e2 + ε2
0 0 c2ū1 − e2 − d − k1c1x̄ c2ū1 + e1 + ε1
0 0 k2c2x̄ + k1c1x̄ k2c2x̄ − (e1 + ε1 + e2 + ε2 + d)

⎞
⎟⎟⎠ .

The top-left 2× 2 block matrix has two negative eigenvalues
1

2
[−(r + d + c1x̄) ± |r + d − c1x̄|].

For the bottom-right 2× 2 block matrix, the trace is
A = c2[p − (1− k2)x̄] − e2 − d − k1c1x̄ − (e1 + ε1 + e2 + ε2 + d),

and the determinant is

B = [c2(p − x̄) − e2 − d − k1c1x̄][k2c2x̄ − (e1 + ε1 + e2 + ε2 + d)].
It can be shown that if A > 0 then B < 0. Thus, B > 0 implies that A < 0. We can also verify
(with extensive algebraic calculations) that B > 0 if and only if R12 < 1. Therefore, E1 is l.a.s.
ifR12 < 1, and it is unstable ifR12 > 1. This completes the proof of Part (a) of Theorem 2. Part
(b) can be proved in a similar way. �

The following theorem provides a result concerning the uniform persistence of both species,
i.e. there exists a constant δ > 0, which is independent of initial data, such that

lim inf
t→+∞ x(t) > δ, lim inf

t→+∞ y(t) > δ, lim inf
t→+∞ z(t) > δ.

Theorem 3 If R12 > 1 and R21 > 1, then system (2) is uniformly persistent and has a positive
equilibrium.

Proof Define

X = {(u1, x, y, z) : u1 ≥ 0, x ≥ 0, y ≥ 0, z ≥ 0},
X0 = {(u1, x, y, z) : u1 > 0, x > 0, y > 0, z > 0},

∂X0 = X \ X0.

It suffices to show that system (2) is uniformly persistent with respect to (X0, ∂X0) [34]. It is
easy to see that both X and X0 are positively invariant. Clearly, ∂X0 is relatively closed in X and
system (2) is point dissipative. Set

M∂ = {(u1(0), x(0), y(0), z(0))|(u1(t), x(t), y(t), z(t)) ∈ ∂X0, ∀t ≥ 0}
with u1(t), x(t), y(t), z(t) also satisfying Equation (2).
We first show that

M∂ = B1 ∪ B2, (10)

where B1 = {(u1, x, y, z) ∈ ∂X : y ≡ 0, z ≡ 0} and B2 = {(u1, x, y, z) ∈ ∂X : x ≡ 0, z ≡ 0}.
Let (u1(0), x(0), y(0), z(0)) ∈ M∂ . To show that Equation (10) holds, it suffices to show that
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we have either x(t) = 0 and z(t) = 0, or y(t) = 0 and z(t) = 0 for all t ≥ 0. Suppose this is not
true. Then there exists a t0 ≥ 0 such that, without loss of generality, x(t0) > 0, y(t0) > 0, and
z(t0) = 0 (other cases can be discussed in the same way). Assume that u1(0) > 0 (a reasonable
assumption), then it follows that u1(t) > 0 for all t > 0. Since

z′(t0) ≥ k2c2x(t0)y(t0) + k1c1x(t0)y(t0) > 0,

it follows that there is an ε0 such that z(t) > 0 for t0 < t < t0 + ε0. Clearly, we can restrict ε0 to
be small enough so that x(t) > 0, y(t) > 0, z(t) > 0, and u1(t0) > 0 for t0 < t < t0 + ε0. This
means that (u1(t), x(t), y(t), z(t)) /∈ ∂X0 for t0 < t < t0 + ε0, which contradicts the assumption
that (u1(0), x(0), y(0), z(0)) ∈ M∂ . Hence, this shows that Equation (10) holds.
Using the same argument as in the proof of Theorem 1, we know that Ei is a global attractor

in Bi \ {(p, 0, 0, 0)} for system (2) (i = 1, 2). It then follows that the set {E0, E1, E2} is isolated
and is an acyclic covering in ∂X0. By Theorem 4.6 in Thieme [29], we only need to show that
Ws(E0) ∩ X0 = ∅,Ws(E1) ∩ X0 = ∅, andWs(E2) ∩ X0 = ∅ whenR12 > 1 andR21 > 1.
To show thatWs(E0) ∩ X0 = ∅, we notice that the conditionsR12 > 1 andR21 > 1 imply that

R1 > 1 andR2 > 1. Thus, we can choose δ small enough such that

c1(p − δ) − (e1 + d) − 2k2c2δ > 0. (11)

Assume thatWs(E0) ∩ X0 �= ∅. Then there exists a positive solution (ǔ1(t), x̌(t), y̌(t), ž(t))with
(ǔ1(0), x̌(0), y̌(0), ž(0)) ∈ X0 such that (ǔ1(t), x̌(t), y̌(t), ž(t)) → E0 as t → +∞. Then, for t

sufficiently large, we have p − δ < ǔ1(t) < p + δ, 0 < x̌(t) < δ, 0 < y̌(t) < δ, 0 < ž(t) < δ,
and

x̌ ′(t) = c1(x̌(t) + ž(t))ǔ1(t) − (e1 + d)x̌ − k2c2(y̌ + ž)x̌ + (e2 + ε2)ž(t)

> (c1(p − δ) − (e1 + d) − 2k2c2δ)x̌(t).

Since c1(p − δ) − (e1 + d) − 2k2c2δ > 0 (from the inequality (11)), by the comparison principle
[27] we have x̌(t) → +∞ as t → +∞. This contradicts x̌(t) → 0 as t → +∞, implying that
Ws(E0) ∩ X0 = ∅.
We now show thatWs(E1) ∩ X0 = ∅whenR12 > 1. SinceR12 > 1 and hence B < 0, we can

choose η > 0 small enough such that

∣∣∣∣c2(ū1 − η) − e2 − d − k1c1(x̄ + 2η) c2(ū1 − η) + e1 + ε1
k2c2(x̄ − η) + k1c1(x̄ − η) k2c2(x̄ − η) − (e1 + e2 + ε1 + ε2 + d)

∣∣∣∣ < 0. (12)

Assume thatWs(E1) ∩ X0 �= ∅. Then there exists a positive solution (û1(t), x̂(t), ŷ(t), ẑ(t))with
(û1(0), x̂(0), ŷ(0), ẑ(0))) ∈ X0 such that (û1(t), x̂(t), ŷ(t), ẑ(t)) → E1(ū1, x̄, 0, 0) as t → +∞.
Thus, for t sufficiently large we have ū1 − η < û1(t) < ū1 + η, 0 < x̂(t) < η, 0 < ŷ(t) ≤
η, 0 < ẑ(t) < η, and

ŷ ′ ≥ c2(ŷ + ẑ)(ū1 − η) − (e2 + d)ŷ − k1c1(x̄ + η)ŷ + (e1 + ε1)ẑ,

ẑ′ ≥ k2c2(x̄ − η)(ŷ + ẑ) + k1c1(x̄ − η)ŷ − (e1 + ε1 + e2 + ε2 + d)ẑ.

Consider the following auxiliary system

y ′ = c2(y + z)(ū1 − η) − (e2 + d)y − k1c1(x̄ + η)y + (e1 + ε1)z,

z′ = k2c2(x̄ − η)(y + z) + k1c1(x̄ − η)y − (e1 + ε1 + e2 + ε2 + d)z. (13)
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The coefficient matrix Ĵ of system (13) is given by

Ĵ =
(

c2(ū1 − η) − e2 − d − k1c1(x̄ + 2η) c2(ū1 − η) + e1 + ε1
k2c2(x̄ − η) + k1c1(x̄ − η) k2c2(x̄ − η) − (e1 + e2 + ε1 + ε2 + d

)
.

Since Ĵ has positive off-diagonal elements, from the Perron–Frobenius theorem we know that
there is a positive eigenvector vm corresponding to the maximum eigenvalue λm of Ĵ . After
extensive computations, we have λm > 0 since Equation (12) holds. Using linear systems the-
ory, we can show that all positive solutions of Equation (13) tend to infinity as t → ∞. Then,
applying the standard comparison principle we have ŷ(t) → +∞ and ẑ(t) → +∞ as t → +∞.
This contradicts ŷ(t) → 0, ẑ(t) → 0 as t → +∞, implying that Ws(E1) ∩ X0 = ∅. The case
Ws(E2) ∩ X0 = ∅ forR21 > 1 can be proved in a similar way.
Finally, from Ws(E0) ∩ X0 = ∅, Ws(E1) ∩ X0 = ∅, Ws(E2) ∩ X0 = ∅, and the fact that the

set {E0, E1, E2} is acyclic in ∂X0, we can apply Theorem 4.6 in Thieme [29] and conclude that
system (2) is uniformly persistent with respect to (X0, ∂X0). Using Theorem 1.3.7 in Zhao [36]
as applied to the solution semiflow of systems (2), we can immediately obtain that the system has
a positive equilibrium. This completes the proof of Theorem 3. �

3.2. Global analysis of the coexistence equilibrium

In this section, we mainly consider the case when the extra extinction rates in doubly occupied
patches are ignored, i.e. ε1 = ε2 = 0. In this case, it is convenient to use the variables n1 = x + z

and n2 = y + z (in stead of x and y). Note that ni represents the total proportion of patches with
species i (i = 1, 2). System (2) can be rewritten as

u′
1 = r(1− u1 − n1 − n2 + z) − c1n1u1 − c2n2u1 + e1(n1 − z) + e2(n2 − z) − du1,

n′
1 = c1n1u1 − (e1 + d)n1 + k1c1n1(n2 − z),

n′
2 = c2n2u1 − (e2 + d)n2 + k2c2n2(n1 − z),

z′ = k2c2n2(n1 − z) + k1c1n1(n2 − z) − (e1 + e2 + d)z. (14)

Noting that

u1(t) + n1(t) + n2(t) − z(t) → p

as t → +∞, we can consider the limiting system of Equation (14):

n′
1 = c1n1(p − n1 − n2 + z) − (e1 + d)n1 + k1c1n1(n2 − z),

n′
2 = c2n2(p − n1 − n2 + z) − (e2 + d)n2 + k2c2n2(n1 − z),

z′ = k2c2n2(n1 − z) + k1c1n1(n2 − z) − (e1 + e2 + d)z. (15)

For system (15), the trivial equilibrium and the two nontrivial boundary equilibria are

E0 = (0, 0, 0), E1 = (x̄, 0, 0), E2 = (0, ỹ, 0),

where x̄ = p − (e1 + d)/c1 and ỹ = p − (e2 + d)/c2. Notice that these equilibria are the same
as the corresponding ones for system (2), and we have used the same notation Ei (i = 0, 1, 2).
From Theorem 1, we can easily see that the global asymptotic behaviours of system (15) remain
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the same for the case of R1 < 1 or R2 < 1. Thus, for the remaining analysis in this section, we
assume thatR1 > 1 andR2 > 1, i.e.

p > max

{
e1 + d

c1
,
e2 + d

c2

}
.

Notice that for εi = 0 the invasion reproduction numbers R12 and R21 (given in Equations (8)
and (9)) now simplify to

R12 = c2

e2 + d
(ū1 + k2x̄)

= c2

e2 + d

(
e1 + d

c1
+ k2

(
p − e1 + d

c1

))
(16)

and

R21 = c1

e1 + d
(ũ1 + k1ỹ)

= c1

e1 + d

(
e2 + d

c2
+ k1

(
p − e2 + d

c2

))
. (17)

Let

� = {(n1, n2, z) : 0 ≤ z, n1, n2 ≤ 1}.
It is easy to verify that all solutions of system (15) starting in � will remain in � for all t ≥ 0.
Hence, � is positively invariant. Thus, in this section, our analysis will be carried out for system
(15) in �. SinceRi > 1 for i = 1, 2, it follows that

R12R21 > 1.

Therefore, we must have eitherR12 > 1 orR21 > 1.
Let E∗ = (n∗

1, n
∗
2, z

∗) denote a positive equilibrium of system (15), i.e. n∗
1 > 0, n∗

2 > 0, and
z∗ > 0. We can find E∗ by solving the following algebraic equations:

n1 + (1− k1)n2 − (1− k1)z − p + e1 + d

c1
= 0,

(1− k2)n1 + n2 − (1− k2)z − p + e2 + d

c2
= 0,

k2c2n2(n1 − z) + k1c1n1(n2 − z) − (e1 + e2 + d)z = 0. (18)

Using the first and second equations in (18) we have

n1 = k1p − (e1 + d)/c1 + (1− k1)((e2 + d)/c2) + k2(1− k1)z

k1 + k2 − k1k2
,

n2 = k2p − (e2 + d)/c2 + (1− k2)((e1 + d)/c1) + k1(1− k2)z

k1 + k2 − k1k2
. (19)

FromEquation (19) and the third equation of (18) we know that z∗ satisfies the following quadratic
equation

f (z) = B1z
2 + B2z + B3 = 0, (20)
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where

B1 = − k1k2

(k1 + k2 − k1k2)2
(c2k1(1− k2) + c1k2(1− k1)) < 0,

B2 = k1k2

(k1 + k2 − k1k2)2

[
(c2(1− k2) − c1)

(
k1p − e1 + d

c1
+ (1− k1)

e2 + d

c2

)

+ (c1(1− k1) − c2)

(
k2p − e2 + d

c2
+ (1− k2)

e1 + d

c1

) ]
− (e1 + e2 + d),

B3 = k2c2 + k1c1

(k1 + k2 − k1k2)2

e1 + d

c1

e2 + d

c2
(R12 − 1)(R21 − 1). (21)

Thus, the components of E∗ are given by

n∗
1 = k1p − (e1 + d)/c1 + (1− k1)((e2 + d)/c2) + k2(1− k1)z

∗

k1 + k2 − k1k2
,

n∗
2 = k2p − (e2 + d)/c2 + (1− k2)((e1 + d)/c1) + k1(1− k2)z

∗

k1 + k2 − k1k2
,

z∗ =
−B2 −

√
B2
2 − 4B1B3

2B1
, (22)

where B1, B2, B3 are defined in Equation (21).
The existence (or nonexistence) condition of E∗ is described in the following theorem.

Theorem 4 Let E∗ = (n∗
1, n

∗
2, z

∗) denote a positive equilibrium of system (15). Then

(i) E∗ does not exist if R12 < 1 and R21 > 1, or if R21 < 1 and R12 > 1;
(ii) E∗ exists and is unique if R12 > 1 and R21 > 1. Moreover, n∗

1, n
∗
2, and z∗ are given by

Equation (22).

Proof For the proof of part (i), we only pick up the caseR12 < 1, R21 > 1 to prove the theorem.
If R21 < 1, R12 > 1, the theorem can be proved in a similar way. If R12 < 1, R21 > 1 we have
B3 < 0 and

(1− k12)
e2 + d

c2
+ k12p >

e1 + d

c1
,

(1− k21)
e1 + d

c1
+ k21p <

e2 + d

c2
.

It follows that

1

k21

e2 + d

c2
− 1− k21

k21

e1 + d

c1
> p > max

{
e1 + d

c1
,
e2 + d

c2
,
1

k12

e1 + d

c1
− 1− k12

k12

e2 + d

c2

}

and
e2 + d

c2
>

e1 + d

c1
.

We claim that B2 < 0. In order to prove the claim, we consider three cases, i.e. c2 ≤ (1− k12)c1,
(1− k12)c1 < c2 < (c1/(1− k21)) and c1 > (c2/(1− k12)).
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Case 1 c2 ≤ (1− k12)c1. In this case, it is easy to see that B2 < 0 since

(c2(1− k21) − c1)

(
k12p − e1 + d

c1
+ (1− k12)

e2 + d

c2

)
< 0

and

(c1(1− k12) − c2)

(
k21p − e2 + d

c2
+ (1− k21)

e1 + d

c1

)
< 0.

Case 2 (1− k12)c1 < c2 < (c1/(1− k21)). In this case, since

(c2(1− k21) − c1)

(
k12p − e1 + d

c1
+ (1− k12)

e2 + d

c2

)
< 0,

we have

B2 ≤ k12k21

(k12 + k21 − k12k21)2
(c1(1− k12) − c2)

×
(

k21p − e2 + d

c2
+ (1− k21)

e1 + d

c1

)
− (e1 + e2 + d)

≤ k12k21

(k12 + k21 − k12k21)2
(c2 − c1(1− k12))(1− k21)

(
e2 + d

c2
− e1 + d

c1

)
− (e1 + e2 + d)

≤ k12k21

(k12 + k21 − k12k21)2
(1− k21)(e2 + d) − (e1 + e2 + d) < 0.

Case 3 c1 > (c2/(1− k12)). In this case, we have

B2 ≤ k12k21

(k12 + k21 − k12k21)2
((c2(1− k21) − c1)

(
k12 + k21 − k12k21

k21

(
e2 + d

c2
− e1 + d

c1

))

+ (c2 − c1(1− k12))

(
k12 + k21 − k12k21

k12

(
e2 + d

c2
− e1 + d

c1

))
− (e1 + e2 + d)

= (c2 − c1)

(
e2 + d

c2
− e1 + d

c1

)
− (e1 + e2 + d)

≤ −e1 < 0.

Since Bi < 0, i = 1, 2, 3, it is easy to see that Equation (20) has no positive solution. Therefore,
whenR12 < 1, R21 > 1, system (15) has no positive equilibrium. This finishes the proof of part
(i).

Proof of Part (ii). As R12 > 1 and R21 > 1, we have B1 < 0 and B3 > 0. It then follows that
Equation (20) has at most one positive solution

z∗ =
−B2 −

√
B2
2 − 4B1B3

2B1
.

Consequently, system (15) has at most one positive equilibrium E∗ = (n∗
1, n

∗
2, z

∗). On the other
hand, system (20) is uniformly persistent forR12 > 1 andR21 > 1. This implies that system (15)
has at least one positive equilibrium. Therefore, when R12 > 1 and R21 > 1, system (15) has a



601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650

Journal of Biological Dynamics 13

unique positive equilibrium E∗ = (n∗
1, n

∗
2, z

∗), where n∗
1, n

∗
2 and z∗ are given by Equation (22).

This finishes the proof of part (ii). The proof of Theorem 4 is completed. �

The next result concerns the global stabilities of the nontrivial equilibria E1 and E2. For these
global dynamics of system (15), we need to first mention some results from Jiang et al. [13]
concerning three-dimensional K-competitive dynamical systems.
Consider the system of differential equations:

ẋ = f (x), x ∈ R
3
+. (23)

It follows from Smith [27] that a matrix A is called type K-competitive and irreducible if A has
the following form ⎛

⎝∗ − +
− ∗ +
+ + ∗

⎞
⎠,

where the ‘∗’ represents an arbitrary element. System (23) is called type K-competitive and
irreducible if the Jacobian Df (x) of f is type K-competitive and irreducible for each x ∈ R

3+.
Set

K = {(x, y, z)| x ≥ 0, y ≥ 0, z ≤ 0}.
It follows from the Perron–Frobenius theorem that A has a real eigenvalue, which has a unique
unit eigenvector in IntK , and the real parts of the other two eigenvalues are strictly greater than
this real eigenvalue if A is type K-competitive and irreducible.
We also need to introduce the following concepts.A vector x is calledK-positive if x ∈ K , and

it is called strictly K-positive if x ∈ IntK . Two distinct points u, v ∈ R
3 are K-related if either

u − v or v − u is strictly K-positive. A set S is called K-balanced if no two distinct points of S
are related.
Notice that the Jacobian of system (15) is⎛

⎜⎜⎝
c1(p − 2n1 − n2 + z) −(1− k1)c1n1c2 (1− k1)c1n1

−(e1 + d) + k1c1(n2 − z) (p − n1 − 2n2 + z) (1− k2)c2n2
−(1− k2)c2n2 × k2c2n2 −(e2 + d) + k2c2(n1 − z) −k2c2n2 − k1c1n1

+k1c1(n2 − z) k2c2(n1 − z) + k1c1n1 −(e1 + e2 + d)

⎞
⎟⎟⎠.

It can be verified that system (15) isK-competitive in �. From the expressions of n∗
1, n

∗
2, z

∗, x̄,
and ỹ, it is not difficult to see that the equilibriaE1 andE2 (orE1, E2, andE∗) are unordered in the
K-order. It follows from Proposition 3.2 inWang and Jiang [33] and Proposition 1.3 in Takac [28]
that there exists a two-dimensional compact Lipschitz submanifold� such thatE1, E2 ∈ Int�, or
E∗ ∈ Int� andE1, E2 ∈ ∂�. Moreover,� isK-balanced. Since� is a two-dimensional compact
Lipschitz submanifold and homeomorphic to a compact domain in the plane, it is obvious that
the Poincare–Bendixson theorem holds for the dynamics of system (15) on �.
Notice that system (15) has only two boundary equilibria E1 and E2, and from Theorems 2

and 3 we know that E1 is stable and E2 is unstable when R12 < 1 and R21 > 1. Since there is
no positive equilibrium, from the Poincare–Bendixson theorem we know that E1 is g.a.s. Using
a similar way, we show that E2 is g.a.s. ifR12 > 1 andR21 < 1. Therefore, the following result
holds.

Theorem 5 If Rij < 1 and Rji > 1 (i, j = 1, 2, j �= i) then the nontrivial boundary equilib-
rium Ei of system (15) is g.a.s.

Althoughwedonot have an analytic result for the stability of the interior equilibriumE∗, the results
in Theorems 1 – 6 suggest that E∗ is l.a.s. whenR12 > 1 andR21 > 1. Biological interpretations
of these results are provided in the next section.
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3.3. Biological interpretations of the results

In the previous sections, we proved several results regarding the local and global dynamics of
system (2) including the existence and stability of the equilibria E0, E1, E2, and E∗. We point
out that these results have been described using the quantitiesRi andRij (i, j = 1, 2 and i �= j ),
which are defined in Equations (6), (8), and (9). These quantities have clear biological meanings.
For example, Ri = pci/(ei + d) is the product of ci (the rate that species i colonize a habitable
and empty patch), 1/(ei + d) (the mean time that a patch is occupied by species i in the absence
of the other species), and p (the fraction of habitable patches). Thus, Ri gives the expected
‘reproduction number’ of species i in a landscape where the proportion of habitable patches is
p. If a landscape is completely habitable, i.e. if p = 1, then the ‘basic reproduction number’ of
species i is

R0i = ci

ei + d
, i = 1, 2. (24)

To see the meaning ofRij more easily, we ignore the extra extinction rate for doubly occupied
patches (i.e. εi = 0). In this case, from Equations (8) and (9) we can simplify the expressions for
R12 andR21 as

R12 = c2(ū + k2x̄)

e2 + d
= R2(ū1 + k2x̄),

R21 = c1(ũ + k1ỹ)

e1 + d
= R1(ũ1 + k1ỹ), (25)

where ū1, x̄, ũ1, and ỹ are given in Equations (4) and (5). Notice that E1 = (ū1, x̄, 0, 0) is the
species 1-only equilibrium and E2 = (ũ1, 0, ỹ, 0) is the species 2-only equilibrium. Thus, Rij

gives the reproduction number of species j in a landscape in which only species i (j �= i) is
present. We term Rij the ‘invasion reproduction number’ of species j . The result in Theorem 2
implies that species 2 can invade the metapopulation of species 1 only if the invasion reproduction
numberR12 exceeds 1.
Combining the results in Theorems 1–5, we can draw the following conclusions for the

competition outcomes of the two species:

(i) Only species i will be present ifRi > 1 andRij < 1 (i, j = 1, 2 and i �= j).

(ii) Both species will coexist ifRi > 1 (i = 1, 2) andRij > 1 (i, j = 1, 2 and i �= j).

(iii) Both species will go extinct ifRi < 1 for i = 1, 2. (26)

These conditions make clear biological sense from the meaning of Ri and Rij . Comparing with
the corresponding results in Hanski [6] in which the conditions for nontrivial equilibria cannot
provide explicit biological interpretations due to the complexity of the expressions, our results
are more useful in terms of gaining biological insights.
It is also helpful to rewrite the invasion conditionRij > 1 in Equation (25) in terms ofR1 and

R2:

R12 > 1 if and only if R2 >
1

1− (1− k2)(1− 1/R1)
=: H1(R1) (27)

and

R21 > 1 if and only if R2 <
1

1− (1/(1− k1))(1− 1/R1)
=: H2(R1). (28)
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Figure 2. (R1, R2) plane. The left figure is for the case when there is no doubly occupied patches (k1 = k2 = 0) and
the right figure is for the case k1 > 0 and k2 > 0. The two curvesR2 = H1(R1) andR2 = H2(R1) are determined by
the invasion conditionsRij > 1 (i, j = 1, 2, i �= j ). Both species will go extinct ifRi < 1 (i = 1, 2), i.e. if (R1, R2) is
in Region I. Only species 1 will be present if (R1, R2) is in Region II, and only species 2 will be present if (R1, R2) is
in Region III. Both species will coexist if (R1, R2) is in Region IV.

Since the equilibriumEi exists if andonly ifRi > 1 (i = 1, 2), and from0 ≤ ki ≤ 1, ū1 + k2x̄ < 1
and ũ1 + k1ỹ < 1, we know that the curve H1(R1) is above the curve H2(R1) for R1 > 1,
except thatH1(R1) = H2(R1) = R1 in the case of k1 = k2 = 0 (i.e. no doubly occupied patches).
Moreover, the two curves intersect atR1 = 1. Bifurcation diagrams for these two cases are shown
in Figure 2. It is shown in Figure 2 that coexistence is very unlikely if no patches can be cooccupied
by both species (the left figure), and there are three regions (labelled by I, II, and III) formed by
the linesRi = 1 and by the curves Hi(Ri ) (i = 1, 2) representing species extinction (Region I),
species 1 only (Region II), and species 2 only (Region III). If double occupancy is allowed, then
there is a region for coexistence (Region IV).
These results can be used to examine the role of various ecological factors play in the competitive

outcomes of metapopoulation. For example, from the threshold value Ri = 1 we can derive a
threshold value of colonization rate c∗

i ,

c∗
i = (ei + d)(r + d)

r
, (29)

such that Ri > (<)1 if and only if ci > (<)c∗
i . Similarly, the conditions R12 > 1 and R21 > 1

are equivalent to, respectively,

c2 >
e2 + d

p

1

1− (1− k2)(1− ((e1 + d)/pc1))
=: F(c1) (30)

and

c2 <
e2 + d

p

1

1− (1/(1− k1))(1− ((e1 + d)/pc1))
=: G(c1), (31)

where p = r/(r + d) is the long-term proportion of habitable patches.
Using Equations (29)–(31), we can draw a bifurcation diagram in the (c1, c2) plane. Moreover,

these conditions allowus to examinehow themodel parameters such asp (the long-termproportion
of habitable patches) and ei (patch extinction) may affect the competition outcomes. For example,
the effect of p is illustrated in Figure 3, in which the three plots are for the values of p = 1 (left),
p = 0.75 (middle), and p = 0.6 (right). We observe that as p decreases (i.e. as the fraction of
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Figure 3. Regions of competition outcomes in the first quadrant of the (c1, c2) plane for different values of p, the
long-term proportion of habitable patches. The four regions are: (i) species extinction if ci < c∗

i for i = 1, 2, where the
threshold values c∗

1 and c∗
2 are given in Equation (29), i.e. if (c1, c2) is in Region I; (ii) species 1 only if (c1, c2) is in

Region II; (iii) species 2 only if (c1, c2) is in Region III; and (iv) coexistence of both species if (c1, c2) is in Region IV.
The left figure is for the case p = 1 (i.e. all patches are habitable). The middle and right figures are for the cases p = 0.8
and p = 0.5, respectively. It shows that as p decreases, the region of extinction increases significantly while the region of
coexistence becomes much smaller. It also suggests that the negative impact of decreasing p is higher on species 1 than
on species 2.

habitable patches decreases), the region for the extinction of both species increases significantly
while the coexistence of two species becomes much less likely. It also suggests that the negative
impact of decreasing p is higher on species 1 than on species 2. The parameter values used in this
figure are e1 = 0.15, e2 = 0.1, k1 = 0.1, and k2 = 0.4.

4. Stochastic simulations

To explore the impact of stochastic factors on the system behaviours, we conducted stochastic
simulations of the system, and the results from the deterministic model and stochastic simula-
tions are compared. Guided by the theoretical results from the deterministic model, we consider
stochasticity in several parameters that may have important influence on the dynamics of the sys-
tem. For example, the effect of environmental stochasticity is examined by considering random
parameters including the species i, i = 1, 2 colonization rate of empty patch ci , the extinction
rate ei , the colonization rates of occupied patch k12 and k21, and the rates of patch destruction
d and recreation r . For simplicity, our basic model describes the dynamics of a metapopula-
tion without keeping track of the local population dynamics for species within each patch. That
is, a habitable patch is considered either empty or occupied, and there is no detailed descrip-
tion for the population growth within an occupied patch. Consequently, there is no demographic
stochasticity.
In this section, we present three scenarios based on the competitive outcomes of the two

species identified from the analysis of the deterministic model. There scenarios correspond to
the three cases are listed in Equation (26). We first consider the case when the rates of col-
onization (ci) and extinction (ei) are random parameters, which are assumed to be uniformly
distributed.
In Figure 4,R2 > 1 andR21 < 1, which corresponds to the case (i) described in Equation (26)

with i = 2 and j = 1. Thus, the deterministic outcome is that only species 2 will be present. Time
variations of the variables x, y, z, u1 are presented in these figures. Figure 4 shows the average
of 500 stochastic runs (the dashed curve) and the solution curve of the deterministic model (the
solid curve), whereas Figure 4 illustrates four individual stochastic runs (thin curves) together
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Figure 4. Stochastic simulations with ci and ei as random parameters (see the text for more detailed explana-
tions). (a) The fraction of habitable but empty patches; (b) the fraction of patches occupied by the species 1 only;
(c) the fraction of patches occupied by the species 2 only; (d) the fraction of patches occupied by both species
1 and 2. The random parameters are again ci , ei , i = 1, 2, k12, k21, d, and r . The solid curve represents the solu-
tion curve of the deterministic model and the dash thick curve shows the average of 500 stochastic runs. The
thin (solid, dashed, dot, dashed, and dot) curves show four individual stochastic runs. The parameter values used
for the deterministic simulation, which are the mean values of the random variables in the stochastic runs, are:
c1 = 0.17, c2 = 0.18, e1 = e2 = 0.15, r = 0.1, d = 0.01, ε1 = ε2 = 0.01. For this set of parameter values,R1 = 0.9659,
R2 = 1.0227, R12 = 1.0408, and R21 = 0.9552. This corresponds to the case (i) listed in Equation (26). In this
case, the deterministic outcome is that only species 2 will be present. We observe that the average behaviours of
stochastic simulations is very similar to the behaviour of the deterministic model. The outcomes of some individual
runs, for example the solid thin curves, may be very different from the average outcome in some relative short time
periods.

with the deterministic curve (the solid curve). We see from Figure 4 that the average behaviour
of the stochastic simulations is very similar to that of the deterministic simulation. More diverse
outcomes can also be observed in Figure 4. There are individual runs that exhibit coexistence of
the two species (e.g. see the solid blue curve), and other runs show that both species go extinct
(see the solid red curve).
Figure 5 is similar to Figure 4, but for the case (ii) described in Equation (26). That is,

Ri > 1 (i = 1, 2) and Rij > 1 (i, j = 1, 2 and i �= j ). In this case, the deterministic outcome
is coexistence of both species. We see from Figure 5 again that the average behaviour of the
stochastic simulations is very similar to that of the deterministic simulation. The individual runs
shown in Figure 4 include both the case when species 1 out-competes species 2 (blue solid curve)
and the case when species 2 out-competes species 1 (red solid curve).
Figure 6 is also similar to Figure 4 except that it corresponds to the case (iii) given in

Equation (26), i.e. Ri < 1 for i = 1, 2. The deterministic outcome for this case is that both
species will go extinct. Figure 6 shows again that the behaviour of average stochastic simulations
is similar to that of the deterministic model.We also observe from Figure 6 that all individual runs
also show extinction of both species, although it may take a very long time in some individual
runs.
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Figure 5. (a) The fraction of habitable but empty patches; (b) the fraction of patches occupied only by the species 1;
(c) the fraction of patches occupied only by the species 2; (d) the fraction of patches occupied by both species 1 and 2.
Similar to Figure 4 but for a set of parameter values that correspond to the case (ii) given in Equation (26). The random
parameters are again ci , ei , i = 1, 2, k12, k21, d, and r . The solid curve represents the solution curve of the deterministic
model and the dash thick curve shows the average of 500 stochastic runs. The thin (solid, dashed, dot, dashed, and dot)
curves show four individual stochastic runs. The parameter values used for the deterministic simulation are the same as
these in Figure 4 except the colonization rates are increased as: c1 = 0.19, c2 = 0.2. For this set of parameter values,
R1 = 1.0795, R2 = 1.1364, R12 = 1.0945, and R21 = 1.0148. In this case, the deterministic outcome is that the two
species will coexist.We observe again that the average behaviours of stochastic simulations is very similar to the behaviour
of the deterministic model.

5. Conclusion

In this paper, we studied a two-speciesmetapopulationmodel in a competitive dynamic landscape.
We considered both a deterministic and stochastic versions of the model. For the deterministic
system, we presented detailed stability analysis including the local and global stabilities of the
nontrivial boundary equilibria (the equilibria atwhichonly one species is present).These analytical
results provide threshold conditions for the invasion of a species into an environment in which the
other species has already established, and the conditions are expressed in terms of the ‘invasion
reproduction numbers’, R12 and R21 [23,31]. These invasion reproduction numbers are shown
to have clear ecological interpretations in terms of their dependence on parameters representing
patch colonization and extinction (ci and ei), species competition (kij ), and landscape dynamics
(d).
The analytical results can be used to examine the impact of various factors on species coexis-

tence. For example, from the invasion condition Rij > 1 (i, j = 1, 2), we derived the threshold
level c∗

i of colonization rate ci for species i, such that the species i can invade into a population of
species j if and only if ci > c∗

i . Moreover, coexistence of the two species can be expected when
ci > c∗

i for i = 1, 2. Similarly, the invasion and coexistence conditions can be expressed using
other model parameters including the rates of patch extinction, patch destruction and recreation,
and species competition. These types of results may provide useful information for management.
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Figure 6. (a) The fraction of habitable but empty patches; (b) the fraction of patches occupied only by the species
1; (c) the fraction of patches occupied only by the species 2; (d): the fraction of patches occupied by both species 1
and 2. Similar to Figure 4 but for a set of parameter values that correspond to the case (iii) listed in Equation (26).
The random parameters are again ci , ei , i = 1, 2, k12, k21, d, and r . The solid curve represents the solution curve of the
deterministic model and the dash thick curve shows the average of 500 stochastic runs. The thin (solid, dashed, dot, dashed,
and dot) curves show four individual stochastic runs. The parameter values used for the deterministic simulation are the
same as these in Figure 4 except the colonization rates are decreased as: c1 = 0.15, c2 = 0.16. For this set of parameter
values,R1 = 0.8523, R2 = 0.9091, R12 = 0.9879, and R21 = 0.8949. In this case, the deterministic outcome is that
the both species will go extinct. We observe again that the average behaviour of stochastic simulations is very similar to
the behaviour of the deterministic model. The outcomes of some individual runs may be very different from the average
outcome in some relative short time periods.

The analytical results also provided helpful guidance for the simulations of the systemwith and
without stochastic factors. Our simulations suggest that stochastic factors such as environmental
fluctuations do not alter qualitative behaviours of metapopulation systems. That is, stochasticity
does not alter species coexistence or competitive exclusion.
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