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We consider a system of ODEs which describes the transmission dynamics of
childhood diseases. A center manifold reduction at a bifurcation point has the nor-
mal form x' =y, y'=axy+bx? + O(4), indicating a bifurcation of codimension
greater than two. A three-parameter unfolding of the normal form is studied to cap-
ture possible complex dynamics of the original system which is subjected to certain
constraints on the state space due to biological considerations. It is shown that the
perturbed system produces homoclinic bifurcation.  © 2000 Academic Press

1. INTRODUCTION

In Feng and Thieme [5] an SIQR model for childhood discases (a
system of ODEs) is formulated to study the impact of isolation on the
observed periodic occurrence of these diseases. They show that if the
average length of the isolation period is either very long or very short the
disease dynamics always converge to the endemic equilibrium (global
stability). Analytically they have found two different parameter values at
which periodic solutions bifurcate from the endemic equilibrium via a Hopf
bifurcation. Their numerical studies using Auto show that for parameter
values in a certain range, the branches of periodic solutions emanating at
these two bifurcation points are disconnected and periods of these solutions
tend to infinity, suggesting the presence of homoclinic orbits.

In this article we derive an analytic understanding of the complex
dynamics that may arise from the SIQR model. Using tools in dynamical
systems theory such as center manifold reduction, normal form, and
unfolding methods we show that homoclinic bifurcation exists in a biologi-
cally reasonable region of the parameter and state space.

The vector field of our model equations has a singularity of codimension
greater than two for some critical parameter values. This is indicated by the
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fact that the normal form of a center manifold reduction of the full system
(near a threshold) has the form

xX=y,

1.1
¥y =bxy+ Bx*y + O(4), (1.

where O(n) denotes all monomial terms of degree n and higher. In [ 1], the
second order normal form

xX=y, (12)
y=ax?+bxy, a#0, .

was studied, and a complete bifurcation analysis of (1.2) with a two-
parameter unfolding given by the Takens—Bogdanov system

X=y,
(1.3)
V= X+ 1y + x>+ xy,

can be found in [2,6]. If 5#0, it is a cusp of codimension 2; if =0, it
is a cusp of higher codimension. There are also results for the case of a =0
and b # 0 in (1.2), but with some higher order terms included. For example,
the following order three normal form

X=y,
¥ =bxy+ax>+ fx?y, o0,

has a universal unfolding with three parameters

X=y,
V=1 + 12X + y(ps + bx + fx?) + ax,

which is presented in [4].

We see that our normal form (1.1) is highly degenerate in the sense that
the corresponding coefficients a in (1.2) and « in (1.3) are both zero. To
our knowledge, no universal unfolding of normal forms of type (1.1)
has been found. However, this is not our goal. We do not wish to obtain
complete bifurcation analysis of (1.1). In fact, since our equations are from
an epidemic model, there are some constraints on the state and parameter
space. For example, the solutions that represent numbers of individuals
cannot be negative. These restrictions rule out unfoldings that produce
biologically unreasonable solutions.

The purposes of this paper are quite specific. We study the SIQR model
through unfolding analysis of a normal form derived from the model
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equations. In particular, we find an unfolding which gives rise to a codimension
two bifurcation as well as limit cycles and homoclinic orbits as expected
from previous numerical studies. The results are proved analytically. We
also show some numerical computations to confirm the existence of Hopf
and homoclinic bifurcations. The behaviors of the simplified system will
then represent the different dynamics which may occur for the original
system under small perturbations.

The paper is organized as follows. In Section 2 we explain the SIQR
model, describe its basic dynamics, and compute a center manifold reduction
of the equations at a critical point and a normal form of the reduced system.
Section 3 presents an unfolding of the normal form and its bifurcation
analysis. Some numerical computations are also included in this section.
Section 4 discusses the results.

2. THE SIQR MODEL AND SINGULARITIES
OF THE VECTOR FIELD

The following model for childhood disease is proposed in [5]:

d 1
—S=A—-uS—aS—,

dt A
d I
= I —
7 (u+7y) +aSA,
d
L 0= —(u+&) 0+, (2.1)
dt
— R= —uR
ar UR+£E0,
A=S+I+R.

S, I, O, R denote the number of susceptible, infected, isolated (quarantined),
and recovered individuals, respectively. 4 is the active; i.e., non-isolated
individuals. 4 is the rate at which individuals are born into the population;
4 1s the per capita mortality rate; ¢ is the per capita infection rate of an
average susceptible individual provided that everybody else is infected; y is
the rate at which individuals leave the infective class, and ¢ is the rate at
which individuals leave the isolated class; they are all positive constants.
Let N=S+1+Q+ R denote the total population. Note that 4N =
A—uN, and N(t) —> A/u as t — co. By assuming that the size of the population
has reached its limiting value; ie, N=A/u=S+I1+ QO+ R= A+ Q, and using
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A=N—Qand S=4—71—Rin (2.1) we can eliminate S from the equations.
Further we can introduce the fractionsu =5, p =4, g =2, z =% and scale time
such that ¢ = 1 by introducing a new, dimensionless, time t = g¢. This gives us
the simplified system

p=pl—v—0—p—z+0p—(v+{)q),
Gg=1+q)(0p—(+{)q), (22)
Z={q—vz+z(0p—(v+{) q),

where v="%,0="2 and { = § Here we have used the fact thatu=1—p—=z. It
can be shown that the region

D={(p.q.2)|0<p<1,¢>0,0<z<1} (2.3)

is invariant.

The dynamics of (2.2) is dependent on the quantity %, = 1/(v + 0) which, in
biological terms, is called the basic reproductive number. The following results
are proved in [5].

(1) 1If %, <1, then system (2.2) has only the trivial (disease-free) equi-
librium Ey = (py, 40, zo) = 0 which is globally asymptotically stable. If %, > 1,
then E, is unstable, and there exists a unique non-trivial (endemic) equilibrium
E*=(p* g*, z*) with p* > 0.

(2) If the quarantine period (1/{) is very short or very long, E* attracts
all solutions of system (2.2) with nonnegative initial data such that p, > 0.

(3) Thereexist {yand ¢, ({, < 1{;) such that E* is locally asymptotically
stableif { < 1{,or { >{,, and E* is unstable if { > {, and { > {,. Hopf bifurca-
tions occur at {, and {;.

Calculations with Doedel’s program Auto [ 3] show that the Hopf bifurca-
tion is supercritical at both bifurcation points for parameters in a certain
biologically reasonable region (see Fig. 1). We also observed that, for
parameters in some other regions, when { moves away from (;, the period of
the periodic solution increases dramatically until the numerical methods fail to
work properly. Can we derive an analytical understanding of the possible com-
plex dynamics arising from this epidemic model?

Note that important disease dynamics of the model can be determined by the
threshold %,=1, where #,=1/(v+0) and v=y/o, 0 =y/a. Also note that
u=1/L with L denoting the average life expectation of humans, and 1/y is the
length of the infective period. The life span is on the order of decades whereas
the infective period is on the order of days. Hence u is much smaller than y, and
so v is much smaller than 6. This leads us to choose the parameter values v =0,
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FIG. 1. An Auto plot of the lower and upper amplitudes of the periodic solutions (in terms of
the fraction I/N) versus the length of the isolation period 1/£. HB denotes Hopf bifurcation point,
sss means (locally asymptotically) stable steady state, uss means unstable steady state, and sp is the
(locally asymptotically orbitally) stable periodic solution.

0=1 at the threshold #,=1, and consider the corresponding system as an
approximation of the original system.

THEOREM 2.1.  The vector field (2.2) at the point v =0, 0 = 1 has a singularity
of codimension greater than two.

In order to prove the theorem we need to introduce some notations and the
normal form theorem. Let H, denote the linear space of vector fields whose
coefficients are homogeneous polynomials of degree 2, J = (] ), and

L,(h(x))= —(Dh(x) Jx — Jh(x)),

where xeR? : R> > R?, and L,: H, » H,. Choose a complementary G, for
L,(H,)in H,,so that H,=L,(H,) ® G,. The following theorem is taken from
[8] (for the case of r =2).

NORMAL FORM THEOREM. By an analytic coordinate change x =y + h(y);
the system

X' =Jx+ Fy(x) + O(|x]*)
can be transformed into
Y =Jy+FE(y) +O(lylP),

where Fy(y) e G,.
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From the above theorem, we can choose A(y) such that only O(|y|?) terms
that are in G, remain. In the new coordinate system, only second order terms
are in a space complementary to L,(H,).

Proof of Theorem 2.1. When v=0, 0 =1 (2.2) becomes

p=p(—z2—=0q),
q=(1+q)(p—Lq) (24)

Z=0q+z2(p—{q).

The system (2.4) has one negative and double zero eigenvalues at the equi-
librium ey = (py, o, o) = (0, 0, 0). By the linear transformation

% 0 ¢ 0 u
qgl=10 1 1 v (2.5)
z 0 —1/\w
the system (2.4) can be transformed into
U 01 0 u uv + v* — ow/l — Luw
6 |=l0 0 0 v |4+ —Cuv—Cv*+ow—CLow |. (2.6)
w 0 0 —C/\w Cuv + Lv* —ow — w?

Note that u — v plane is associated with a pair of zero eigenvalues, while the w
axis corresponds to the eigenvalue —(. Thus, there exists a smooth stable
manifold W*(e,) and center manifold W<(e,). A center manifold at ¢, can be
locally represented as:

We(eq) = {(u, v, w) | w=g(u, v), lu| <, |v] <J, g(0)=Dg(0)=0}

for ¢ sufficiently small, where g can be computed as a Taylor expansion up to
a certain order to obtain the desired degree of accuracy, and the dynamics of
(2.6) restricted to the center manifold is given by the first two equations in (2.6)
with w replaced by g(u, v). Note that g must have neither a constant nor a linear
term, so we can compute the quadratic terms of g and get an approximation to
the center manifold

w=<1—2> 02 +uv+ O(3). (2.7)
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Substituting (2.7) into (2.6) we obtain a center manifold reduction up to
order 3:

u=v+vz+uv—5uzv+<l—2—l> uvz-l-(Clz—é) v+ 0(4),
(2.8)

U= —Cuv—(:vz+<(1 —0) uvz+<2—2—i>> 03+ 0(4).

The second order terms in (2.8) can be simplified by using the normal
form theorem and computing a normal form up to order 2. We know from
Guckenheimer and Holmes [ 6] that

e (MO EH O
S G EREA)

and one choice of G, is given by

mron(a) (o)}

For the system (2.8), if we choose the near-identity transformation

1-C 5

<u>:<x>+ 3 x“+xy , (29)
v y
—{xy
1e.,
-0
/’~1(X, y): 2 o )
—Cxy

then (2.8) can be transformed into the normal form

X¥=y+003),
y=—Lxy+ O0(3).

(2.10)

We will be interested in studying perturbations of (2.10) which then represent
the different types of dynamics that can occur for the full system (2.4) near
the bifurcation.
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Note that (2.10) is a degenerate case of (1.2) since the corresponding
coefficient a of x? term is zero (see Section 1). When we compute a normal
form of (2.10) up to order 3, we get the system

X=y+0(4),
y=—0y+30l-1) X’y + O0(4),

which is again a degenerate case of the normal form (1.4) for « =0. Since

system (1.4) has a local codimension three bifurcation, our system (2.10)

undergoes a bifurcation of codimension greater than or equal to three.
This completes the proof.

These degeneracies indicate that it will be extremely difficult to conduct
a complete bifurcation analysis of (2.10). However, in this article we do not
attempt to study all possible perturbations of (2.10). In fact, our biological
considerations restrict the variables and parameters to be in a certain
region. In other words, not all unfoldings will produce biologically feasible
solutions. For example, note that in the original system (2.2) the region
(2.3) is invariant, which implies that y>0 should be invariant for the
simplified system (2.10), so we must not introduce any term that produces
solutions with y(0) > 0 but y(f) <0 for some 7 > 0. Under these considerations,
we will only look for a specific unfolding in (2.10) to capture some
dynamics of the original system in terms of the simpler system in normal
form. In particular, we want to find an unfolding that gives rise to limit
cycles and homoclinic orbits since we expect these dynamics based on our
numerical studies of the original system.

3. UNFOLDING ANALYSIS AND HOMOCLINIC BIFURCATION

When considering unfolding of systems of the form (2.10), one usually
adds terms in the y equation only (see (1.3) and (1.5)). However, due to
our biological considerations, all of these unfoldings will exclude the
possibilities of limit cycles and homoclinic orbits. The reason for this is that
the equilibria of such perturbed systems satisfy y =0, and hence any peri-
odic orbits spiraling around the equilibria will enter the lower half plane
y <0, which is not biologically feasible for our system (2.10). Therefore,
there should be an unfolding term in the x equation in order to produce
the appropriate dynamics.

We introduce the following unfolding of the system (2.10):

X=0,x+Y,
! (3.1)
y=(0,—0,)y+ox®—{xp.
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Here o,, 0,, and a are small parameters, « > 0. It is easy to verify that
y>=0 remains invariant under the unfolding. We first consider the case
when o is a fixed positive constant. We rescale by letting

o 2 o 04
x-’gx, y-’Ey, l-’;l, 01—’Eﬂ1, 02—’5/12

to obtain a transformed system of (3.1):

X=u;x+y,
- . (3.2)
V== p1) y+x"—xy.
i, and u, are new parameters. System (3.2) has two equilibria E,= (0, 0)
and E* =(x*, y*), where

*:ﬂl(ﬂz_ﬂl) *:ﬂ%(ﬂl_ﬂ2)
Ttuy 7 Ttuy
For illustration we restrict our attention to the parameter region g, <p;.
THEOREM 3.1. A Hopf bifurcation occurs along the curve H = {(uy, t5) | 1»
= —u}, 1y >0}, and the bifurcation is supercritical.

Proof. Note that x* <0, y* >0 for u,<u,, u; =0. Hence E* is in the
interior of the half plane y>0. E, is a saddle for all u, <u,, u; >0. The
Jacobian at E* is

Ha 1
A= (24 py) (g — ) po— iy
1+u, 1 +u,
Since
2
trace(A) ="12and det(A) =gy (g — o),

1+,

we see that E* is stable for u, < —u? and unstable for u, > —u?. Thus, for
each fixed u,, the roots of the characteristic equation cross the imaginary axis
when u, crosses —u? from left to right. It is easy to check that this crossing
is transversal. We conclude that a Hops bifurcation occurs along the curve H.

To study the stability of the Hopf bifurcation, we first change coor-
dinates to bring the point E* to the origin and consider the system (3.2)
with s, = —ui. Letting X=x—x*, y=y— p* we obtain

)22/11)24-)7,
Y= =124 u) X —p, y + 5> — X
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Then using the linear transformation

G)=7()

where

1 0 >
T—
<_,U1 —ui/ 1+

is the matrix of real and imaginary parts of the eigenvectors of the eigen-
values A= +iu; /1 +u,;, we obtain the system in “standard form”:

U= —u/1+p v+ f(u,v),
U=py /1 +pu+ glu,v),

where

f=0 _ \/1+:u1 2

g=—"——"—u"—uv.
1

The stability of the Hopf bifurcation is determined by the sign of the coef-
ficient C which is given by the formula

[fuuu+fuvv+guuv+guvv]+ [fuv(fuu+fvv)

- guv(guu + gUU) 7fuuguu +fUUgUU:|’
where w =pu; /1 4+, (cf. [6]). It is easy to verify that in our case

so that the bifurcation is supercritical and we have a family of stable periodic
orbits for u, > —u? and close to H.

This completes the proof.

Let

Q={(p1, 12) | =203 <p, <0, iy >0}.

Then H < Q. It can be shown that, for (u;, u,) € Q, (trace(A4))* —4 det(A)
<0, and hence E* is a focus. Using arguments as in the analysis of
Takens—Bogdanov’s equations (cf. [ 1, Section 7.3]) we suspect the exist-
ence of global bifurcations.
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THEOREM 3.2. A homoclinic bifurcation occurs along the curve

HL = {(uy, t2) | ta= =513+ O(u3), 1, > 0}.

Proof. In order to find the homoclinic orbit of (3.2), we set
2

t
X_)gzxs y_’33)/, M1 =&, Hy = —&7V, r—--, (33)
&

where ¢ and v are new parameters. Then (3.2) becomes

X=x+,
(34)
Y= —y+x2—e(vy+xp).
For ¢=0, (3.4) is a Hamiltonian system with Hamiltonian
2 x3
H(x, y)=y5~|—xy—?. (3.5)

The phase portrait of (3.4) with e=0 is shown in Fig. 2. The separatrix
cycle I'y u {0} shown in Fig. 2 corresponds to H(x, y)=0; ie. it is
represented by motions on the curves defined by

yi(x)z—xi\égx~/3+2x, -

<x<0.

[\SRROS)

Let yo(2) = (x0(2), yo(t)) be the solution on Iy, and let

Fi(ro(1)) xo(7) + yo(2)
f(yo = = N ,
=) = Cr i)

g(7o(1) v):<g1(yo(l)9 V)>:< 0 >
o 22(70(1), ) —(v+x0(1)) ¥ol2))”

We prove the existence of homoclinic orbits using Melnikov’s method. To
compute the Melnikov function

(3.6)

<

M) =" 1) A glro(0), v)

— 0
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y

FIG. 2. The phase portraits of (3.4) with ¢=0.

where the wedge product of two vectors u and veR? is defined as
U AV=uv,— 0 U, we use (3.6) and the fact that along trajectories of (3.4)
dt =dx/x =dx/f,(y,) to obtain

MOV =" Lo gyl v) d

0

0
:J_a/z ga(x, y (x), v) dxff g-(x, y(x), v) dx

—3p
=" =y () dx
3

2./3 0
==

v+ x)x /34 2xdx

6

We see that M(v) =0 if and only if v=6/7, and M ,(6/7) # 0. Thus, according
to results in [ 1, see Theorem 4.5.3] for all sufficiently small ¢ #0, there is
a v,=6/7+ O(¢) such that the system (3.4) with v=v*=6/7+ O(¢) has a
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FIG. 3. The bifurcation diagram for the system (3.2) in the (x,, u,) plane. H and HL
denote the curves for Hopf bifurcation and homoclinic bifurcation, respectively.

homoclinic orbit I", with the saddle at the origin in an e-neighborhood of
I'y. Using (3.3) (1, =&, i, = —&*v) we obtain the bifurcation curve HL for
the system (3.2)

fo= —6/T+ 0, py>0. (3.7)

Thus, for all sufficiently small x4, >0, the system (3.2) has a homoclinic
orbit I, with u=(x,, u,) on HL and the saddle at the origin. Note that
the curve (3.7) lies to the right of the curve for Hopf bifurcation A which
has the equation u, = —u3, u; >0.

This completes the proof.

Our knowledge so far leads to the bifurcation diagram for the system
(3.2) shown in Fig. 3. The following result describes the number of periodic
orbits for given u, and u,.

THEOREM 3.3.  For sufficiently small i, and u,, (1) there is a unique limit
cycle in the region —us <u, <Sui, the limit cycle shrinks to the stable focus
as (i, 1, tends to H, and it tends to the homoclinic loop as (u,, 1,) tends
to HL; (ii) there are no periodic orbits in the regions p, < —u; (near H) and
Uy > —Sui (near HL).

Proof. Let P(x, y, u»), Q(x, y, 1) denote the right hand side of the x
and y equation in (3.2), respectively. Note that, for each fixed u,,

P 0
det< >=,ulxy+y2>0, (3.8)
P,uz Q;zz



HOMOCLINIC BIFURCATION 163

if i, is small. Thus (3.2) defines a one-parameter family of rotated vector
fields (see [7]). Note that I, (ueHL) is negatively oriented (as ¢
increases, it moves clockwise). Also note that the trace of the Jacobian of
(3.2) at E, (on the curve HL) is —u7 <0, and hence I, is an w-limit set
for nearby points in the interior of I', (cf. [6, Section 6.1]). Using results
in [7, Theorem 4.6.3] we know that I', generates a unique limit cycle on
its interior as u, decreases. Since these limit cycles are bounded by I', and
the parameter u, is also bounded, from Perko’s Planar Termination
Principle (see [7]) we know that the maximal, one-parameter (u,) family
of limit cycles terminates at a critical point or a separatrix cycle. Since the
limit cycle for each p,, —u? <p, < —6/7u? is stable and negatively oriented,
it shrinks continuously as u, decreases (or expands continuously as u,
increases). It is easy to show that this family of limit cycles contains the
branch of periodic solutions from the Hopf bifurcation. The limit cycle
must shrink to E* when u, decreases to —u3, since otherwise E* will be
unstable for some u, < —u? which is a contradiction. This also shows that E*
is a stable focus for (u,, ) € H. It is clear that the limit cycle must expand
to I', when 1, increases to —6/7u7. This completes the proof of part (i).
To prove part (ii), we let L be the segment connecting E, and E*:

wa(fy —y)

L={(x, y)‘ 1+,

<x<0,y= —ulx}.

Note that E, is a saddle and E* is a focus which is stable when u, < —u?
(near H) and unstable when u,> —S$u? (near HL). Hence any periodic
orbit of (3.2), if it exists, must cut the segment L. We know from part (i)
that if (u,,u,)€(H U HL), then the system (3.2) has no periodic orbits,
and any positive trajectory y starting from the point p € L is a contracting
spiral if (u,, 1t,) € H or an expanding spiral if (u,, 1t,) € HL. For (u,, it5)
below H (or above HL), we can find (u,, ft,)€ H (or € HL). Let y and 7
denote the two positive trajectories starting from the same point p € L and
corresponding to (u,, i,) and (u,, f1,), respectively. Then j is a contracting
(expanding) spiral. Note that (3.8) implies that at each ordinary point of
(3.2), where P?+ Q%#0, the field vector rotates counterclockwise as .,
increases. Thus, y must be located entirely inside (outside) y. This means
that y cannot be a closed orbit.

This completes the proof.

We now look at some numerical results. Computations of the system
(3.2) with Ermentrout’s program XPPAUT show that the equilibrium E*
loses its stability for u,> —u? and (u,, u,) € 2 (see Fig. 4). Here we have
chosen u, =0.5 for all plots in Fig. 4. The plot in Fig. 4a shows that E*
is a stable focus for u,= —0.3 (so that (u,, 1) is in the region 7). Note
that the solution with initial data y(0) >0 remains in the upper half plane.
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FIG. 4. Numerical integration of the system (3.2) according to XPPAUT. x, and u, have
been chosen such that (u,, ,) is in the region I, II, HL and III, respectively. These regions
are as in Fig. 3.

Figure 4b is for u, = —0.23, and hence (u,,u,)ell. We see that E* is
unstable, and there is a unique w-limit cycle. We have observed that the
limit cycle expands as u, increases until u, & —0.2005, at which time the
limit cycle hits the saddle point E, and a homoclinic orbit occurs (see
Fig. 4c). Hence (u,,u,)=1(0.5, —0.2005)e HL. When u,= —0.15; ie.,
(fy, io) € I (see Fig. 4d), we see that the stable and unstable manifolds of
the saddle point E, change their relative positions comparing with the case
of (u;, u,) €Il 1t is clear that our analytical results are confirmed by these
numerical calculations.

Notice that both Theorems 3.1 and 3.2 consider parameter regions in
which g, > 0. For u, <0 the dynamics are much simpler, and we will not
discuss them further. We remark that for each fixed «, a bifurcation
diagram for the system (3.1) in the (g,, 0,) plane can be obtained using the
formula o;= %u;, (i=1, 2). The corresponding curves are similar to those
in the (u,, 1t,) plane given in Fig. 4 (scaled by «/{). When « varies we get
a surface of Hopf bifurcation and a surface of homoclinic bifurcation for
the system (3.1) in the (g4, 0,, ) space (see Fig. 5).
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FIG. 5. The bifurcation diagram for the system (3.1) in the (o, g,, «) space. The top
graph shows two surfaces which denote Hopf bifurcation (upper) and homoclinic bifurcation

(lower), respectively. The bottom graph shows the two bifurcation curves H and HL for a
fixed value of «=0.1 (the curves are given by the intersections of the surfaces with the plane

a=0.1).
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DISCUSSION

In this paper we studied possible complex dynamics that can occur in an
SIQR epidemic model for childhood diseases under small perturbation. We
first identify a bifurcation point of the vector fields associated with the
model. This occurs at p =g =z=0 for parameter values v=0, 8 =1 (see
(2.4)). We then compute a center manifold reduction and a normal form
which appears to be highly degenerate (see (2.10)). The degeneracy
indicates the existence of bifurcations of codimension greater than two.
We proceed to look for a specific unfolding of the normal form to capture
appropriate dynamics of the original system under certain biological
constraints on the state space. We find a specific unfolding which produces
limit cycles and homoclinic bifurcations, and construct a bifurcation
diagram in the parameter space. These findings provide an analytic under-
standing of the numerical observations in the SIQR model. We also con-
duct some numerical calculations which confirm our analytical results.

Although the unfolded system may not correspond to the original model
equations, it represents the different dynamics the model may have under
small perturbations. Ideally, one would like to know how the parameters
of the unfolded system (3.2) are related to the parameters in the original
system (2.2) or (2.1). This is a nontrivial task due to the series of non-
linear transformations. Our preliminary results show that correspondence
between a perturbation of the original system (2.1) and the simplified
system (3.2) can be established under certain circumstances. These results
will be included in Wu’s thesis. More explicitly, the incorporation (as per-
turbations) of factors such as migration of various epidemiological classes,
partial immunity, disease-induced death, relapse of the disease, etc. into the
model allows for the possibility of the normal form reduction (3.1) and the
simplified system (3.2). Moreover, when the basic reproductive number %,
is close to one, the corresponding parameters u, and u, in (3.2) are small.
That is, in the perturbed SIQR model, not only an endemic equilibrium
may occur near the critical value of Z,=1, but also the system can exhibit
complex disease dynamics corresponding to the homoclinic bifurcation.
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