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Abstract

We study global dynamics of a system of partial differential equations. The system is mo-
tivated by modelling the transmission dynamics of infectious diseases in a population with
multiple groups and age-dependent transition rates. Existence and uniqueness of a positive (en-
demic) equilibrium are established under the quasi-irreducibility assumption, which is weaker
than irreducibility, on the function representing the force of infection. We give a classification
of initial values from which corresponding solutions converge to either the disease-free or the
endemic equilibrium. The stability of each equilibrium is linked to the dominant eigenvalue
s(A), where A is the infinitesimal generator of a “quasi-irreducible” semigroup generated by
the model equations. In particular, we show that () <O then the disease-free equilibrium
is globally stable; ifs(A) >0 then the unique endemic equilibrium is globally stable.
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1. Introduction

Many infectious diseases transmitted by bacterial agents (e.g., tuberculosis) or sex-
ually transmitted diseases (e.g., gonorrhea) can be studied SBgpidemiology
models withS and| representing the susceptible and infected individuals, respectively.
While ODE models are often used when the population structures (age, sex, etc.) are
neglected, there are many cases in which incorporating one or more of these structures
into the model may provide additional and important information which may be helpful
in the understanding of the disease dynamics. The incorporation of age-dependent de-
mographical and/or epidemiological parameters usually leads to a system of first-order
partial differential equations with nonlocal boundary conditions. This paper considers
an age-structure®IS model.

Most existing studies orslS models give only local stability results for which a
variety of analytical tools are available. In contrast, global studies of these models
are very limited due to the lack of applicable theories. For ODE models, a complete
characterization of the global dynamics was first due to the work of Lajmanovich
and York [9] by employing a Liapunov function, and was later given by SnijitB]
using the monotone iteration approach. The studySt$ models with age-structure,
which are given by first-order PDE’s, involves more sophisticated technical details
and the global dynamical properties in general cannot follow directly from classical
theory of the monotone flows unless we assume that the flows generated by models are
irreducible in a Banach latticd.6, p. 306]and possess the compactness property. These
assumptions in general are too restrictive to have biological applications. The global
stability results for the case of a single group age-structured model were first obtained
in [2—4]. The results given in these papers require that the force of infection function
satisfies some separability conditions. Under this assumption they proved the uniqueness
of the positive equilibrium if it exists. In the case when a positive equilibrium exists,
they provided a precise partition of a positively invariant €etnto two subsetsQ1
and Q,, for which all solutions with initial values if21 (22) converge to the positive
(zero) equilibrium.

In this paper, we study a more general age-struct@®i&inodel that includes multiple
groups of human populations and relaxes the irreducibility and separability conditions.
This brings forth two mathematical problems. First, we need to identify a general
assumption that is weaker than irreducibility and separability condition but still ensures
the unigueness of the positive equilibrium as well as the global stability result. Second,
since the drop of irreducibility leads to the possibility that not all nontrivial solutions
will converge to the positive equilibrium, we need to give a classification of those
initial values from which the solutions converge to the positive equilibrium. The paper
is organized as follows. In SectioB, we describe the multi-group model and the
reduced system under the assumption that the total population of each subgroup has
reached its stable age distribution. Sect®defines the so-called “quasi-irreducibility”
and presents preliminaries for “quasi-irreducible” semigroups generated by a system of
linear age-structure models. Our main theorems for the nonlinear model and the proofs
are given in Sectio}, and an example of application of our results is provided in
Sectionb5.
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2. A multiple group model with age structure

Let us consider a population consistingnfsubgroups that are exposed to an infec-
tious disease. For each groupve uses;(t,a) andu;(t, a) to denote the age-specific
densities of the susceptibles and infecteds at tinaed agea, respectively. Leb; (a)
denote the age-specific per capita birth ratgu) the death ratey;(a) the cure rate
in groupi, and letw > 0 be the maximum life span. Our model equations are:

(ﬁ + i) si(t,a) = —pi(a)si(t,a) — Ai(a, u(t, -))si(t, a) + 7;(@u;(t, a),
ot da

(2.1)
0 0
(% + 5) ui(t,a) = —p(a)ui(t,a) + Ai(a, u(t, ))si(t, a) — y;(@ui(t, a),

where

n 0]
Ai(a,u(-, 1)) := Ki(a)u;j(a,t) + Z/ Kij(a,s)uj(s,t)ds

j=1"0

for u = (u1,...,u,). K;(a) is the infection rate for pure intracohort interaction in

group i and K;;(a, s) is the rate at which an infective individual of agein group
j comes into a disease transmitting contact with a susceptible individual ofi age
groupi. The initial and boundary conditions of the system are given by

5i(t,0) = /wbi(a)[sz'(t,a) + (1 —gi)u;(t,a)lda,
0 w
u;(t,0) = qi/ bi(a)u;(t,a)da, 0<gq; <1, (2.2)
0
Si(oa a) = !//i(a)’
ui(0,a) = @;(a), i=12,...,n,

whereg; is the fraction of newborn that is infected.
The basic reproductive number of the population in group

() a
R; = / bi(a) exp(—/ ,u,-(‘c)dr) da, i=12,...,n.
0 0

We adopt the same assumption ag3h that the population in each group is in a sta-
tionary demographic state. That iB; = 1, fori =1, 2, ..., n. Under this assumption,
the density functions; (¢, a) + u; (¢, a), of the total population of group satisfies

lim s;(t,a) +u;(t,a) =c¢; exp(—f u;(7) dr) , ae€[0, ],
—00 0
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where ¢; is a constant. Without loss of generality we suppose thate 1, i =
1,2,...,n. We further suppose that the total population density (scaled:;pyfor
groupi has already reached its stable distribution:

si(t,a) +u;(t,a) = pi(a) = exp(—/ ui(r)d1>, az0, i=1...,n. (2.3
0

Then replacings(¢, a) by p;(a) —u;(t,a) in System 2.1) allows us to eliminate the
equation and get the following system which is equivalent2d){(2.2):

0 0
(5 + %) ui(t,a) = —[p;(@) +vy;(@)u;(t, a) + A;(a, u(t, ) [pi(a) —u;(t, a)l,

u;(t,0) = / pi(@)u;(t,a)da, t >0, (2.4)
0

Mi(osa)z(pi(a)v 6120, i=1,2,...,n,

where f3;(a) = ¢;b;i(a). Throughout this paper we assume the following:

(H1) w;, 7, Ki € L®([0, o)), K;j € L¥([0, ]?), andK;; >0 fori,j=1,...,n.
(H2) fy’ Bi(@)da >0, fori=1,...,n.

Furthermore, we consider the phase space of the sy2etnt¢ be the Banach space
X:={p=(pi.....0,): ¢; € LY0. 0], i=12_..n)

equipped with the norni - |x defined by

w
ol = max { [ 1oi@1dal.

X 0

3. Preliminaries and quasi-irreducibility

Under the assumptions (H1) and (H2), the existence and uniqueness of solution
to the problem Z.4) are well established15]. Introduce the following notations and
definitions:

1. Foro, y e X, o<y if ¢;(a)<y;(a), a0, w],i=1,...,n.

2. For ¢ € X, ¢>=0 if all components ofyp are nonnegative, and > 0 if all
component ofp are strictly positive.

3. Xy ={peX:9=0}, X¥={pecX: 0<p<p} wherep = (p1..... p).

4. An operatorT : X — X is said to bepositiveif TX; € X .
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5. Let X* = {¢f = (¢}, ....¥3): ¢F € L¥([0, w]),i =1,2,...,n} be the dual space
of X, and for¢* € X* and ¢ € X,

(0%, 0) = Z/o ¢ (a)g;(a)da.
i=1

Let u(z, -, ) denote the solution to2(4). Using the same arguments as[&4] one
can verify the following:

(1) For any ¢ € X¥ = {¢p € X;0<9;(@)<pi(@), a € [0,wl,i = 1,...,n)},
u(t, -, ) € X¥ for all 1 >0.

(2) The system2.4) introduces a monotone flow. That is, ¢f, ¥ € Xf and ¢ <y,
thenu(, -, @) <u(z, -, ) for all + >0.

Let us first consider the linear system corresponding2td).( Let

o1(a) Ba(a)
Ba.s) = [Bij(@.5)], . . oa)= ., B@) = .
on(a) ﬁn (@)

with

Bij(a,s) = pi(a)K;j(a,s),

(3.1)
ai(a) = :ui(a) + Vi(a) - Pi(a)Ki(a): i, J = 17 21 cees .
Then the linear system is
0 0 @
(— + —) u(t,a) = —a(a)u(t, a) +/ B(a, s)u(t, s)ds,

ot oa 0

u(t,0) = / Pla)u(t,a)da, (3.2)
0

u,a) = p(a), t>0, ae[0,w], ¢elX.

It is well known (seg[10,11,15) that 3.2) generate a strongly continuous, positive
semigroupT (), ¢t >0; that is, fore € X,

TM)e=u(,- =0, =0

The dynamics of Z.4) depend largely on the behavior of the integral kernkls,
i,j =12,...,n. Complicated kernels can generally produce complicated dynamics.
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In this paper, we consider the situation in which the population is “entirely” involved in
the disease transmission processes. This may be interpreted mathematically as that the
system is fuasi-irreduciblé (which may not be a standard definition in literature).

We now give the definition of quasi-irreducibility, abbreviated as g-irreducibility. Let
A be the infinitesimal generator @f(z), that is

[Apl(a) = —¢(a) — a(@)p(a) +/O B(a, s)p(s) ds,

D(A) = {q) € X : ¢ is absolutely continuoyse(0) = /wﬁ(a)q)(a)da} .
o

Since an eigenfunction oA is in D(A), it is in C([0, w], R").

Definition 3.1. The positive semigroud (¢), or its generatorA, is said to beg-
irreducible if A has no eigenfunction idC, whereC4 = {f € C([0, w], R") : f >0}.

We now investigate the properties of the g-irreducible operatoA.ofet s(A) be
the spectral bound oA, i.e.,

s(A) =supRel: 1€ a(A)}.

Then X* is the dual space oK. Let A* be the formal adjoint operator @& defined
as

[A**]i(a) = ¢} (a) — 0i(a)o; (a) + Z/o Bji(s, a)pj(s) ds + p;(@)¢; (0),
j=1

DA*) ={¢* € X*; ¢* € X*, ¢"(w) =0}.

We shall show that the operaté™ defined above is a true adjoint operator Af
To proof this, let us first establish the following lemmas. Let

C1= {x e CY([0, w] : RY); x(0) = /wk(a)x(a)da} .
0

Lemma 3.2. Supposex*, i,k € L*[0, ] with k>0 and [;” k(a)da > 0. For any
X € C1, if

/(U x*(@)x(a)da = /(U n(a)x(a) da, (3.3)
0 0
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then x* is absolutely continuous andl*(a) = —n(a) — x*(0)k(a) for almost every
a € [0, w].

Proof. Sincen € L*[0, w] C LY[0, w], the functionn*(a) = [’ n(s)ds is absolutely
continuous and;*(w) = 0. Hence, forx € C1, using integration by partf7, p. 100]

in (3.3,

/w x*(a)x(a)da = /a) n(a)x(a) da
0 0

- - / x(@)dar* (@)
0

x(O)n*(0)+/0 n*(a)x(a) da.

Let z* = x* — »*. Then the equality above implies that
(0]
| = @i@da =00 (3.4)
0

for any x € C1. We fix a functiony € C1([0, w]) with y(0) = 0 and y(a) > O for
a € (0, w]. Then, for any functionr € C1([0, w] that is strictly positive on0, ] and
x(0) = 0, the assumption ok implies that

_ Owk(a)x(a) da
P k(@y(a) da

is well defined. If we letp* = x +hy, then¢* € C1([0, w]) and ¢* (0) = 0. Moreover,

(&)

/w k(a)¢p*(a)dy = /w k(a)x(a)da + h/ k(a)y(a)da = 0.
0 0 0

Hence¢"* € C1. From @.4),

/ @)k da + h / (@) (a) da = f @3 (@ da = $* (O (0) = 0
0 0 0
or

/w @iy d h/w @@ d fowk(a)x(a)da/"“ @)@ d
a)x(a a = — a a a=—7"—"""—" a a a.
0 o Pk@y@dalo ©



Z. Feng et al. / J. Differential Equations 218 (2005) 292-324 299

It follows that

b ZF@i@yda  ["F@y(@)da
Owk(a)x(a)da N Owk(a)y(a)dda N

for some real numbet, or equivalently

/w M(a)x(a)da = ¢ /w k(a)x(a)da. (3.5)
0

0

Let k*(a) = f;"k(s)ds for a € [0, w]. Using k*(w) = x(0) = 0, (3.5, and integration
by parts we get

/wz*(a))%(a) da = —c/wdak*(a)x(a) = c/w k*(a)x(a)da.
0 0 0
It follows that
fw[z*(a) — ck*(a)]x(a)da = 0. (3.6)
0

Note that 8.6) holds for any continuously differentiable function that is strictly
positive on(0, w] with x(0) = 0. For any strictly positive continuous functidndefined
on [0, w], let x(a) = fo“ E(s)ds. Thenx = ¢&, andx is strictly positive on(0, w] with
x(0) = 0. It follow from (3.6) that

/ [z"(a) — ck*(a)]¢(a) da = / [z*(a) — ck*(a)](a)da =0
0 0

for any positive continuous functiof. This shows that*(a) — ck*(a) = 0 for almost
every a = [0, w]. Without loss of generality we can suppose that= ck*. By the
definitions ofz*, n*, and k*,

)]

x*(a) = n*(a) + ck*(a) = / [n(a) + ck(a)lda, a €0, w].

a

Therefore,x™ is absolutely continuous with*(w) = 0, and

x*(a) = —n(a) — ck(a), ae. a€la,b]. (3.7)
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Substituting 8.7) for x*(a) in (3.3 we have, forx € Cy,

/w n(a)x(a)da = /wx*(a)dax(a)
0 0

—x*(0)x(0) — /w)'c*(a)x(a) da
0

)

—x*(0)x(0) + /w n(a)x(a)da + c/ k(a)x(a)da
0

0

(6]

—x*(0)x(0) + / n(a)x(a)da + cx(0).
0

The above equality yields that*(0) = c. It follows that

x*(a) = —n(a) — x*(0)k(a), ae. ac][0,w]. O

Proposition 3.3. The formal adjoint operatolA* defined as above is a true adjoint
operator ofA.

Proof. Let A* be the true adjoint operator d&. For y* = (3, ..., W) e D(A®),
let A*y* = y* = (i, ..., y%) € X*. Then (y*, Ap) = (A*y*, ¢) = (y*, ¢) for all
¢ € D(A). Fora € [0,w] andi =1,...,n, we let

ni(a) = =y (@) — Y (a)oi(a) + fo Y*(s)B(s,a)ds.

Thenn; € L*°[0, w]. In addition, for each fixed € {1,...,n} and any¢; € C1; =
{x € C1([0, w]); [y’ Bi(@)x(a) = x(0)}, we letd = (1. ..., ¢,) such that¢; = 0 for
Jj #i. Itis clear that¢ € D(A) and

(A);

—¢; — a1y +f1 Bii(-, $); (s) ds,
0
(Ad); :/o Bji(-,8);(s)ds, j#Ii.
Hence,

/0 yi@éi(@yda = (y*, §)

= (A*y*, ¢)
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W, Ad)
- fo Yi(a@)$;(a)da

+/ |:—lﬁ(a)a,<(a)+2/ Bji(s, a)a’i(s) ds:| ¢;(a)da.
0 j=1"0

From the equality above,

0

/O Yi(a)pi(a) = / |:—yl?“(a) —yi(a)oi(a) + Z/o B./i(s,a)ai(s) ds:| ¢;(a)da
=1

- /O 1@ s (a) da. (3.8)

Since 8.9) holds for all ¢; € C1;, by Lemma3.2 y; is absolutely continuous with
Vi (w) =0, and
*

J' = —n; —y;0)p; ae on[0, vl

By the definition ofy;,
- n w
i = — oy +yrO)p; + Z/ Bji(,s)Yi(@da, i=1,...n. (3.9)
=10

It follows from (3.9) and the definition ofA* that y* € D(A*) and

It can also be easily verified that, if* € D(A*), then (A*y*, ¢) = (Y*, A¢) for all
¢ € A. Therefore,D(A*) = D(A*) and A* = A*. O

Proposition 3.4. If s(A) > —oo, then s(A) is an eigenvalue of botiA and A*. In
addition Both A and A* have a positive eigenfunction correspondingst@.).

Proof. Let S(¢r) : X — X be the semigroup generated by the operétor D(A) — X
given by

(Asp)i(a) = —Yi(a) — gi(@);(@), acl0 o], i=1,...,n
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Note that the functionss(a) and f(a) (see B.1)) satisfy the Assumptions 5.1 and
5.2 in [14], respectively. It follows from Theorem 5.5 ifi4] that S(¢) is eventually
compact. SinceB;; € L*([0, w] x [0, w]), we can choose a sequen(:ﬂi’;-‘};’f:l C
C([0, ] x [0, w]) such that for allz and almost everya, s) € ([0, w] x [0, w]),

0<Bjj(a, )< B/ a, )<B}(a,5), i,j=1...,n

and

m— 00

w ()
lim / / [Bi';’(a,s)—Bij(a,s)]dsdazo, i,j=1...,n.
o Jo "
Let B™ : X — X be defined as
w
(B"¥)(@) = / B" (. s)(s)ds. a0, ol
0

whereB™ = [Bl.’;.’]. Itis clear thatB™ is compact and™t1 < B™ for all m. HenceA,, =
Ags + B™ is a compact perturbation d&kg. It follows that A,, generates an eventually
compact and positive semigroup for all. Thus,s(A) <s(Au+1) <s(A,), and s(A,,)

is an eigenvalue oA, and A, which is associated with a positive eigenfunctigft
of A and a positive eigenfunctiop™* of A% for all m. Notice that¢™ € C([0, w]).
Without loss of generality, we can suppose that'|co,0p) = 1. Lets™ = s(A,,). By
the equationA,, ¢ = s™¢™ and the definition ofA,,,

b (@) = —[s" + 01 (@)1} (a) +Z/O B} (a,s)¢7 (s)ds,
j=1
i=1...,n, ac€]0 wl. (3.10)

Thus, ¢ satisfies the equation
w
¢ (0) = /o Bi (@)} (a) da,

“a " ¢ a .
PI(@) = P Q)b ortar®d0 4 3 /O oGm0 d0
j=1

[0)
xf Bf;(r, s)(b’?(s) dsdt, aec[0,w], i=1,...,n. (3.11)
0 .

Since {s™} is monotonically decreasing and bounded belowsb), from Eqg. @.10),
{¢™} is pre-compact inC ([0, w]). So, without loss of generality, we can suppose that
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¢" — ¢ € C([0, w]), ands™ — so=s(A), asm — oo. By taking the limit asn — oo
in Eq. @.1)),

wm=ﬁﬁmwwwm

n
i (a) = ¢;(0)eb Cotoi@dl Zfa el o1 (@)d0 (3.12)
j=170
(0]
xf Bij(t, S)qﬁj(s)dsd'c, ac[0,w], i=1...,n.
0

(3.12 yields thatsg is an eigenvalue oA associated with a nonnegative eigenfunction
¢. Thus,so<s(A). This, together with the inequalityp>s(A), yields thatsg = s(A).

By applying the same argument to the dual operdtfyr one easily sees tha* has
an positive eigenvectop™ associated with the eigenvalu¢A). O

Proposition 3.5. If A is g-irreducible ands(A) > —oo, thens(A) is a simple eigen-
value ofA.

Proof. Let so = s(A) and let¢ >0 be the eigenfunction ofA corresponding toso.
Then¢ > 0 for ¢ ¢ 0C. Let yy be any eigenfunction o associated withyg. Notice

that both¢ and iy are continuous. Without loss of generality, we can suppose that
¢ >y andy£0 (otherwise we can obtain the desirable property by multiplyingnd

Y by suitable constants). Lef* = sup{a; ¢ — oy >0}. The continuity of¢ andy then
implies thate™ € R and ¢ — o™y € dC,. Moreover,

A(p — oY) = so(dp — o).

If follows from the g-irreducibility of A that ¢ — oy = 0. This implies thatp = a*y.
Therefore, DIV (A — sgI) = 1. Next we shall show that

NT(A = s0D)?] = N(A — sol).
In fact, if there is ay € D(A)\{0} such that
(A —soD)*y =0,

then the fact that DinV' (A —sol) = 1 implies that(A —sol )y = c¢¢ for some constant
c. By Proposition3.4, A* has a positive eigenvect@f* corresponding tog. We then
have

0= ((A" —s0D)¢", ) = (¢", (A —s0)Y) = c(¢", ).
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It follows thatc = 0 as(¢*, ¢) > 0. Hencey € N'(A—sol), and henceV[(A—sol)3] =
N(A —sol). O

A direct consequence of Propositi@b is that A* has exactly one eigenfunctiapi®
associated withy (A*). Let

[0)
wi:min{a:/ ﬂi(é))dH:O}, i=1,...,n.

That is, [0, w;] is the support off;.

Proposition 3.6. Suppose tha# is g-irreducible and letp* be the nonnegative eigen-
function of A* associated withsg = s(A). Then the following hold

(1) There are constants; € [w;, w], i =1,...,n, such that

¢f) > 0, ac€l0af),

¢ =0, ac€laf,n]

(2) Let Xar ={p € X : ¢;(a) =0, a €[0,a*), i =1,...,n}. Xa IS invariant to
T(¢) andr (T (t)|x,.) =0 for t > 0, wherer(T') denotes the spectral radius of the
operator T

Proof. Using the expression oi*,

b7 (@ = [01(@) + 50l (@) — B @¢F O — 3 /0 Bji(s, )t (s) ds
=1
ae. a < [0, w] (3.13)

fori =1,...,n. Applying the variation-of-constant formula to E®.13),

q')i" (a)e~™ £ (so+0i(0))do
1

= ¢7(0) — /a o~ b (so+ai(0) a0
0
=1

Noting that ¢* is nonnegative, 3.14) implies that ¢} (a)e~ b oo d0 s decreas-
ing. Using the fact that¢™(w) = O, there exista e [0,w], i = 1,...,n,
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such that

¢7(a) >0, acl0a),
¢i(a) =0, acela, o]

Let T*(¢r) be the adjoint operator of (r). The restriction ofT*(r) to the closure of
D(A*) is a Cp semigroup withA* being its infinitesimal generatddO, p. 39] Hence
T*(t)p* = ' ¢p* for all +>0. It follows that fort >0, if 0<y € Xa+, then

(@". TOY) = (T )", ¥)
= (9" )
= (" )
= 0.

Since T (t)y >0 for r >0, using the last equality,
[T()Yl@) =0, ac[0a), i=1...n.
Thus, T (1)y € Xg for all >0, and X+ is invariant. Next, we claim that
r(r@lx,) =0 t>0. (3.15)
Suppose on contrary thaB.05 is not true. Then,
M7 (w)lx,) > 0.

Let Alx,. be the restriction ofA on Xa:. Alx,. is the infinitesimal generator of the
semigroup” (1)|x,.. Therefore (se¢6, Proposition 22, p. 25)]

1
S(A|Xa*) = 5 In(r(T(w)|Xa*) > —00.

Using the similar argument as in the proof of Proposit&d one concludes that the
operatorA|x,. has a nonnegative eigenfunction associated wiix,, ). That is,A has
a nonnegative eigenfunction in the subspagg. This contradicts the g-irreducibility
of A. Finally, let us show that>w; fori =1,...,n. If this is not the case, without
loss of generality, suppose that < w;. Since ¢ is nonnegative an@j (a) = 0 for
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all a € [a], ®], (3.14 yields that

/*ﬁl(r)drqSI(O) =/* [Z/O le(s,r)¢;f(s)ds:| dr = 0. (3.16)
a1 a1 | j=1

Sincea] < wy, using the definition ofyy,

/w (1) dt = . pr(v)dt > 0. (3.17)
ay :

ap

Egs. 8.16 and @.17) imply that ¢7(0) = 0. It follows thataj = 0. We define the
operatorA : D(A) — X by

[A(/) i(a) = —lp,(a) gi(@)e;(a), i=1...,n.

Since fy” f1(a)da > 0, there is al € R such that
()
/ ﬂl(a)e_i‘)ll("l(f)"’i)dT da =1.
0

If we lety = (. ....,) € Xa+ Such thatj,(a) = e b 109" andy, = ... =y, =
0, then it is obvious thap € D(A)NXa andAy = Ay. It follows thats(A|x,.) > —oc.
Noticing thatA>A, s(Alx,) > —oo. Consequentlyr (T (¢)|x,.) > 0 for ¢+ > 0. This
leads to a contradiction t3(15. O

Proposition 3.7. Let A be g-irreducible and letp* be the nonnegative eigenfunction
of A* corresponding tasg = s(A). For any ¢ € X, if (¢*, ¢) > 0, then there is a
to > 0 such thatu(z, -, @) > 0.

Proof. Let u(t,a) = (u1(t,a),...,u,(t,a)) = u(t,a, @), thenu;(z,a) satisfies the
equation
0 0
—+ — Jui(t,a) = —oi(@u;(t,a) + zi(a, 1), (3.18)
ot Qa
where

n 0]
z,-(a,t):Z/o Bij(a, s)uj(t,s)ds>0, ael[0,w], =0
=1
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Claim. For each fixedi =1, ..., n, if there is ar; >0 such that

/‘” Bi(a)ui(t;, a)da > 0,
0

then there is & > 0 such thatu; (z, -) > 0 for all r>1.
Proof of Claim. Let v(z,a) be the solution of the equation
0 0
— + — ) vi(t,a) = —oi(@)v;(t, a)
ot  QOa
satisfying the initial and boundary conditions
w
v(,0) = / pi(a)v(t,a)da, v(0,a)=u;t;,a), ac€l0,w].
0

It is clear thatu;(r + ;,-)>v(¢t,-) for all t>0. Sincefow pi(a)v;i(0,a)da > 0, the
solutionw(z, -) has asynchronous exponential gro@. That is, there is dg € R and
¢ > 0 such that

lim e~ "u(t, ) = cb; ()
=00
in L1 topology, whered; (a) = e~%04=b" 910 dT 4 ¢ [0, w]. Consequently,

lim e %o /w pi(@)vi(t,a)da = c/w pi(a)v;(a)da > 0.
0 0

—0o0

Thus, there exists &; > w such that
(&) w
u,-<r+ri,0)=/ ﬂi(a)ui(t+ti,a)da>/ B (@t a)da > O
0 0

forall t>T; — w. If we let¢* = T; +1;, then by solving 8.18 along its characteristic
line we obtain that, for >¢* and 0<a <o,

“a a “a
ui(t,a) =u;(t —a, O)e_vb oi(Ddr / e Is oiMdT, (4 —q 45, 5)ds > O.
0

This completes the proof of th€laim. O
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From theClaim above, to finish the proof of Propositid?7, it suffices to show that

for eachi, there is a;; >0 such thatfo‘“ pi(a@)u;i(ti, a)da > 0. Suppose that this is not
the case. Then there is somesuch that

/ ﬁi(a)[T(t)(p]i(a)dazf pi(@ui(ti,a)yda =0, t=0. (3.19)
0 0

Let o = so + 1. For any positive integet,

1 o0
(o —A) g = / "L T (1) dr.
n—1 0

Eqg. 3.19 and the last equation yield that, for any positive integer

/O Bi(@[(d —A) " pli(a)da

(@) [/ z—le—“’T(t)q)dz] (a)da

= / Lo </ B (@[T (1)); (a)da) dt
n—1

—0. (3.20)

On the other hand, sincg is a simple eigenvalue o4, by spectral mapping theorem,

ess—r((l —A) ™Y <r((al =AY = . 1o 1,
%

where ess-r(T) denotes the essential spectral radius of an opefataret X1 = {{ €
X : (¢*, ) = 0}. It is clear thatX; is a closed subspace &f and is invariant to the
operator(al — A)~L. It follows that

ess—r((al —A) Yy <ess—r((al —A)H <1
Using the inequality above we can show that
r(al —A) Yy <1 (3.21)
If not, then (x/ — A)~1 has an eigenvalué with |1| = 1 associated with an eigen-

function ¢ € CX4, which |s the complex extension of;. Thus, («f — A)~ 1e = )¢,
or equivalently,A¢ = (o — —)g = (so 4+ 1 — )& Notice that Reéso + 1 — 1) <so and

|2] = 1. Hence/ = 1 and¢ is an eigenfunction associated with. This and¢ ¢ C X1
lead to a contradiction. Therefore3.21) holds.
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Let ¢ be the positive eigenfunction @& associated with the eigenvalu€A). For
any Y € X we decompose/ as

y=q¢+¢

where g = Eﬁ*‘gi > 0 and { € Xi;. The facts that(xl — A)"2p = ¢ and

r((al —A)~Yx,) < 1 yield that

nleoo(uI -A)"Y = nli_)moo(q(al — A"+ (o = A" xD0) = q¢.
Therefore,

lim / Bi(@[(ad —A)"Yli(a)da =f Bi(a) lim [(af —A)"Yli(a)da

—q /0 B(@);(a) da
> 0.

This contradicts .20 and the proof is completed.l]

Proposition 3.8. Let A be an infinitesimal generator obtained by replaciag by 6;
i =1,...,n. Then the following hold

(1) A and A have the same g-reducibility

(2) Suppose thatA is g-irreducible. If ¢* and &)* are nonnegative eigenfunctions
corresponding to eigenvaluesA) and s(A), respectively then ¢7(a) = 0 if and

only if ¢, (a) = 0.

Proof. To prove the statement (1) it is enough to show thaA ifs g-irreducible then
A is g-irreducible. We choose € R sufficiently large such that

v> max {lloi() =i O)llxiom} -

txn

Let U(t,a) = " T ()¢, ¢ € Xar, Where X+ is defined in Propositio3.6. U(z, a) =
(U1(t, a), ..., U,(t, a)) satisfies the equations

<2+3>U(r )

o da) 1

= —6’,-(a)U,-(t,a)+Zf Bij(a,s)U;(t,s)ds
j=17%

+[v+6i(a) —o;(@)U;(t,a), t>0, acla,wl, i=1...,n,
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and
Ui(t,a)=0, ae€l0,a), UO ) =¢, i=1...,n
Let W(t,a) = (Wi(t,a), ..., W,(t,a)) with
Wi(t,a) = [v+6i(a) — oi(@)]U;(t, a).

It is clear thatW (s, -) is nonnegative. Using the variation-of-constant formula,
A t A A
"Te=U(t,-,9)=T1)e +f T(t—s)W(s,)ds=T ()
0

with 7'(1) being the semigroup generated éy Similarly, f(r)go>e—V’T(t)go, for ¢ €
Xa*. ThUS,

Te=Te=e "TH)p, ¢ € Xar. (3.22)

An immediate consequence of the inequaly2@) is that X4+ is invariant to7'(+) and

r(T(t)|x.) <e"r(T(1)x,) = 0. (3.23)

Next, let$ be any nonnegative eigenfunction Afand . be the associated eigenvalue.
Then one must have ¢ X4, for otherwiser (7(¢)|x,.) >¢*, a contradiction t0.23.
Thus, we havel¢*, ¢) > 0. Rewrite as

A

d=q¢+{

with ¢ = Eﬁ*ﬁi >0 and@ € Xg+. It follows from (2) in Proposition3.6 that

lim e™'T 1) = §¢.
11— 00
The equality above and3(22 yield that
e(_‘vow)te—}'t(& =TT (b= T (1) — G >0 as t — oo.

Consequently;}s > 0. Therefore A is g-irreducible. This complete the proof of (1).
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Next, Ietq}S* be the nonnegative eigenfunction Af corresponding to the eigenvalue
So = s(A) with

Ak

(;Sj(a) >0, a€[0,4]); ¢;(a) =0, acla, vl

We claim thata = af, i = 1,...,n. If this is not true then eitheXa«\ X5 # 0
or X\ Xa+ # 0. Without loss of generality, suppose th&Et\ Xz« £ ¥ and leté e
Xa-\Xg. ¢ € Xqe @andr (T (1)|x,) =0 imply that

lim ¢St ()¢ = 0.
T—>00

On the other hand@*, &) > 0 for & ¢ Xy It follows from (2) of Propositior3.6 and
(3.22 that

0« “fs*’?) = lim e T ()< lim 5o T (1) =0.
¢> 1—00

1—>00

This leads to a contradiction.[]
We end this section with the following:

Proposition 3.9. Suppose thaf is g-irreducible. Letso = s(A) and letB: X — X
be defined by

a a w
Bop)(a) = / e~ [ (@@ +s0) dt [/ B(s, 0)p(0) d0j| ds, a €0, w].
0 0
Then(I —B)~! exists and is positive.

Proof. First, we show thar(B) < 1. We observe thaB : X — X is compact and
positive. If ro = r(B) > 0, then the dual operat®* of B has an eigenvaluey for
which there exists somé&* € X*\{0}, {* > 0 such that

B*C* — rOC*-

Let ¢ > 0 be the eigenfunction of corresponding toag. Then ¢(0) > 0, and

$(a) = [Bol(a) + exp(—/o [a(7) + s0] dT> $(0), a€ (0wl
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or
[Bol(a) — rog(a) = (1 —ro)p(a) — eXP(— /:[0’(7:) + so] df) $(0).
It follows that
0=(1-ro)(". ¢) - <C*, exp(— A[o(r) + so] dr> ¢(0)>-

The last equality yields that

(", exp(— Jyla(D) + s0]dT)(0)) _

0
(& )

1—ro=

orr(B) = ro < 1. This implies that/ —B is invertible. If we letT(r) be the semigroup
generated byB, then Tz (¢) is positive, and for eaclp € X,

o
(I-B)ytp= / e 'Tg(t)@dt =0.
0

Hence (I — B)~! is positive. [

4. Main theorems and proofs
In this section we give a characterization of the dynamics2o) (

Theorem 4.1. If s(A) < 0, then for any solutionu(z, -, ¢) of (2.4) with initial function
peXy,

lim u(,-, ¢)=0.
11— 00

Proof. Using the variation-of-constant formula,

t
u(t,-, ) =T(t)p — / T(t—s)Q(s)ds, =0,
0
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where Q = (01, ..., 0,) with

Qi(s) = |:Ki(~)ui(s, S ®) +/0 Z Kij (-, Ou(s, 0, @)d9:| ui(s, -, ¢) =0,
=1

From so = s(A) < 0 we know that, for any € X,

(¢, @) o=
(¢, @)

lim T = lim & lim e *"T()p = lim
11— 00 11— 00 11— 00 11— 00

where¢™ and¢ are positive eigenfunctions &f* andA corresponding to the eigenvalue
so, respectively. The positivity of (z) therefore yield that

o<u(t,,o)<T({t)p - 0 as t— oo. O

Theorem 4.2.If A is g-irreducible ands(A) > 0, then there exists a unique positive
(endemig equilibrium u*. Furthermore the positive equilibrium:™ is globally stable
in the following senselet ¢* > 0 be the eigenfunction o&*, the dual operator ofA,
corresponding tas(A), then for any initial function¢ € Xf,

lim u(t,-, @) =ut if (¢* @) >0,
11— 00
lim u(t,-, ) =0 if (¢*, @) =0.
11— 00
To prove Theorem?.2, we need some additional results. First, we rewr2ef)(as
an evolution equation

du(t,-)

pTE F(u(t, ),

where F : D(A) — X is defined by

[F(p)li(@) =[Apli(a) — | Ki(a)p;(a) + Z/o Kij(a,s)p;(s)ds | ¢;(s)ds.
j=1

Lemma 4.3. If A is g-irreducible ands(A) > 0, then (2.4) has at least one positive
equilibrium ™. Furthermore u™ > 0.
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Proof. Let u(z,y) = u(z,-, ) be the solution of Z.4). It is clear that if the initial
function y is in D(A), thenu(t, y) is continuously differentiable for>0 and

du(t, )
dt

= F(u@, ).

Let ¢° = ¢, where¢ > 0 is the eigenfunction oA corresponding tag = s(A), and
¢ > 0 is a sufficiently small constant such tha;, <p;, i =1,...,n, and

&< min m wSO coi=1....n}.
IKi (Vi () + 21 fo KijCo$)9 () dsllofo,m

We can show that

[F ()i (a)

AL (@) — {K,- @@+ Y fo Kij (@, )¢ (5) ds} ¢ (@)
j=1

€ (so —e |:Ki(a)¢>i(a) + Z/O Kij(a, S)¢j(s)ds:|) o;(a)
j=1

> 0¢;(a), acl0ow], i=1...,n,

whered is a positive number. Since® € D(A),

du(t, ¢*)

o = F(¢*) > 0.

t=0

Henceu(t, ¢°) is increasing with respect to for small t. The monotonicity of the
flows introduced by Z.4) then implies thatu(z, ¢°) is increasing and:(z, ¢°) > ¢° for
all +>0. Moreover, we have:(r, p)<p for t>0 and ¢® < p. It follows that u(z, p)
is decreasing and

¢° <u(t, p*)<u(t, p)<p. 1=0.

Therefore, Lebesgue’s dominated convergence theorem implies that theng is é(f
with 0 <« ¢*<u™<p such thatu(z, p) converges tou™. Therefore,u™ > 0 is an
equilibrium. O

Lemma 4.4. If A is g-irreducible ands(A) > 0, then the nontrivial endemic equilib-
rium u™ is unique
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Proof. Let &i™ be a nontrivial equilibrium with &4 <p. Thenu(s, p)>ia™ for all
t>0. Consequentlyy™ >#*. We prove the uniqueness by showing that = 4™.

First, we see that™ = (uf,...,u;}) andat = (a7,...,a;) satisfy the differential
equations
dut noore
M[}—(a) = —ﬂi(a)uf(a) + > B,'j(a,s)u;r(s) ds,
a j=1J0
4t @ a (4.1)

@i @+ Y | Bijla,s)iat(s)ds,
da j=l 0 J

where
Yi(a) = w;(a) + y;(a) — pi (a)Kéj(a)

+Ki(@u (@) + Y [ Kij(a s)uj(s)ds,

j=1J0
A 4.2
Yi(a) = w;(a) +v;(a) — pi (G)Kcio(a) “4.2)

+ K (@i (a)+ Y . Kij(a,s)ﬁ;.r(s)ds, i=1,...,n.
j=1

By (4.2 and the inequalityt >at, ¥; >9; for i =1,...,n.

Claim 1. Let af,...,a; be defined as in PropositioB.4 Thenv;(a) = f9,~(a) for
ael0,af) and fori =1,...,n.

Proof of Claim 1. Let Ay, A+ : D(A) — X be defined, respectively, by
n »
[Asoli(a) = —¢;(a) — Vi(a)p;(a) +Z/O Bij(a,s)p;(s)ds,
j=1
A A~ n w
Asoli@) = —p,(@) — hi@e,@+ Y /0 Bij(a, )0, (s)ds
j=1

fori =1,...,n. Thus, by Propositio8.8, both A andAJr are g-irreducible. Also by
definitions of A,

Aut =0 Agat=0.



316 Z. Feng et al. / J. Differential Equations 218 (2005) 292-324

Thus, the g-irreducibility ofA+ implies thati™ is strictly positive. One can easily
show that

s(Ay) =s(A;) = 0. (4.3)

Let & be the nonnegative eigenfunction Af_ corresponding tas(A;) = 0 and let
¢* be the nonnegative eigenfunction &f corresponding tas(A). It follows from
Proposition3.8 that &* and ¢* have the same support. That is,

&f@) >0, ael0af); &@=0 aclaf,ol, i=1...,n.
By the definitions ofA, and A,

[AriT]i(a) = [ALit]i(a) — 4 (@i (a) — Ui (a)] = —it; (@)[¥; (a) — Vi ()],

a € [0, w]

fori =1,...,n. It follows from the equality above that
0= (A%& ity = (& Aat) ==Y fo’ & @it @i (a) — Vi) da.
i=1

Noticing that
@) = 0i(@) >0, & (au (@) >0, ael0,a)),
we have
Vi(a) — ;@) =0, ael0al), i=1,...,n

This completes the proof aflaim 1. O
Claim 2. u™(0) = a*(0).

Proof of Claim 2. We prove this claim by contradiction. Suppose tha(0) # ii*(0).
Then there is & with 1<k<n such thatu; (0) # i (0). By Claim 1 and @.2) one
can easily deduce that, far € [0, a;),

n ) n &)
Zf Kyj(a, syut(s)ds = Z/ Kyja, )it (s) ds.
=170 j=1"0
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From 3.1),

Z/o Bkj(a,s)uj(s)ds = Z/o Bkj(a,s)ﬁ;r(s) ds. (4.4)
j=1 Jj=1

Thus, from 4.1), (4.4) and Claim1 it follows that

d . . .
- [ (@) — i (@)] = = (@u) (@) — i (@], a€l0,a}).
Therefore, fora € [0, a;),

uf (@) — i k(@) = [uf (0) — i ()]~ b D7, (4.5)

By Proposition 2.6,8,(a) = 0 for a € (wy, o] and af > wy. By using @.5) and the
boundary conditions om;” and;,

Wk
u (0) — i (0) = /0 Be(@)[u (a) — i} (@)]da
[ B (a)e™ b vk dr daluif (0) — i} (0)].
0
Therefore,

Wi

Bi(a)e™ b @dT gq — 1, (4.6)

On the other hand,4(1) yields that
uf(a)=e" £ 79"(T)d7uz'(0) + yi(a), a€[0,af),

with

a . w N
ye(a) = /O o [0k (@ dt [/0 X‘; By (s, O)uT (0) d@} ds.
J:

It follows from the boundary condition tk+ that

ul‘:(O) = Owk Br(a)e™ b (@ de dau,j'(O) + /Owk pr(a@)y(a) da.
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The last equality and4(6) yield that

D

Br(@yk(a)da =0

From the expression ofy(a) and the definition ofwy, yx(a) = 0 for a € [0, wg].
Consequently,

/ Z Kyj(a, s)u (s)ds =0, a€]0,w].
Therefore, by the strict positivity of ",

/ E Kij(a,s)ds =0, a [0, ax]. 4.7)
0 “
Jj=1

Moreover, it follows fromu; (a) > i (a) and ¥x(a) = Vx(a) that
Ki(a) =0, a€]0,a). (4.8)

Letp = (¢4, ..., ¢,) be the positive eigenfunction @& associated withp = s(A) > O.
From @.7), (4.8), and the definitions of; and v, we deduce that

or(a) = p(a) + yi(a) = Ox(a), a € [0, wi] (4.9)

and

dr(@) = —(or(a) + s0) Py (@), a € [0, wy).

Thus,
Qbk(a) — ¢k(0)e—£"[ak(r)+xo]dr’ a € [0, wp).

It follows from the equality above 4(6), (4.9), and the boundary condition af, that
Ok a Wk a
1= / .Bk(a)e_f) [ok(T)+s0ldT da < ﬁk(a)e_JG or(t)dt da =1
0 0

This is a contradiction and, therefore, ClaBrholds.
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By applying the variation-of-constant formula t4.1) and using Clain2,

ut (@) —at @) = Brlut —ia () — /a exp(— /a (1) dr) W(0)do, (4.10)
0 0

whereB, : X — X is defined by

(B+(p)(a)=/ e~ [i@dr [/ B(s,9)(p(0)d0:| ds, a€[0, ]
0 0

¥ = diag®;), and W(a) = (W1(a), ..., W,(a)) with
Wi(a) = [9;(a) — Ji(a)]id; (@) >0.

Sinces(A) = 0, by applying Propositior3.8 to the operatoré\ . andB_ we see that
(I —B4)~! exists and that it is a positive operator. Therefore, frae0 and @.10),

o<ut—at=—-1-By? U exp(— / a(7) dr) W(@)d@] <O0.
0 0

It follows thatut =4+, O
We are now in the position to give the following proof.
Proof of Theorem 4.2 First, if ¢ € X, and (¢*, ¢) = 0, thenp € X5+. Therefore,

r(Tt)lx,) =0 (see (2) of Propositio.6) implies that7(r)¢o — 0 ast — oo. The
variation-of-constant formula yields that

o<gu(t,-,)<T(t)p -0 as r— oo,

and hence, lin,  u(t, -, ) = 0.

Next, if ¢ € Xf with (¢*, ¢) > 0, then by Propositior8.7 there is arg > 0 such
that u(zo, -, ¢) > 0. As we did in the proof of Lemmd4.3, we can choose an> 0
sufficiently small such that

F(¢*) >0 and ¢“<uT(to,-, @).
Therefore, by the monotonicity,
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From Lemma4.4, u(t, -, ¢%) andu(t, -, p) converge to the unigue positive equilibrium
ut ast — oco. Hence ¢.11) yields that lim_ . u(t,-, ¢) =u™. O

Remark. We have not discussed the casesoA) = O in this paper. However, we
point out that whers(A) = 0, (2.4) cannot have a positive equilibrium and hence the
zero solution is globally stable. The proof requires the use of some further properties
of irreducibility of the operatorA. We omit the proof in order to maintain the paper

in a reasonable length.

5. An example

In this section, we consider an example in which the kernel functions are separable.
In a more general sense, suppose tkigt satisfies the following properties:

(a) There are nonnegative functiom;}.(a), Hl%. (a) and ane > 0 such that

eH(a)HE () < Kij(a, ) <Hj(@)Hf(s), i.j=1....n.

(b) sign( b’ Bia) fo' Hl%.(t)dt da) =sign(fy’ /o Kij(@.s)dsda), i, j=1...,n.
(c) The matrixK = (fy” fo” Kij(a.s)dads), s irreducible.

Theorem 5.1. Under the assumption&@)—(c) the following hold
@) If s(A) <0, thenlim,_, o u(t, -, ¢) =0 for eachp € X,..

(i) If s(A) > 0 then Systenf2.4) has a unique(strictly) positive equilibriumu™ such
that

n a?‘
i . = + i ' .
IILrTgO u(t, -, @) u, |if ;/0 @;(a)da > 0,
n a;“
IILrTgO u(t,-, ) =0, Iif ;/0 @;(a)da =0,
where

[0} n
a’ =min a:/ ﬁ,(s)—}—Zszi(s) ds=0}, i=1,...,n.

a /:1

Proof. By Theorem4.2 we see that, to prove Theoreml, we only need to show
that the operatoA is g-irreducible under assumptions (a)—(c), and that the nonnegative
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eigenfunction¢™ = (¢1, ..., ¢;) of A* corresponding ta(A) has the suppor0, a;]
for each componenp;. Let us first show that itp = (¢4, ..., ¢,) is any nonnegative
eigenfunction ofA, then¢ > 0. Let / be the corresponding eigenvalue.

b;(a) = e—ﬂl[m(fHA] dr¢i )

0

a ” n 0]
+/ e~ liloi@+21dr Z/O pi()Kij(t,5)¢;(s)ds dt. (5.1)
j=1

It follows from Eq. 6.1) that, if ¢;(0) # O, then¢,; > 0. If ¢;(0) = 0, applying the
boundary condition tap,,

0= /w Bi(a) /‘1 |:e_f?[6i(r)+/1]dr Z/w p,-(t)Kij(t,s)qﬁj(s)dsdt da.
0 0 =Jo

By using the assumption (a) we deduce that

(/wﬁi(a)/a Hg.(t)drda) (/(UHg(swj(s)ds) =0, j=1,...,n.
0 0 0

From the assumption (b),

w
/O HS(S)rb,,'(s)ds =0, j=1,...,n.

It follows that

w N

Z/ pi(a)Kij(a,s)qu(s)dsda=O, j=1...,n
0o “5J0

Hence ¢; = 0. We have shown that, for each either ¢, > 0 or ¢; = 0. If ¢ is
not strictly positive, then, without loss of generality, by rearranging the order of the
components, we can assume that

¢p1=--=¢;=0, ¢, >0, m=I1+1...,n

Thus, 6.1) yields that

w w
/ / Kij(a,s)dads =0, i=1...,1, j=I+1...,n
0 0

This shows that the matriK defined in (c) is reducible, a contradiction.
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Next, let ¢* be the nonnegative eigenfunction Af corresponding tag = s(A) and
let ¢7(a) > 0, a € [0,a;) and ¢ (a) =0, a € [a;, w], i =1,...,n. We claim that
aiza? fori=1,...,n. To see this, we use the equality.14) in Section3 to obtain

aj

f f’ o B 1010 +s01d0 |:ﬁl. OO+ fow PiOK;i(t, )¢ (1) dti| ds =0,
. =

fori =1,...,n. It follows that

/C_U Bi(s)ds = /C_U |:Z/Oaj Kji(t,s)¢;f(t)dt:| ds=0, i=1,...,n.
a; ai | =1

From the assumption (a) we deduce that
aj [0}
/O Hjli(t)dt/_ Hi(s)ds =0, i, j=1,....n. (5.2)
a;

The fact thatft‘_fi B;(s)ds =0 (by Proposition3.6), j = 1,...,n, yields that

/l ﬁj(d)/ Hjll-(t)dtdazf j/ Hi; (1) dt da.
0 0 0 0

Since fo" Hjli (1) dt is nonnegative and increasing, from the equality above,
aj @) a
f Hj(1)dt > 0 whenever / ﬁj(a)f Hj;(t)dt > 0. (5.3)
0 0 0
Moreover, from the assumption (b),
w a w
/ ﬁj(a)/ Hj(1)dt > 0 whenever / HZ(s)ds > 0. (5.4)
0 0 aj
By combining 6.2—(5.4),
(0]
/_ H5(s)ds =0, i, j=1.....n.

It follows from the definition ofa; that

ai=a’, i=1,...,n. (5.5)
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Furthermore, from the definitions of}, ..., a; we have
ay 9}
/ / Kij(a,s)ds | da=0, i,j=1...,n.
0 a

g
Using the equality above, it is not difficult to verify that the set
X ={p e X;:¢;(@) =0, ac[0,q]), i=1,...,n}

is invariant to the semigrouf(z). Since A is g-irreducible, if we letp € Xg+ such
that ¢;(a) =1, a € [a], w], then,

lim e T (t)p =0.
— 00

On the other hand, from Propositi@7,

. (9", @)
| sot = —— " ¢.
Am, e T0e = 5w gy ¢

Therefore, .5 yields that

n (&) n a;
0#&@:2/¢WM@M=ZfﬂWMm
i=17 0 i=1" 4
Thus, we must have’ =g;, i =1,...,n. O

Remark. If n =1, then we obtain the result i8] for a single group model.
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