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ABSTRACT. Many patch-based metapopulation models assume that the local
population within each patch is at its equilibrium and independent of changes
in patch occupancy. We studied a metapopulation model that explicitly incor-
porates the local population dynamics of two competing species. The singular
perturbation method is used to separate the fast dynamics of the local compe-
tition and the slow process of patch colonization and extinction. Our results
show that the coupled system leads to more complex outcomes than simple
patch models which do not include explicit local dynamics. We also discuss
implications of the model for ecological systems in fragmented landscapes.

1. Imtroduction. Destruction and fragmentation of native habitats are widespread
and viewed as the most important threats to biodiversity worldwide [31]. Agricul-
ture, urban sprawl, deforestation, and other human activities change the compo-
sition and physiognomy of landscapes, often altering individual behavior [24, 33],
population dynamics [5], genetic structure [4], and community composition [32] of
organisms. Metapopulation models have been used extensively to study the conser-
vation implications of habitat loss and fragmentation. A metapopulation consists
of a set of discrete local populations with independent internal dynamics that are
linked by dispersal [5]. Metapopulations exist within a network of idealized habitat
patches (fragments), occupying some proportion p of these fragments. The original
single-species metapopulation model of Levins [13] assumed that changes in patch
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occupancy were functions solely of colonization rates of empty patches (¢) and ex-
tinction rates of occupied patches (e). Although overly simplistic, the Levins model
provided an essential framework for studies of spatially structured subpopulations
linked by dispersal.

In addition to habitat destruction and fragmentation, interspecific competition
can be a powerful force structuring local communities [11, 15, 23]. The joint effects
of these forces on community structure are of considerable interest, because asym-
metric effects of habitat destruction and fragmentation acting on species have the
potential to alter outcomes of interactions for competing species. Theoretical mod-
els of various types predict that habitat fragmentation may promote coexistence of
competing species by permitting inferior competitors to escape spatially by virtue
of greater dispersal ability [10, 16, 17].

Unfortunately, metapopulation models generalized to multiple species (e.g., [1,
26, 28, 29]) have failed to incorporate explicitly the local dynamics of species in each
patch. An important exception was the model of Hanski and Zhang [7] in which lo-
cal and metapopulation dynamics were explicitly coupled to enable an examination
of the effect of migration on metapopulation persistence. They demonstrated that
the use of coupled models can provide insights into conditions for metapopulation
persistence that cannot be obtained from simple patch models. In this paper, we
generalize the model of Hanski and Zhang’s model by including the local dynamics
of two weakly competing species. Since local dynamics occur on a much faster time
scale than changes in patch occupancy, we can use a singular perturbation argu-
ment to separate the model dynamics into two time scales. Our analyses of the slow
system show that it is possible for the system to have multiple interior equilibria
as well as a unique global interior attractor. When multiple interior equilibria are
present, bi-stability may occur, in which case the competing species may stabilize
either at an interior equilibrium (both species stably coexist) or at a boundary equi-
librium (one species excludes the other species). Finally, we apply the model to a
competitive interaction in a fragmented agroecosystem and discuss the implications
of our findings for community structure and species conservation.

2. The model and its fast and slow dynamics. The Levins model has the
form

— =cp(1 —p) —ep, (1)

where p denotes the proportion of the occupied patches. Its focus is on extinction
e and colonization ¢ rates, with no consideration given to the effect of migration
on local dynamics. Such an omission may be reasonable when migration rate is
low, but if migration rate is high, failure to consider local dynamics may produce
models that predict biased results [6]. To study the population-level consequences
of local dynamics when migration rates are high, Hanksi and Zhang [7] proposed
the following mean-field metapopulation model:

ﬂ = rN 1—5 —mN + amNp,
d,
d—f = BamNp(l—p) —ep,

where p is an element of [0,1] is the fraction of the occupied habitat patches;
N € [0,00) is the typical size of existing local populations; r > 0 is the average



COEXISTENCE IN A METAPOPULATION MODEL 133

per capita growth rate due to local births and deaths; K > 0 is the average per-
patch carrying capacity; m > 0 is the per capita emigration rate; o > 0 is the
fraction of migrating individuals that survived and reached a new patch; 3 > 0
is the probability that an arriving individual gives rise to a new local population
in an empty patch; and e > 0 is the extinction rate of local populations, which is
assumed to be independent of N. One scenario fits this description if the extinction
is entirely due to environmental causes such as natural disasters, season changes,
powerful and fast predation and diseases. This model assumes different time scales
for local and metapopulation dynamics and a uniform size for local populations.
The model in [7] predicts alternative stable equilibria for parameters in a certain
range, and qualitatively different model behaviors are possible when the migration
parameter m varies. In [7] they also considered fugitive co-existence by studying
an asymmetric competition model in which one competitor is superior (i.e., the
inferior species cannot colonize patches occupied by the superior species, and the
two competing species cannot co-exist in the same patch).

We generalize the model in [7] by incorporating two competing species that co-
exist in the same patch. Let N7 and N5 denote the typical local population sizes of
the species 1 and 2, respectively, and, let p; and ps denote the fraction of patches
occupied by species 1 and 2, respectively. (We do not required that p; + pa < 1.)
Because our mean-field formulation focuses on conditions in an average patch, p;
and py represent measures of landscape occupancy. Assuming competition of the
Lotka-Volterra type and using the subscript ¢ to represent the species i, where
i =1,2, we can write the generalized model as follows:

dN; N; N;

- = N\ 1= = —a;=* | —miN; + a;m; Nip;,

at T ( X, a]Ki> m + a;m; IN;p (3)
dpi

prli Bicym; Nipi(1 — pi) — eips,
where 4,7 = 1,2, ¢ # j; a;; is the competition coeflicient expressing the per-capita
effect of species j on growth rate of species 7, and all other parameters are as defined
for the model [7]. We adhered to the assumptions of [7] but relaxed the assumption
of exclusion of the inferior competitor.

Like Hanski and Zhang, we assume that the changes in p; occur on a slower
time scale than the local population dynamics. Hence, the rate of patch creation
by one migrating individual, 3;a;m;, and the rate of patch extinction, e;, where
i = 1,2, are much smaller than all other rates. The smallness of (;a;m; can be
justified by the fact that 3; is a very small constant because of the low rate of
successful colonization of empty patches by one migrating individual (recall that
is the probability that an arriving individual gives rise to a new local population in
an empty patch). Therefore, independent of time unit, we can assume that

ﬁi = Eﬁi, €;, = Eéi, 1= 1,2,

where € > 0 is small. Then system (3) can be rewritten as

dN;
—Y) = NiFi(Nypi)a
t i=1,2, (4)

% = 5p7,GZ(N7pZ)a
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where N = (Ny, N3), and

Fi(N,p;) = Ti<1 - % - ainJ) —m; + om;p;,
Gi(N,pi) = Bicim; N;(1 — p;) — é;,

where 4,7 = 1,2, and ¢ # j. Using techniques in singular perturbation theory (see
[3, 14]) we can analyze system (4) by analyzing the corresponding fast and slow
systems. The fast dynamics of (4) are given by

dN;

dt
In the fast system (5), p1 and py are considered as parameters and will be deter-
mined later by the slow system. To make the impact of local dynamics transparent,
we consider only the scenario in which coexistence of the two species is possible,
for which we make the the following assumptions:

ajzag < 1, 0iK; —aij0,K; >0, i,j=1,2, i # j, (6)
where 6; = 1 — (1 — a;p;) 7+ for i = 1,2. Setting the right hand side of (5) equal to

i

zero, we obtain a unique positive equilibrium E* = (N7, N5) (a two-dimensional
critical manifold, or slow manifold) described by:
1 m; m;
Ni=—— |K Lnil—mm>ﬂMK(L"41—ap>} 7
e (1 e ) e, (1- )| @)

where 4,7 = 1,2, and ¢ # j. Note that N > 0 under the condition of (6). Let
J(E*) denote the Jacobian at E*, then

T17T2 Nik N;
K1 Ky
as ajzaz1 < 1 and N > 0, where ¢ = 1,2. It follows that E* is locally asymptot-
ically stable when it exists. Hence, on the fast time scale, all solutions of (3) are
hyperbolically asymptotic to the equilibrium E*, and (7) defines a two-dimensional
slow manifold. Re-scaling the time by letting 7 = t/e we obtain the following

system which governs the slow dynamics:
63: =pi (ﬁiaimiNi*(l —pi) — éi)» i=1,2, (8)
where N} is a function of both p; and py (see (7)).

We next focus on the slow dynamics. The trivial equilibrium (extinction), Qo =
(p10,p20) = (0,0), always exists. The stability of (o is determined by the relative
magnitudes of the patch extinction rate, e;, and the modified patch colonization
rate, ¢;:

det(J(E*)) = (1 — algagl) >0,

= (1= 2K =y (- 2K ) )
i,j=1,2, i #j. Let
&:%, i=1,2. (10)
Then, Qg is stable if Z
A < 1, i=1,2, (11)
and it is unstable if
A >1 or Ao > 1. (12)

In the standard Lotka-Volterra competition model, or in metapopulation compe-
tition models that do not explicitly incorporate local population dynamics [25,28,
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FIGURE 1. There are nine possible equilibria even when \; < 1,
where i = 1, 2.

29], no stable non-trivial equilibria can exist when the trivial equilibrium is stable.
Hence, the two species cannot stably coexist if the extinction equilibrium is stable.
This is not the case in our model. For example, (8) may have a stable interior
(coexistence) equilibrium even when the parameters satisfy A; < 1, where i = 1,2,
which is the stability condition for the trivial equilibrium. In fact, the system (8)
may have as many as nine equilibria, as shown in Fig. 1.

The additional condition (besides A; < 1, i = 1,2) that excludes the existence of
an interior equilibrium is that at least one of the following two inequalities holds
(for a proof see [2]:

(1—(1+ai)ﬂ) Ki — ay <1—%> K;>0, ij=12i#j (13
i J

The condition (13) also can be expressed in terms of the carrying capacities as

Ki> fi(K;),  i=1,2,i#}, (14)
where
PRIl k7 L AP (15)
B s

=
Although a coexistence equilibrium cannot exist under the conditions (11) and (14),
stable non-trivial boundary equilibria (competitive exclusion) may exist when (14)
holds for only one value of i. If (14) holds for both ¢ = 1 and ¢ = 2, then neither
non-trivial boundary nor interior equilibria are possible; that is, both species will
go extinct. Detailed mathematical proofs of these results are provided in [2]. A
stable interior equilibrium is possible when

A >1 and Ao > 1, (16)
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TABLE 1. Possible existence of stable equilibria as A; and m; vary.
A > 0 is assumed for all cases (see the text). BQ; denotes (sta-
ble) boundary equilibrium on the p; axis, and IQ denotes (stable)
interior equilibrium. Qg denotes the trivial equilibrium (0, 0).

)\121 )\1<1, K1>f1(K2) )\1<1, K1<f1(K2)
A2 >1 BQ1, BQq, IQ BQ1, BQ2, 1Q BQs
Ao <1, K9 > fo(K1) | BQ1, BQ2, IQ BQ1, BQ2, 1Q BQ2
Ao < 1, Ky < fo(Ky) BQ1 BQ: Qo
or when
Ai > 13 >\j < 17 Kj > fJ(Kl)a Za] = 1727 27& ] (17)

The condition (16) implies that the modified colonization rates of both species
exceeds their respective extinction rates. The condition (17) states that only one
species’ colonization rate exceeds its extinction rate, but the other species has a
carrying capacity that is above the threshold given by (15). Stabilities of various
equilibria can be described in terms of \;, K;, and the discriminant, A, of a fourth
degree polynomial whose positive roots determine the property of interior equilibria;
that is, a stable interior equilibrium exists only if A > 0. (This polynomial is
extremely complex and will not be discussed here—for details see [2].) If we assume
A > 0 (which is satisfied for the parameter values we use for case studies in section
4), then the dependence of possible stable equilibria on A; and K; is summarized in
Table 1. When a stable interior equilibrium exists, it may attract either all solutions
with initial values in D = {(p1,p2)|0 < p1 < 1,0 < p2 < 1}, or only solutions with
initial values in a sub-region of D, in which case an alternative stable (boundary)
equilibrium exists. The slow system can have up to 4 interior equilibria in D =
{(p1,p2)]0 < p1 < 1,0 < ps < 1} and up to 9 interior and boundary equilibria for
all the choices of positive parameters. The system does not have any closed orbit.
Moreover, when there exists a unique interior equilibrium, its attracting area is
the whole open unit square; when multiple interior equilibria exist, only one can
be stable whose attracting area is only a sub-region of D, in which case a stable
boundary equilibrium exists. Some possible cases for coexistence are listed in Fig. 2.
We discuss the threshold conditions related to each panel of Fig. 2 in the following
section.

3. The region of stable coexistence. The following notation will be used in
this section:

~ m;

— K J
k‘i = aijﬂi joziajmiT,
J

1
e %‘%‘KJ‘%’
Rio = Ki(1— =) —aylG(L——=), =12 i#j  (18)
i J

m;
ki = Koo —,
K2
éi(1 — aizag)

kio = =
a;Bim;
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(a) A1 >1and A2 >1

Y
Q
Q.
p O P,
() M1 <1, 22>1, K1 > f1(K2) (d) N <1, Ki > fi(Kj), i,j =
1,2,i#]

FIGURE 2. Selected scenarios in which a stable coexistence equi-
librium exists. In (a), there is a unique interior equilibrium that
attracts all solutions. In (b), there are two interior equilibria, one
of which is stable. There also is a stable boundary equilibrium on
the py axis. In (c), there are three interior equilibria, one of which
is stable, and stable boundary equilibria occur on both the p; and
the po axes. In (d), there are four interior equilibria, one of which
is stable. The trivial equilibrium is also stable.

For convenience, we rewrite the slow system (8), with N} replaced by (7), as:
Pi = kipi(1 = pi) (=pj + hi(ps)), i,j =12, i # J, (19)

where
ko

1—pi

hi(pi) = i (k‘io + kapi — ) (20)
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p2=h l(pl )

n hz(sz)

p,=h(p,)

9/’/,’ hZ(O) le{ 3 1 P s L p]

FiGURE 3. The isoclines of the slow system, with some of the
boundary and interior equilibria.

The interior equilibria are the intersections of the two isoclines po = hq(p1) and
p1 = ha(p2). These two isoclines are hyperbolas with two branches and have p; = 1
and p» = 1 as a vertical and horizontal asymptote, respectively. Fig. 3 depicts some
of the possible cases, and it illustrates that there are up to four possible interior
equilibria (intersections of the two curves) when the parameter values change (see
also Fig. 2). Only one of these interior equilibria can be stable (Q2 in Fig. 2 and
Fig. 3). As the number of interior equilibria changes, the existence and stability
of boundary equilibria also may change, and so does the attraction region of @,
which is directly related to the likelihood of coexistence.

It is clear from Fig. 2 that the attraction region of (s is reduced when an
alternative stable (boundary) equilibrium exists. Next, we choose the parameter
values such that two stable non-trivial equilibria are possible with one interior and
the other on the p; axis (a similar analysis can be performed if p; is replaced by
p2). This leads to the following assumption:

ASSUMPTION 1. K1 < Ko, a1z > a1, myp > ms, T1 >7ry, a1 < g, Bl > [32.
We will fix all parameters except Ko and és, which will be our bifurcation param-
eters. Let

Ki(1—m) - é1(1 — aizaa)

T1

K2maw = alﬂlml . (21)

ai12 1-— (1 — Oég)%
Then we can verify that Ky < Koma, implies hy(0) > 0. In this case, as shown
in Fig. 3, the isocline po = hq(p1) and the p; axis share a unique intersection at
Q12 = (p12,0) with p12 € (0,1), which is the unique nontrivial boundary equilibrium
on the p; axis. Thus, in the rest of this section we assume that
ASSUMPTION 2. 0 < Ky < Kopmaz.
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From the results in [2], we know that Q12 moves towards the origin as Ky increases
(subject to the constraint Ko < Ko,4.) and that the slow system has at most two
interior equilibria for K3 € (0, Komas) -

Next we discuss how the equilibria and their stabilities change with K5 and é5.
Notice that an equilibrium on the po-axis satisfies ha(p2) = 0, or equivalently,

ko1p3 + (k2o — k21)p2 + koo — koo = 0. (22)
Let
Ay

(k2o — ka1)? — 421 (kag — kao)
my
T1 )

ma

2 R
4é5(1 —
—|—K2(1— (1—|—a1)r)} - ol Gz1012)
2

rof
Then Equation (22) has either two solutions if Ay > 0 or no solutions if Ay < 0.
Solving the quadratic equation Ay = 0 in terms of Ks, we get

Ko = cag + c21€2 + o1/ é% + c22€9, (23)

= |—ank(1- Ka.

where
a2 Ki(1— 1)
C =
20 1—(1—ap)22
c o 2(1 — algagl)
21 = = )
a2l — (1 — az) 2]
r22a21 K1 (1 — T1)[1 — (1 — az) 72]
Co2 =

1 —ajza9
The right-hand side of (23) defines a function of é;, which determines a curve
of saddle-node bifurcation. We denote this function by Kog,1(é2) (sn designates
saddle-node bifurcation). Hence, as Ko increases through Kog,1, a saddle-node
bifurcation occurs, and there are two equilibria on the ps axis (Fig. 3). These two
equilibria are denoted by Q21 = (0,p21) and Q22 = (0, p22), where 0 < pa; < paz < 1
are the two roots of hy(0) determined by Equation (22).

As K, continues to increase (subject to the constraint Ko < Kosn1 < Komaz),
the isocline p; = ha(p2) on the far left (one of the dashed curves in Fig. 3) shifts
to the right, and when it intersects with the isocline ps = hj(p1), the interior
equilibria appear (the solid curves). To locate this bifurcation curve, we notice
that p; = ha(p2) has a local minimum at

p* _ 1 o 1 ’I"Qég(l — a12a21)
? QM2 BoKo .

This allows for another saddle-node bifurcation when p3 = hy (ha(p3)), which de-
fines the bifurcation curve

Ky = Kogna(é2) (24)

in the positive quadrant (see Fig. 3 and Fig. 4). Hence, there are no interior
equilibria for 0 < Ky < Ksg,o. As K5 increases and crosses the curve Ko =
Kssn2, two equilibria Qo and Q3 appear in the interior of D through a saddle-node
bifurcation. It is shown in [2] that Q2 is an attracting node and that Q3 is a saddle
point.

Another saddle-node bifurcation occurs when the equilibrium @27 on the py axis
moves downward and passes through the origin, which occurs at ho(0) = 0 (Fig. 3),
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or

X azi K1 (1 —T) (1 —ai2a21)és
KQ = K28n3(62) = 1 M2 A mo (25)
T2 a2/62m2( - T2 )

Hence, when K, increases and passes Ksg,3, the number of nontrivial boundary
equilibria on the py axis changes from two to one (Fig. 4). An ecological conse-
quence of this change is an increase of the attraction region of the stable coexistence
equilibrium.

If K5 continues to increase, the interior equilibrium Q3 will coalesce with ()12 on
the p; axis and move out of the region D through another saddle-node bifurcation.
The bifurcation curve is determined by hq(h2(0)) = 0. Solving this equation for Ko

we get
Ky = Kogna(é2) = dao + da1é2 + dagy/ €3 + dagés + day (26)
where
d aglKl[lf(lfC){l)%]
20 — m )
2(1—72)
1 — faizan
doy = < —
azflama(1 — T2)
d - a12021
22 = = —
2a02ma(1 — T2)
2 ~ mq
dos = ——Kjafoma[l — (1 —ay)—],
a12 ) T1
asfBam . m .
doy = @ rA(l— (1 — a2)—)2 K7 — 46, K,
rlﬂlau T2

When K, increases and passes Kogpng, the number of nontrivial interior equilib-
ria changes from two to one and the attraction region of the stable coexistence
equilibrium further increases.

Finally, for Kognq < Ko < Kopmas, the slow system has a unique interior equilib-
ria @2 that is attracting (Fig. 4).

We summarize the above results in the following theorem and in Fig. 4.

THEOREM 1. Let Assumptions 1 and 2 hold. For any fixed és > 0 and K, €
(0, Kamaz ), the slow system (19) undergoes four saddle-node bifurcations along the
curves in the (és, Ko) plane: (i) Ko = Kagn1(é2) is unstable, and the bifurcation
occurs on the po-axis; (i) Ko = Kagna(é2) is stable, and the bifurcation occurs in
the interior of D; (iii) K9 = Kogn3(é2) Is unstable, and the bifurcation occurs at
the origin; and (iv) Ko = Kas,4(€2) is stable, and the bifurcation occurs on the
p1-axis. Moreover, the system (19) has

a. a unique stable boundary equilibrium, (Q12, on the pj-axis for 0 < Ko < Kogp1;

b. two boundary equilibria, Q21 and sz, on the py-axis for Kog, < Ko <
Kogna, with Qa2 being a saddle and Q21 being a repelling node;

c. two interior equilibria, Qs and Q3, for Kog,o < Ko < Kogns, with Qo being a
stable node and (3 being a saddle point;

d. two interior equilibria, Q2 and Qs3, as in (c) and two boundary equilibria, Q12
and Qa2, for Kospz < Ko < Kogna, with Q12 being a stable node and Qa2
being a saddle point;

e. a unique attracting interior equilibria, Q)2, and two boundary equilibria, Q12
and Qa2, for Kogny < Ko < Kopmase, with both boundary equilibria being
saddle points.
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FIGURE 4. Bifurcation curves using é; and K») as bifurcation parameters.

4. Case study. The results in Theorem 1 can provide useful insights into ecolog-
ical consequences resulting from changes in parameters governing the system. As
an example, we consider the potential dynamics of two species of rodents, Per-
omyscus leucopus (white-footed mouse) and Tamias striatus (Eastern chipmunk),
that occupy remnant forest patches in the central United States. Our studies of the
species in Indiana have revealed that they rely upon a common core food resource
[12, 27] and exhibit weak levels of competition in which T. striatus is dominant
[21]. However, T. striatus is more sensitive to the effects of forest fragmentation
than P. leucopus and typically occurs at lower densities [9, 19]. Thus, this system
can provide a useful illustration of the potential effects of varying levels of habitat
loss and extinction risk on the outcome of competition.

Using our knowledge of this system, we assigned the following set of realistic
parameter values to observe numerically (using MAPLE) the quantitative changes
to the attracting region of the stable coexistence equilibrium. In all that follows,
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TABLE 2. The bifurcation values for the four cases

Case 1: é,, =4 Case 2: =25 Case 3: ¢, =1 Case 4: é5 =0.2
Komaz 223 515 696 7012
Kogna 91 102 99 839
Kosns 89 97 93 775
Kogno 86 87 72 416
Kogn1 85 84 68 385

species 1 is the inferior competitor (P. leucopus) and species 2 is the superior
competitor (7. striatus):

Ty = 07, my = 0.1, o1 = 0.5, ﬁl = 005,
T = 0157 mo = 01, Qo = 06, ﬂg = 003, (27)
a2 = 05, ag1 = 0.1

Note that the relative locations of the bifurcation curves described in Theorem 1
are dependent on other parameter values, including K7 and é;. We considered four
cases corresponding to the following four sets of K1 and é;:

1. K1 =100, and é; =1

2. K1 =225, and é; =1

3. K1 =300, and é; = 0.5

4. K7 = 3000, and é; = 0.1

These cases correspond to decreasing severity of habitat fragmentation and ex-
tinction risk. In many parts of the midwestern United States, a carrying capacity
of 100 for P. leucopus (case 1) represents a situation in which each forest remnant
is only 0.1 to 3 ha in size [18]. The density of P. leucopus declines nonlinearly as
forest patch area increases [18, 20], with the result that average patch sizes for cases
2 through 4 are roughly 5 to 15 ha, 10 to 20 ha, and 100 to 300 ha, respectively.

The bifurcation curves for all four cases were computed using MAPLE and are
shown in Fig. 5. Clearly, the mouse-chipmunk system shows the same qualitative
properties as that in Fig. 4. Several points on the bifurcation curves are listed in
Table 2. For example, if K1 = 300, é; = 0.5 (case 3) and és = 1, then Kogz,q = 99
and Kog,0 = 72. Hence, according to Theorem 1, for K5 > 99, the attracting region
of the stable interior equilibrium is the entire interior of D (coexistence is expected
for all initial data), whereas for 72 < Ky < 99, there exists a stable boundary
equilibrium on the p; axis that attracts solutions with initial data in the unshaded
part of D (competitive exclusion of species 2). For Ky < 72, coexistence is impos-
sible and species 2 will always suffer extinction, despite its competitive superiority.
A notable pattern from this example is the narrow range over which coexistence
thresholds occur when carrying capacity (and hence forest patch size) is small. In
highly fragmented landscapes characterized by small patches with low carrying ca-
pacities, slight changes in K5 or é; can make the difference between coexistence
and competitive exclusion. For T. striatus, local carrying capacities are approx-
imately 35, 100, 225, and 3000 for cases 1 through 4, respectively [19]. Possible
positions for cases 1 and 2 are shown in Fig. 5 (the positions for cases 3 and 4 are far
above all four curves and are not shown). Thus, competitive coexistence becomes
increasingly likely as forest patch size increases. We do not have reliable estimates
for background extinction rates in this system, but the values used in Table 2 are
illustrative of the process. For a landscape, with extremely small patches (case
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FIGURE 5. Bifurcation curves for the four cases.

1), T. striatus is predicted to suffer extinction despite its competitive advantage.
A slight increase in patch size (case 2) may lead to stable coexistence, albeit in a
subset of the interior of D (Fig. 5). For large patches with correspondingly large
carrying capacities, stable coexistence is predicted for all occupancy levels (Fig. 5).

5. Conclusions. Our model demonstrates the importance of considering local
patch dynamics when attempting to understand the behavior of metacommunities
structured partly by competition. A focus solely on colonization and extinction pro-
cesses fails to capture the rich dynamics associated with systems that are affected
by weak competition. Moreover, the interplay between local- and landscape-level
processes can lead to counter intuitive results and multiple stable equilibria not
predicted by models that ignore either colonization dynamics or competitive in-
teractions. Conservation considerations in fragmented landscapes frequently fail to
consider the influence of interspecific interactions on persistence. Our model results
suggest that failure to account for competitive interactions may lead to biased pre-
dictions regarding persistence of species, and these considerations may be especially
important as habitat loss and fragmentation intensify.
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For decades, competition was touted by ecologists as a dominant force structur-
ing local communities (reviewed in [22]). More recently, the role of spatial structure
has been increasingly acknowledged as an important predictor of local community
structure in fragmented landscapes (e.g., [8, 30]). By considering jointly the effects
of competition and spatial structure within the context of analytical models such
as the one developed in this paper, ecologists may be empowered with the tools
needed for a more complete understanding of communities in complex landscapes.
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