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Abstract. Tuberculosis (TB) is the leading cause of death among individuals
infected with the human immunodeficiency virus (HIV). The study of the joint
dynamics of HIV and TB present formidable mathematical challenges due to
the fact that the models of transmission are quite distinct. Furthermore, al-
though there is overlap in the populations at risk of HIV and TB infections,
the magnitude of the proportion of individuals at risk for both diseases is not
known. Here, we consider a highly simplified deterministic model that incorpo-
rates the joint dynamics of TB and HIV, a model that is quite hard to analyze.
We compute independent reproductive numbers for TB (R1) and HIV (R2)
and the overall reproductive number for the system, R = max{R1,R2}. The
focus is naturally (given the highly simplified nature of the framework) on the
qualitative analysis of this model. We find that if R < 1 then the disease-free
equilibrium is locally asymptotically stable. The TB-only equilibrium ET is
locally asymptotically stable if R1 > 1 and R2 < 1. However, the symmetric
condition, R1 < 1 and R2 > 1, does not necessarily guarantee the stability of
the HIV-only equilibrium EH , and it is possible that TB can coexist with HIV
when R2 > 1. In other words, in the case when R1 < 1 and R2 > 1 (or when
R1 > 1 and R2 > 1), we are able to find a stable HIV/TB coexistence equilib-
rium. Moreover, we show that the prevalence level of TB increases with R2 > 1
under certain conditions. Through simulations, we find that i) the increased
progression rate from latent to active TB in co-infected individuals may play a
significant role in the rising prevalence of TB; and ii) the increased progression
rates from HIV to AIDS have not only increased the prevalence level of HIV
while decreasing TB prevalence, but also generated damped oscillations in the
system.

1. Introduction. Tuberculosis is a bacterial disease caused by M. tuberculosis (a
tubercle bacilli). TB is the leading cause of death among people infected with HIV
[16]. Transmission of TB occurs by airborne spread of infectious droplets. The
droplets are produced when a person with sputum smear-positive TB of the lung.
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TB is acquired through “interactions” with infectious individual, interactions that
include primarily the sharing of a common “closed” environment. Once infected, a
person stays infected for many years, possible latently-infected for life. Two billion
people, about one-third of the world’s total population were estimated to be infected
with TB in 2006 [35].

HIV, the Human Immunodeficiency Virus, is the etiological agent responsible for
the Acquired Immunodeficiency Syndrome (AIDS). HIV is not casually transmitted.
There are multiple modes of HIV transmission including sexual intercourse, sharing
needles with HIV-infected persons, or via HIV-contaminated blood transfusions.
Infants may acquire HIV at delivery (birth) or through breast feeding if the mother
is HIV positive. HIV severely weakens the immune system. Hence, it makes people
highly vulnerable to invasions by a great number of infectious agents including
mycobacterium, the etiological agent responsible for TB. There is a long, variable,
latent period associated with HIV infection and the onset of HIV-related diseases
including AIDS in adults. As HIV infection progresses, immunity declines and
patients tend to become more susceptible to “common” or even rare infections. In
many societies HIV and TB treatments are common today and the use of drugs
have altered the joint dynamics of TB and HIV.

About one third of 39.5 million HIV-infected people worldwide are co-infected
with TB [34] and up to 50 percent of individuals living with HIV are expected to
develop TB [30, 33]. Many TB carriers who are infected with HIV are 30 to 50 times
more likely to develop active TB than those without HIV [30]. The HIV epidemic
has significantly impacted the dynamics of TB. In fact, one-third of the observed
increases in active TB cases over the last five years can be attributed to the HIV
epidemic [30]. For individuals infected with HIV, the presence of other infections,
including TB tends to increase the rate of HIV replication. This acceleration may
result in higher levels of infection and rapid HIV progression to the AIDS stage.
The potential implications on the joint dynamics of HIV and TB will be explored
in this paper.

Although the negative impact of the synergetic interactions between TB and
HIV have caused worldwide concern, only a few statistical or mathematical models
have been used to explore the consequences of their joint dynamics at the pop-
ulation level. There are plenty of single disease dynamic models. A significant
number focus on TB [1, 3, 5, 6, 7, 9, 13, 14, 23] or on the transmission dynamics
of HIV/AIDS [4, 17, 21, 29]. There are a few TB/HIV co-infection models (see for
example [20, 22, 24, 25, 26, 27, 31]). Kirschner [20] developed a cellular model that
described HIV-1 and TB co-infections inside a host. Naresh, et al. [22] developed
a nonlinear mathematical model with the population divided into four sub classes:
the susceptible, TB infective, HIV infective, and AIDS patients. Their model fo-
cused on the transmission dynamics of HIV and treatable TB in populations of
varying sizes. Schulzer, et al. [27] studied HIV/TB joint dynamics using actuarial
methods. West and Thompson [31] developed models for the joint dynamics of HIV
and TB using numerical simulations to estimate parameters and predict the future
transmission of TB in the United States. Porco, et al. [24] predict the potential
impact of HIV on the probability and the expected severity of TB outbreaks using
a discrete event simulation model.

Our approach differs from those found in the literature. Here, we focus on the
joint dynamics of HIV and TB in a pseudo-competitive environment, at the popula-
tion level. The model is not for a specific country or nation, and our approach does



MODELING TB AND HIV CO-INFECTIONS 817

not preclude the possibility of joint infections. The model assumes that invasions
are bad news for each single host and that joint invasions are worse. This model is
used to explore the impact of factors associated with co-infections on the prevalence
of each of the two diseases. The possibility of HIV infections is incorporated within
“typical” epidemiological frameworks that have been developed for the transmis-
sion dynamics of TB. The enhanced deterministic system is used to carry out a
qualitative study of the joint transmission dynamics of TB and HIV.

This paper is organized as follows. In Section 2, we introduce a TB/HIV model
that allows for the incorporation of both infections. We compute the reproduction
numbers of each infectious disease and the overall reproduction number for the full
system. Section 3 focuses on the study of boundary equilibria which include the
disease-free state, the TB-free state, and the HIV-free state. The local stability of
the disease-free and HIV-free equilibria are established. The existence of a possible
co-existence equilibrium is also considered. Section 4 highlights the results of our
analysis using selected numerical simulations. Section 5 discusses the relevance of
the results presented in this manuscript and identifies possible future directions.
The mathematical details are included in the appendix.

2. The TB/HIV model. A system of differential equations is introduced to model
the joint dynamics of TB and HIV. The total population is divided into the following
epidemiological subgroups: S, susceptible; L, latent with TB; I, infectious with
TB; T , successfully treated with TB; J1, HIV infectious; J2, HIV infectious and
TB latent; J3, infectious with both TB and HIV; and A, “full-blown” AIDS. The
compartmental diagram in Figure 1 illustrates the flow of individuals as they face
the possibility of acquiring specific-disease infections or even co-infections.

The TB/HIV model is given by the following systems of eight ordinary differential
equations:
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R
− βcJ1

I+J3

N
− (α1 + µ)J1 + r∗J2,

dJ2

dt
= λσLJ∗

R
+ βcJ1

I+J3

N
− (α2 + µ + k∗ + r∗)J2,

dJ3

dt
= k∗J2 − (α3 + µ + d∗)J3,

dA
dt

= α1J1 + α2J2 + α3J3 − (µ + f)A,

(1)

where
N = S + L + I + T + J1 + J2 + J3 + A,

R = N − I − J3 − A = S + L + T + J1 + J2,

J∗ = J1 + J2 + J3.

(2)

The variable R denotes the “active” population that is the subgroup of individuals
who do not have active TB or AIDS. The definitions of parameters are listed in
Table 1.
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Figure 1. A transition diagram between epidemiological classes
for the transmission dynamics of TB and HIV. All rates are per
capita.

Table 1. Definitions of parameters and state variables used in the
TB/HIV model (1).

Symbol Definition
N total population
R total active population (= N − I − J3 − A = S + L + T + J1 + J2)
J∗ Individuals with HIV who have not developed AIDS (= J1 + J2 + J3)
Λ constant recruitment rate
β probability of TB infection per contact with a person with active TB
λ probability of HIV infection per contact with a person with HIV
c per-capita contact rate for TB
σ per-capita contact rate for HIV
µ per-capita natural death rate
k per-capita TB progression rate for individuals not infected with HIV
k∗ per-capita TB progression rate for individuals infected also with HIV
d per-capita TB-induced death rate
d∗ per-capita HIV-induced death rate
f per-capita AIDS-induced death rate
r1 per-capita latent TB treatment rate for individuals with no HIV
r2 per-capita active TB treatment rate for individuals with no HIV
r∗ per-capita latent TB treatment rate for individuals with also HIV
αi per-capita AIDS progression rate for individuals in Ji (i = 1, 2, 3) class
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The model is based on the following assumptions: the mixing between individuals
is homogeneous; HIV individuals who are TB infectious (J3) and exhibit severe HIV
symptoms can not get an effective TB treatment; individuals get TB only through
contacts with TB infectious individuals (I and J3); and individuals may become
HIV infected only through contacts with HIV infectious individuals (the J∗ group).
We assume also that the “probability” of infection per contact is the same for
the T and S classes, namely β and λ. Further more, the I (TB infectious), J3

(both TB and HIV infectious), and A (AIDS) individuals are considered too ill
to remain sexually active and therefore they are unable to transmit HIV through
sexual activity. R ≡ N − I − J3 −A denotes the “active” population and hence the
“activity adjusted” HIV incidence is λσJ∗/R (see [8, 19, 36]). It appears that the
function J∗/R might have a singularity at R = 0 as J∗ includes J3 while R does
not. However, it is shown in the next section that the ratio J∗/R remains bounded
for all time and, therefore, the system has no singularity.

We ignore important HIV transmission paths such as IV drug injections,
vertically-transmitted HIV (children of birth), or HIV transmission via breast feed-
ing. In other words, the probability of having a contact with HIV infectious indi-
viduals is modeled as J∗/R and the number of new HIV infections in a unit time is
therefore λσSJ∗/R. Sexual-transmission is modeled as an indirect effect since the
incorporation of modes of sexual interactions would make the model non-tractable
analytically. Clearly, this last simplification is the most drastic. In addition, we do
not include demography in the model which means that the time scale relevant to
the model is tied in to time horizons where the demography has no serious impact.

The TB reproduction number (under treatment) is given by

R1 =
βck

(µ + k + r1)(µ + d + r2)
, (3)

and the HIV reproduction number is

R2 =
λσ

α1 + µ
. (4)

Hence, the reproduction number for System (1) under TB treatment is

R = max{R1,R2}.

Both TB and HIV will die out if R < 1 while either or both diseases may become
endemic if R > 1.

R1 is the product of the average number of susceptible infected by one TB
infectious individual during his or her effective infectious period βc/(µ + d + r2)
times the fraction of the population that survives the TB latent period k/(µ +
k + r1). R1 gives the number of secondary TB infectious cases produced by a TB
infectious individual during his or her effective infectious period when introduced
in a population of mostly TB susceptibles (in the presence of treatment). R2 is
the HIV reproduction number in the absence of TB, which gives the number of
secondary HIV infectious produced by an HIV infectious (but not infected with
TB) individual during his or her infectious period when introduced in a population
of HIV susceptibles who have no TB.

Notice that the reproductive numbers defined above do not involve the param-
eters associated with individuals who are co-infected with both TB and HIV, e.g.,
k∗ and α3. In the following sections, we will explore the effect of these co-infection
related parameters on the joint dynamics of the two diseases.
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3. Equilibria and local stability. For System (1) the first octant in the state
space is positively invariant, that is, solutions that start in this octant where all
the variables are non-negative stay there. This can be verified as follows. Suppose,
for example, at some time t̄ > 0 the variable L becomes zero, i.e., L(t̄) = 0, while
all other variables are positive. Then, from the L equation we have dL(t̄)/dt > 0.
Thus, L(t) ≥ 0 for all t > 0. Similarly, it can be shown that all variables remain
nonnegative for all t > 0. Adding all the equations in Model (1) gives the following
equation for N , the total population,

dN

dt
= Λ − µN − (dI + d∗J3 + fA).

Since dN
dt

< 0, without loss of generality, we may consider only the solutions of

System (1) that remain in the following positively invariant subset of R8:

Γ =
{

(S, L, I, T, J1, J2, J3, A)
∣

∣ S, L, I, T, J1, J2, J3, A ≥ 0,

S + L + I + T + J1 + J2 + J3 + A ≤ Λ
µ

}

.

For the continuity of the functions on the right-hand side of System (1), we only
need to check the property of the ratio J∗(t)/R(t), where J∗ = J1 + J2 + J3 and
R = N − I − J3 − A = S + L + T + J1 + J2. This is described in the following
lemma.

Lemma 3.1. The function J∗(t)
R(t) is bounded for all t > 0.

Proof. Since J∗(t) ≥ 0 and R(t) ≥ 0 for all t > 0, if J∗(t)/R(t) is not bounded then
a singularity occurs at some t̃ > 0, at which

J∗(t̃) > 0 and R(t̃) = 0. (5)

Notice that
J∗(t)

R(t)
=

J1(t) + J2(t) + J3(t)

S(t) + L(t) + T (t) + J1(t) + J2(t)
.

Thus, (5) implies that

S(t̃) = L(t̃) = T (t̃) = J1(t̃) = J2(t̃) = 0 and J3(t̃) > 0. (6)

From R = N − I − J3 − A, we have

dR

dt
= Λ − µN − (dI + d∗J3 + fA) − kL + (µ + d + r2)I − k∗J2

+(α3 + µ + d∗)J3 − (α1J1 + α2J2 + α3J3) + (µ + f)A

= Λ − µN − kL + (µ + r2)I − k∗J2 + µJ3 − (α1J1 + α2J2) + µA.

Using (6) and the fact that N(t) ≤ Λ/µ, we get

dR

dt

∣

∣

∣

t=t̃
= Λ − µN(t̃) + µ

[

I(t̃) + J3(t̃) + A(t̃)
]

+ r2I(t̃)

≥ µJ3(t̃) > 0.

This, together with R(t̃) = 0 (see (5)), implies that R(t) < 0 for t < t̃ and near t̃.

However, this contradicts the fact that R(t) ≥ 0 for all t > 0. Therefore, J∗(t)
R(t) is

bounded for all t > 0.
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3.1. Equilibria of a single disease or no disease. System (1) has three possible
nonnegative boundary equilibria in Γ: the disease-free equilibrium (DFE) denoted
by E0, the TB-only (HIV-free) equilibrium ET , and the HIV-only (TB-free) equi-
librium EH . The components of E0 are

S0 =
Λ

µ
, L0 = I0 = T0 = J01 = J02 = J03 = A0 = 0.

At ET , the components are

ST =
Λ

µ + βcIT /NT

, LT =
IT

R1b

, IT =
NT (R1 − 1)

R1 + R1a

, TT =
(r1L + r2IT )ST

Λ
,

J1T = J2T = J3T = AT = 0,

where

NT =
Λ

µ + d(R1 − 1)/(R1 + R1a)
,

with

R1a =
βc

µ + k + r1
, R1b =

k

µ + d + r2
. (7)

At EH , the components are

SH =
Λ

µR2 + α1(R2 − 1)
, LH = IH = TH = 0,

J1H = (R2 − 1)SH , J2H = J3H = 0, AH =
α1J1H

µ + f
.

It is easy to see that the HIV-free equilibrium ET exists if and only if R1 > 1,
and the TB-free equilibrium EH exists if and only if R2 > 1. The stability of these
boundary equilibria are described in the following results.

Theorem 3.2. The disease-free equilibrium E0 is locally asymptotically stable (LAS)
if R < 1, and it is unstable if R > 1.

A brief proof of Theorem 3.2 is given in the appendix. For the stability of ET ,
the HIV-free equilibrium, we notice that α1, α2, and α3 are the per-capita exit rates
of individuals in the J1 (HIV infectious), J2 (HIV and TB latent), and J3 (HIV and
TB active) classes into the A class (AIDS). Therefore, it is reasonable to assume
that α1 ≤ α2 ≤ α3, which implies that

λσ

α1 + µ
≥

λσ

α2 + µ
≥

λσ

α3 + µ
.

Under these conditions, we have the following theorem for the local stability of ET .

Theorem 3.3. The HIV-free equilibrium ET is LAS if R1 > 1 and R2 < 1.

A proof of Theorem 3.3 is provided in the appendix. This result seems to be
parallel with those found in the analysis of TB models without HIV ([6]). However,
we need to point out that conditions stated in theorem 3.3, i.e., R1 > 1 and R2 < 1,
are only sufficient but not necessary. In other words, our numerical simulations of
the system (1) indicate that it is possible for ET to be LAS even when R2 > 1 (see
Section 4.3).

We remark that the symmetric conditions for the TB-free equilibrium EH do
not hold. That is, EH may not be LAS under the conditions R1 < 1 and R2 > 1.
Although we are not able to prove this analytically, our numerical studies show that
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when R1 < 1 and R2 > 1 it is possible that the equilibrium EH is unstable and TB
can co-exist with HIV (see section 4.3).

3.2. Interior equilibrium and their local stability. When both reproduction
numbers are greater than 1, i.e., R1 > 1 and R2 > 1, ET and EH both exist and E0

is unstable. In this case, our numerical studies show that it is possible that all three
boundary equilibria are unstable and solutions converge to an interior equilibrium
point. Although explicit expressions for an interior equilibrium are very difficult to
compute analytically, we have managed to obtain some relationships that can be
used to determine the existence of an interior equilibrium.

Let Ê = (Ŝ, L̂, Î, Ĵ1, Ĵ2, Ĵ3, Â) denote an interior equilibrium with all components
positive, and let x and y denote the fractions in the incidence terms:

x =
Î + Ĵ3

N̂
> 0 and y =

Ĵ∗

R̂
> 0. (8)

The components of Ê can be determined by setting to zero of the right-hand side
of the equations in (1):

Λ − βcŜx − λσŜy − µŜ = 0, (9)

βc(Ŝ + T̂ )x − λσL̂y − (µ + k + r1)L̂ = 0, (10)

kL̂ − (µ + d + r2)Î = 0, (11)

r1L̂ + r2Î − βcT̂x − λσT̂ y − µT̂ = 0, (12)

λσ(Ŝ + T̂ )y − βcĴ1x − (α1 + µ)Ĵ1 + r∗Ĵ2 = 0, (13)

λσL̂y + βcĴ1x − (α2 + µ + k∗ + r∗)Ĵ2 = 0, (14)

k∗Ĵ2 − (α3 + µ + d∗)Ĵ3 = 0, (15)

α1Ĵ1 + α2Ĵ2 + α3Ĵ3 − (µ + f)Â = 0, (16)

where N̂ = Ŝ + L̂ + Î + T̂ + Ĵ1 + Ĵ2 + Ĵ3 + Â and R̂ = Ŝ + L̂ + T̂ + Ĵ1 + Ĵ2. From
(9) we have

Ŝ =
Λ

µ + βcx + λσy
, (17)

and from (10)-(12) we have

L̂ =
Ŝβc

B1
x =

βcΛ

B1(µ + βcx + λσy)
x,

Î =
k

µ + d + r2
L̂,

T̂ =
r1 + r2k

µ+d+r2

βcx + λσy + µ
L̂,

(18)

where

B1 = λσy + µ + k + r1 −
βcx(r1 + r2k

µ+d+r2

)

βcx + λσy + µ

≥ λσy + µ + k + r1 − (r1 + k)

> 0.

(19)
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Thus, Ŝ, L̂, Î, and T̂ can be determined by x and y. From the equations (13)-(15)
we have

Ĵ1 =

(

Ŝ + T̂ + r∗L̂
∆2

)

λσy

B2
,

Ĵ2 =
L̂λσy + Ĵ1βcx

∆2
,

Ĵ3 =
k∗(L̂λσy + Ĵ1βcx)

∆2∆3
,

(20)

where
∆2 = α2 + µ + k∗ + r∗,

∆3 = α3 + µ + r∗ + d,

B2 =
βcx(α2 + µ + k∗)

∆2
+ α1 + µ.

(21)

Thus, Ĵi (i = 1, 2, 3) can be determined by x and y as well. Finally, from the
equation (16),

Â =
1

µ + f

(

α1Ĵ1 + α2Ĵ2 + α3Ĵ3

)

. (22)

Thus, all components of Ê are functions of x and y. Clearly, N̂ and R̂ are also
functions of x and y. Notice from (18) and (20) that Î + Ĵ3 is multiple of x, and Ĵ
is multiple of y. In fact,

Î + Ĵ3 = βcx
[ kŜ

(µ + d + r2)B1
+

k∗

∆2∆3

( Ŝλσy

B1
+ Ĵ1

)]

and

Ĵ = Ĵ1 + Ĵ2 + Ĵ3 = Ĵ1

(

1 +
βcx

∆2

[

1 +
k∗

∆3

]

)

+
L̂λσy

∆2

[

1 +
k∗

∆3

]

= λσy
{ 1

B2

(

Ŝ + T̂ +
r∗L̂

∆2

)(

1 +
βcx

∆2

[

1 +
k∗

∆3

]

)

+
L̂

∆2

[

1 +
k∗

∆3

]

}

.

Thus, from x = (Î + Ĵ3)/N̂ and y = Ĵ∗/R̂, we know that x and y satisfy the
following equations

x = xF (x, y),

y = yG(x, y),
(23)

where

F (x, y) =
βc

N̂

[ kŜ

(µ + d + r2)B1
+

k∗

∆2∆3

( Ŝλσy

B1
+ Ĵ1

)]

,

G(x, y) =
λσ

R̂

{ 1

B2

(

Ŝ + T̂ +
r∗L̂

∆2

)(

1 +
βcx

∆2

[

1 +
k∗

∆3

]

)

+
L̂

∆2

[

1 +
k∗

∆3

]

}

,

(24)

in which, Ŝ, T̂ , L̂, Ĵ1, and Bi (i = 1, 2) are functions of x and y as given in (17)-(21);

and ∆i (i = 2, 3) are given in (19). Since x 6= 0 and y 6= 0 (as Î > 0 and Ĵ∗ > 0),
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the equations in (23) can be simplified as

F (x, y) = 1,

G(x, y) = 1.
(25)

From (17)-(22) we know that an interior equilibrium Ê corresponds to an inter-
section point (x, y) of the two curves F = 1 and G = 1 with 0 < x < 1 and y > 0

(it is possible that y = Ĵ∗/R̂ > 1 as J includes Ĵ3 while R̂ does not). The two
equations in (25) are very difficult to solve analytically due to the high nonlinearity
of F and G. Nonetheless, we can numerically plot these two curves and examine
how the intersection point(s) change with model parameters. For the choice of pa-
rameter values in our numerical studies, the literature offers useful information, see
for example [12]. For numerical studies demonstrated in Figures 2–5, most of the
parameters have fixed values while some will vary to demonstrate various cases in
terms of extinction, persistence, or coexistence of the diseases. The fixed parameter
values (the time unit is a year) are: µ = 0.0143 which corresponds to a life span
of 70 years; d = 0.1, d∗ = 0.2 and f = 0.5 which imply that, after TB becomes
active (not all TB-infected individuals reach the active stage), a person may die
in ten years if no HIV or in 5 years or two years if the person also has HIV or
AIDS; k = 0.5 based on the assumption that the average latent period for TB is
two years; r1 = r∗ = 3 and r2 = 1, which correspond to the assumption that it will
take four months and one year, respectively, for a latent and infectious person to
become treated. Notice that the value r1 maybe much smaller if a large proportion
of latent TB individuals do not receive treatment. Similarly, the value of k may
also be smaller if only a small fraction of latent TB individuals will develop active
disease. In addition, α1 = 0.1 and α2 = 2α1, which imply that it takes on average
10 and 5 years for a person, who is infected with HIV only, or HIV and TB latent,
to develop AIDS.

Notice that β and c always appear together and the product βc determines the
TB reproduction number R1 given other parameters. We will consider different
values of R1 by varying βc. Similarly, we will consider different values of HIV
reproduction number R2 by varying the product λσ. Notice also that the condition
k∗ > k (i.e., the progression to active TB is faster in a person with HIV infection
than without) reflects the influence that HIV may have on the dynamics of TB.
Similarly, the condition αi > α1 (i = 2, 3) (i.e., the progression to AIDS is faster
in a person with TB infection than without) represents the influence of TB on the
dynamics of HIV. We will examine how these conditions may affect the prevalence
of the diseases. For demonstration purposes, the total population size used in all
numerical studies is 104.

In Figure 2, the variable parameter values used are βc = 10 (corresponding to
R1 = 1.3) and λc = 0.4 (corresponding to R2 = 3.5); k∗ = 5k, which implies
that the progression to TB in an individual who is also infected with HIV is five
times higher; and α3 = 5α1, which implies that the rate of developing AIDS in
a HIV person with TB is five times higher than without TB. In these figures,
the surfaces of F (x, y) and G(x, y) are plotted and the curves F (x, y) = 1 and
G(x, y) = 1 are shown as intersections of these surfaces with the plane of constant
1 (see Figure 2(A)(B)). In Figure 2(C), it is demonstrated that there is a unique
point, (x̂, ŷ) = (0.27, 0.096), at which F (x̂, ŷ) = G(x̂, ŷ) = 1. Using (17)-(22) we

can determine the components of the interior equilibrium Ê.
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Figure 2. In (A) and (B) it is shown that there is a curve in the
(x, y) plane along which F (x, y) = 1 and G(x, y) = 1, respectively.
(C) illustrates that there is a unique point, (x̂, ŷ) = (0.14, 0.15),
at which F (x̂, ŷ) = G(x̂, ŷ) = 1. This point determines an interior

equilibrium Ê. (D) shows the contour curves F (x, y) = 1 and
G(x, y) = 1, and that there is a unique intersection point (x̂, ŷ).
The parameter values used are: βc = 10 (corresponding to R1 =
1.3), and λc = 0.4 (corresponding to R2 = 3.5). Other parameter
values used are: µ = 0.0143, d = 0.1, d∗ = 0.2, k = 0.5, k∗ = 5k,
r1 = 3, r2 = 1, r∗ = 3, α1 = 0.1; α2 = 0.2, α3 = 0.5, and f = 0.5.

Figure 2 illustrates the existence of an interior equilibrium Ê when both repro-
duction numbers, R1 and R2, are greater than 1. The numerical simulations of
the system suggest that the interior equilibrium is LAS in most cases. However,
the simulations also suggest that stable periodic solutions are possible. Another
interesting observation from the numerical studies of system (1) is that an interior
equilibrium is possible even when R1 < 1, provided that the R2 > 1 (see Section
4.3).

4. Numerical examples. In this section we use model (1) to examine the impact
that prevalence of HIV may have on TB dynamics and vice versa. We also present
some numerical results on the stability of ET (the HIV-free equilibrium) and EH

(the TB-free equilibrium).
One of the key parameters in the model to consider is k∗, which is the rate of

TB progression in individuals who are co-infected with both HIV and latent TB. It
has been reported that TB carriers who are infected with HIV are 30 to 50 times
more likely to develop active TB than those without HIV [30]. This suggests that
k∗ ≥ k, and in some cases, k∗ ≫ k. Our numerical studies indicate that only in
certain cases, this factor may play an important role for explaining the effect of HIV
epidemics on the increased prevalence level of TB.



826 LIH-ING W. ROEGER, ZHILAN FENG AND CARLOS CASTILLO-CHAVEZ

4.1. Impact of HIV on the prevalence level of TB infection. In many epi-
demiological models, the magnitude of the reproduction number is associated with
the level of infection. The same is true in model (1). That is, the reproduction
numbers for TB and HIV, R1 and R2 (see (3) and (4)), are directly related to the
infection levels of the respective diseases (in the absence of the other disease). Thus,
we consider the impact of HIV on TB by first examining the effect of R2 on the
prevalence of TB. Notice that both R1 and R2 = λσ/(µ+α1) are independent of the
parameters k∗, α3, or f . Thus, we fix these parameters and R1 at various (given)
values and look at changes in the levels of TB infections as R2 increases. Notice also
that the x component of the two curves F (x, y) and G(x, y) (see x̂ = (Î + Ĵ3)/N̂ in
Figure 2) represents the fraction of individuals with active TB. We will consider x̂
as a measure for the TB prevalence.

Figure 3 plots the intersection point (x̂, ŷ) of the contour plots of F (x, y) = 1
(dashed curve) and G(x, y) = 1 (solid curve) for several values of R2 with R1 being

fixed (R1 = 1.5 corresponding to βc = 12). Again, an interior equilibrium Ê can
be determined by x̂ and ŷ if 0 < x̂ < 1 and ŷ > 0. This figure illustrates how x̂
changes with increasing R2. We have chosen k∗ = 5k (i.e., the progression rate to
active TB in individuals with both latent TB and HIV is five times higher than
that in individuals with latent TB only), α3 = 5α1 (i.e., the progression to AIDS in
individuals with active TB is five times higher than that in individuals without TB),
and f = 1. Other parameter values are the same as in Figure 2. The value of R2 in
Figure 3(A)-(D) are 2.8, 3.6, 4.6, and 7, respectively. It shows that for smaller R2

the two curves do not have an intersection with positive x and y (see (A)); and thus,

Ê does not exist. As R2 increases from 2.8 to 3.6, the F (x, y) = 1 curve does not
change much while the right-end of the G(x, y) = 1 curve moves to the right of the
F = 1 curve. This leads to an intersection point of the two curves (see (B)), which

corresponds to an interior equilibrium Ê. The right-end of the G = 1 curve moves up
more as R2 is increased further to 4.6, and there is still a unique interior equilibrium
with a larger x component (see (C)). Finally, when R2 is very large, the G(x, y) =
1 curve changes from decreasing to increasing. Although there is still a unique
intersection point, the y = Ĵ∗/R̂ component may becomes greater than 1. This is
still biologically feasible as J/R can exceed 1 (see (D)). The intersection points in

(C)-(D) are (x̂, ŷ) = ( Î+Ĵ3

N̂
, Ĵ∗

R̂
) = (0.15, 0.07), (0.25, 0.4), (0.33, 1.25), respectively.

We observe that x̂ increases with R2 from 0.15 to 0.33. This implies that the
prevalence of HIV may have significant impact on the infection level of TB.

We have also identified some scenarios in which the assumption k∗ > k does not
automatically lead to an increase in TB prevalence. One of the reasons is that a
person with both HIV and active TB (J3) may progress at a faster rate (α3 > α1)
to the AIDS stage (A) which is associated with an excess death rate (f > 0). In
Figure 4 we examine the interplay between these factors.

In Figure 4(A)-(D), all parameters have the same values as in Figure 3(A)-(D)
except that k∗ = 3k and α3 = 10α1. The intersection points in Figure 4(C)-(D)

are (x̂, ŷ) = ( Î+Ĵ3

N̂
, Ĵ∗

R̂
) = (0.13, 0.07), (0.14, 0.28), (0.15, 0.65), respectively. It shows

that although the y component of the intersection increases as R2 increases, the
x component does not change much (from 0.13 to 0.15). This suggests that the
condition k∗ > k alone may not be sufficient for HIV to have a significant impact
on TB. Other factors may also play an important role, e.g., the development rate
(α3) to AIDS of individuals who are also infected with TB.
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Figure 3. Contour plots showing the intersection points of the
curves F (x, y) = 1 (dashed curve) and G(x, y) = 1 (solid curve) for
various values of R2 with R1 fixed at 1.5 (βc = 12). The value of
R2 in (A)-(D) are 2.8, 3.6, 4.6, and 7, respectively (corresponding
to λσ = 0.32, 0.41, 0.52, and 0.8). The axes are x = (I + J3)/N
and y = J∗/R, representing the factors in the incidence functions

for TB and HIV, respectively. The intersection (x̂, ŷ) = ( Î+Ĵ3

N̂
, Ĵ∗

R̂
)

determines components of the interior equilibrium Ê if 0 < x̂ < 1
and ŷ > 0. It shows that for smaller R2 the two curves do not have
an intersection with positive x and y (see (A)); and thus, Ê does
not exist. As R2 increases from 2.8 to 3.6, the F (x, y) = 1 curve
changes very little, while the right-end of the G(x, y) = 1 curve
moves to the right of the F = 1 curve. This leads to an intersec-
tion point of the two curves (see (B)), which represents an interior

equilibrium Ê. The right-end of the G = 1 curve moves further
up as R2 is increased to 4.6, and there is still a unique interior
equilibrium with a larger x component (see (C)). Finally, when R2

is very large, the right-end of the G(x, y) = 1 curve continues to
rise and it changes from decreasing to increasing. Although the y
component of the unique intersection point is greater than one, it
is still biologically feasible as ŷ = Ĵ/R̂ can exceed 1 (see (D)). All
other parameter values are the same as in Figure 2.

Figure 5 examines changes in infection levels over time. It plots the time series of
[I(t)+J3(t)]/N(t) (fraction of active TB) and J∗(t)/R(t) (activity-adjusted fraction
of HIV infectious) for fixed R1 and various R2. The top two figures are for the case
when the reproduction number for TB is less then 1 (R1 = 0.96 < 1 or βc = 7.5),
and the reproduction number for HIV is R2 = 0.9 < 1 (or λc = 0.105) in (a) and
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Figure 4. Contour plots similar to Figure 3 except that k∗ = 3k
and α3 = 10α1. All other parameters have the same values as
in Figure 3, i.e, R1 = 1.5 and R2 = 2.8, 3.6, 4.6, and 7 in (A)-

(D), respectively. It shows that although ŷ = Ĵ/R̂ increases as R2

increases, x̂ = (Î+Ĵ3)/N̂ does not change very much. This suggests
that k∗ > k may not be sufficient for HIV to have a significant
impact on TB. Other factors may also play an important role, e.g.,
the development rate (α3) to AIDS in individuals who are also
infected with TB.

R2 = 1.3 > 1 (or λc = 0.15) in (a). It illustrates in Figure 5(a) that TB cannot
persist if R2 < 1. However, if R2 > 1 then it is possible that TB can become
prevalent even if R1 < 1 (see Figure 5(b)). The bottom two figures are for the case
when the reproduction number of TB is greater than 1 (R1 = 1.2, or βc = 9.1),
and R2 = 2 (or λc = 0.23) in (c) and R2 = 3 (or λc = 0.34) in (d). It demonstrates
that an increase in R2 will lead to an increase in the level of TB prevalence as well.
All other parameters are the same as in Figure 3 except that k∗ = 3k.

Another way to look at the role of HIV on TB dynamics is to compare the
outcomes between the cases where HIV is absent or present (instead of varying
the value of R2). This result is presented in Figure 6. The reproduction numbers
are identical in Figures 6(A)-(C): R1 = 0.98 < 1 (βc = 7.7) and R2 = 1.2 > 1
(λσ = 0.137). Other parameter values are the same as in Figure 5 except that
k∗ = k. The variables plotted are (I + J2)/N and J∗/N . Figure 6(A) shows the
case when HIV is absent by letting J∗(0) = 0. It shows that TB cannot persist.
In Figure 6(B), the initial value of HIV is positive (i.e., J∗(0) > 0) but small. It
shows that both TB and HIV will coexist. This seems to be similar to Figure 5(b)
qualitatively. However, we observe that the prevalence level of TB remained low
for a very long time (nearly 100 years) before rising and converging to the endemic
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Figure 5. Time plots of prevalence of TB and HIV. The TB curves
(solid) represents the fraction of active TB ((I + J3)/N), and the
HIV curve (dashed) represents the activity-adjusted fraction of HIV
(J∗/R). In the top two figures, the reproduction number for TB
is fixed and less then 1 (R1 = 0.96 or equivalently βc = 7.5),
and the reproduction number for HIV is either less than 1 (see
(a), R2 = 0.9 and equivalently λc = 0.105) or greater than 1 (see
(b), R2 = 1.3 and λc = 0.15). Figure 5(a) illustrates that TB
cannot persist if R2 < 1. Figure 5(b) shows that if R2 > 1 then
it is possible that TB can become prevalent even though it cannot
persist in the absence of HIV (as R1 < 1). The bottom two figures
are for the case when the reproduction number of TB is greater
than 1 (R1 = 1.2, or βc = 9.1), whereas the reproduction number
for HIV is greater than 1 but either small (see Figure 5(c), R2 = 2
or λc = 0.23) or large (see Figure 5(d), R2 = 3 or λc = 0.34). It
illustrates that an increase in R2 can lead to an increase in the
prevalence level of TB. All other parameter values are the same as
in Figure 3 except that k∗ = 3k and α3 = 5α1.

equilibrium. This phenomenon is not present when the initial value of HIV is larger,
which is shown in Figure 6(C).

4.2. Influence of TB on HIV dynamics. Our numerical simulations also suggest
that the presence of TB may have a significant impact on HIV dynamics. Some of
the simulation results are demonstrated in Figure 7. This figure is similar to Figure
5 but shows time plots of (I + J3)/N (fraction of active TB) and J∗/R (activity-
adjusted fraction of HIV infectious) for different values of αi (i = 1, 2, 3) (rates of
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Figure 6. Demonstration of similar properties as shown in Figure
5 using a different approach. Instead of changing R2 as in Figure
5, different initial values of HIV are used in these figures. The
reproduction numbers remain the same for Figure 6(A)-(C): R1 =
0.98 < 1 (βc = 7.7) and R2 = 1.2 > 1 (λσ = 0.137). Other
parameter values are the same as in Figure 5 except that k∗ = k.
The variables plotted are the fractions of active TB (I+J2)/N) and
HIV ((J1 + J2 + J3)/N). In Figure 6(A), HIV is absent by letting
J∗(0) = 0. It shows that TB cannot persist. In Figure 6(B), the
initial value of HIV is positive (i.e., J∗(0) > 0) but small. It shows
that both TB and HIV will coexist, with a lower level of TB for
a quite long period of time before stabilizing at the equilibrium.
This phenomenon is not present when the initial value of HIV is
larger, which is shown in Figure 6(C).
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Figure 7. Time plots of (I +J3)/N and J∗/R for different values
of αi (rates of AIDS development, i = 1, 2, 3). Figure 7(a) is for the
case of α2 = α3 = α1 (i.e., progression from HIV to AIDS is the
same for a person with or without TB infection), while Figure 7(b)
is for the case of α2 = 2α1 and α3 = 5α1 (i.e., for TB latent and TB
active individuals, the progression from HIV to AIDS is respectively
two and five times faster than a person without TB infection). In
both plots, R1 = 0.8 (βc = 6.3) and R2 = 1.5 (λσ = 0.097). All
other parameter values are the same as in Figure 5 except that
r∗ = 0.5r (i.e., it takes twice as long to treat a latently infected
person with HIV than without) and α1 = 0.05. It shows that the
increased progression rates due to TB have not only increased the
prevalence level of HIV while decreasing TB prevalence, but also
generated damped oscillations in the system.

AIDS development). Figure 7(a) is for the case of α2 = α3 = α1 (i.e., progression
from HIV to AIDS is the same for a person with or without TB infection), while
Figure 7(b) is for the case of α2 = 2α1 and α3 = 5α1 (i.e., for TB latent and TB
active individuals, the progression from HIV to AIDS is respectively two and five
times faster than a person without TB infection). The reproductive numbers are
the same for both plots: R1 = 0.8 (βc = 6.3) and R2 = 1.5 (λσ = 0.097). All
other parameter values are the same as in Figure 5 except that r∗ = 0.5r (i.e.,
it takes twice as long to treat a latently infected person with HIV than without)
and α1 = 0.05. It shows that the increased progression rates due to TB have not
only increased the prevalence level of HIV while decreasing TB prevalence, but also
generated damped oscillations in the system.

We remark that the incidence function λcJ∗/R in the system (1) may have con-
tributed to the oscillatory behavior of the system, as has been reported in previous
studies (see [15, 18, 36]). However, we have also performed similar simulations of
system (1) with the incidence function λσJ∗/R being replaced by the standard
incidence λσJ∗/N . We found that the damped oscillations are still present (see
Figure 8). For demonstration purposes, we have changed some of parameter values:
r1 = 0.3, r∗ = 0.2r1, k = 0.05, α1 = 0.05. All other parameters have the same
values as in Figure 5. The reproductive numbers are: R1 = 0.85 (βc = 6.85) and
R2 = 1.5 (λσ = 0.097). This suggests that the oscillatory behavior of the system is
not necessarily generated by the use of the non-standard incidence. There are also
parameter regions in which the system has stable periodic solutions. These cases
are not presented here as the parameter values that generate periodic solutions are
not biologically feasible.
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Figure 8. Similar to Figure 7 but for the system in which the
incidence function in (1) for HIV, λσJ∗/R, is replaced by the stan-
dard incidence λσJ∗/N . It shows that the damped oscillations are
still present.

4.3. More on stability conditions for boundary equilibria ET and EH .
Recall that in section 3.1 we pointed out that the conditions, R1 > 1 and R2 < 1,
in Theorem 3.3 for the stability of ET are sufficient but not necessary, and that the
symmetric conditions, R1 < 1 and R2 > 1, may not guarantee the stability of EH .
Our numerical simulations provide examples for i) ET can still be stable under the
conditions R1 > 1 and R2 > 1 (see Figure 9); and ii) EH may not be stable when
R1 > 1 and R2 < 1 (see Figures 5 and 6).

Figure 9(A) demonstrates an example that solutions may converge to ET when
R1 > 1 and R2 > 1, if R2 is not too large (for this plot R1 = 1.15 or βc = 9, and
R2 = 1.1 or λσ = 0.126). Figure 9(B) illustrates that as R2 increases, ET becomes
unstable and an interior equilibrium exists and is stable. The reproduction numbers
in Figure 9(B) are R1 = 1.1 (βc = 8.6) and R2 = 1.5 (λσ = 0.171). In Figure 9(C),
R2 is increased to 1.75, and it shows that the HIV is also increased. All other
parameters are the same as in Figure 2.

Figure 5(B), Figures 6(B), and 6(C) all demonstrate the scenario in which TB
can coexist with HIV even when R1 < 1, provided that HIV is present and R2 > 1.
We also observe that the prevalence of TB may be very low when HIV is low (see
Figure 6(B)). However, an increase in HIV prevalence will also increase the level of
infection for TB (see Figure 6(C)).

5. Discussion. TB is the leading cause of HIV-related morbidity and mortality.
In fact, HIV infection often results in increases in the prevalence of active TB. We
explored a model that incorporates the impact of TB and HIV co-infections. We
constructed the bare-bone model in the most simple settings possible. We ignored
the important HIV transmission paths such as vertically-transmitted HIV and HIV
transmission via breast feeding. This model provides rather general insights into the
potential effects of HIV infection on TB and vice versa. Detailed models that take
into accounts various forms of TB treatment (latent and active TB), the danger
of increasing the prevalence of antibiotic resistant TB and their relation to HIV
treatment, observed changes in behavior of sexually-active core groups now that
HIV “treatment” is available, and explicitly modeled sexual-transmission must be
incorporated into models of HIV/TB co-infection if further progress is to be made.
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Figure 9. Figure 9(A) demonstrates that solutions may converge
to the HIV-free equilibrium ET when R1 > 1 and R2 > 1 (for this
figure R1 = 1.15 and R2 = 1.1). Figure 9(B) illustrates that when
R2 is larger than R1 (for this figure R1 = 1.1 and R2 = 1.5), ET

becomes unstable and solutions converge to an interior equilibrium.
In Figure 9(C), R2 is increased to 1.75 and it shows that the HIV
level is also increased.

The full model (1) is an 8-dimensional system for which only limited analytical
results are obtained. We are able to compute independent reproduction numbers
for TB (R1) and HIV (R2) and the total reproduction number for the system,
R = max{R1,R2}. We find that if R < 1 the disease-free equilibrium is locally
asymptotically stable. The HIV-free equilibrium with only TB present is stable if
R1 > 1 and R2 < 1. However, the symmetric result does not hold. That is, the
TB-free equilibrium may not be stable R1 < 1 and R2 > 1. In fact, our simulation
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results show that co-existence of both diseases is possible when R1 < 1 and R2 > 1
(see Figure 5(b)). Although we do not have an explicit expression for the possible

interior equilibrium Ê, we managed to derive a pair of equations which can be used
to determine the existence of Ê (see equations (25)). Numerical studies suggest
that the system has a unique interior equilibrium when R > 1 (see Figure 2).

The simulation results provided many interesting insights into the effect of the
dynamical interactions between TB and HIV. For example, the results illustrated in
Figures 3 and 5 show that, when the progression from latent to active TB is faster
in people with HIV than in people without (i.e., k∗ > k), the presence of HIV can
lead to the coexistence of TB and HIV even if the TB reproduction number (R1)
is below 1 (i.e., TB infection would not be able to establish itself in the absence of
HIV). However, the condition k∗ > k does not always lead to a significant increase
in TB in the presence of HIV. The results illustrated in Figure 4 suggest that if
α3 >> α1 (i.e., the development of HIV to AIDS is much faster in individuals
co-infected with TB than without) then the effect of k∗ will be diminished or not
dramatic. However, simulation results presented in Figures 7 and 8 suggest that
when αi > α1, i = 2, 3), the presence of TB may have a significant influence on
HIV dynamics. Moreover, increasing α2 and α3 may lead to oscillatory behaviors
of the system.

Numerical results suggest that to reduce or control the impact of TB, investing
more in reducing the prevalence of HIV can be an effective option. Such reductions
would not be easy due to the lack of effective vaccine and medication. However,
significant reductions may be obtained through programs that accelerate the treat-
ment of active TB cases. Since there are about 8 million new cases of active TB
per year, a program may be feasible. It has worked in countries that allocate sub-
stantial resources to public health. Naturally, accelerating the treatment rate of
individuals with active TB is more critical in areas where HIV prevalence is high.
Unfortunately, the areas with the highest prevalence of co-infections have limited
resources and cannot implement accelerated TB treatment programs.

It is worth stressing that our models and observations are rather crude for mul-
tiple reasons. The results are not only based on local mathematical analysis but
they are from a model that does not incorporate multiple and common forms of
HIV transmission, the possibility of increases in antibiotic resistant TB, and the
impact of human behavior, particularly the role of core groups (prostitution, drug
uses, etc.) A research program that tackles some of these possibilities is still viable
since the dynamics of co-infection is not well studied and therefore they are still
poorly understood from a theoretical or mathematical perspective.

Acknowledgments. We would like to thank the referees very much for their valu-
able comments and suggestions.
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6. Appendix. Some details of the proofs of results associated with system (1) are
provided.

Proof of Theorem 3.2. To establish the local stability, we can use the classical
method of the Jacobian matrix or use the approach of the next generation operator
[10, 11].

At the disease-free equilibrium E0, the total population N is equal to the total
susceptible S population. The Jacobian matrix at E0 has eigenvalues−µ, −µ, −(µ+
f), λσ − α1 − µ, −(α2 + µ + k∗ + r∗), −(α3 + µ + d∗), and two other numbers, z1

and z2, which are the roots of the quadratic equation in w

z2 +
(

2µ + k + d + r1 + r2

)

z +
[

(µ + k + r1)(µ + d + r2) − βck
]

= 0.

The eigenvalues zi will have a negative real part whenever λσ − α1 − µ < 0 and
(µ + k + r1)(µ + d + r2)− βck > 0, that is, if R1 < 1 and R2 < 1 where R1 and R2

are given in (3) and (4). Since

R = max{R1,R2},

we see that if R < 1 then the disease-free equilibrium E0 is LAS.

Proof of Theorem 3.3. We let W = S +T and observe that the system (1) is equiv-
alent to the following set of equations:

N ′ = Λ − µN − dI − d∗J3 − fA,

L′ = βc(N − L − I − J∗ − A)
I + J3

N
− λσL

J∗

R
− (µ + k + r1)L,

I ′ = kL − (µ + d + r2)I,

J ′

1 = λσ(N − L − I − J∗ − A)
J∗

R
− βcJ1

I + J3

N
− (α1 + µ)J1 + r∗J2, (26)

J ′

2 = λσL
J∗

R
+ βcJ1

I + J3

N
− (α2 + µ + k∗ + r∗)J2,

J ′

3 = k∗J2 − (α3 + µ + d∗)J3,

A′ = α1J1 + α2J2 + α3J3 − (µ + f)A,

where R = N − I − J3 −A and J∗ = J1 + J2 + J3. The Jacobian matrix at ET has
the form:

MJ =





M1 ∗ ∗
0 M2 0
0 ∗ −(µ + f)



 ,

http://www.who.int/hiv/mediacentre/02-Global_Summary_2006_EpiUpdate_eng.pdf
http://www.who.int/tb/publications/2007/factsheet_2007.pdf
http://www.ams.org/mathscinet-getitem?mr=MR1801348&return=pdf
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where M1 and M2 are both 3×3 matrices and ∗ denotes some nonzero element that
does not affect the analysis. The matrix M1 is

M1 =











−µ 0 −d

a(R1 − 1) −(aR1 + µ + k + r1)
βc

R1
− aR1

0 k −(µ + d + r2)











, where a =
βcI

R1N
.

The characteristic polynomial of M1 is x3 + Ax2 + Bx + C = 0 where

A = aR1 + 3µ + k + r1 + r2 + d,

B = aR1(2µ + k + r2 + d) + µ(2µ + k + r1 + r2 + d),

C = µaR1(µ + k + r2 + d) + kad(R1 − 1).

We observe that A > 0, C > 0 and AB > C. Then based on the Routh-Hurwitz
criteria, we see that the eigenvalues of M1 all have negative real parts as long as
R1 > 1.

The matrix M2 is

M2 =







−(K + ω1) X + r∗ X

K −(X + ω2 + k∗ + r∗) λσ − X

0 k∗ −(ω3 + λσ + d∗)






,

where X = λσ W
R

, K = λσ L
R

+ βc I
N

, and ωi = αi + µ − λσ (i = 1, 2, 3). Note that
R2 < 1 implies that ωi > 0 for i = 1, 2, 3, then the characteristic polynomial of M2

is x3 + A1x
2 + B1x + C1 = 0, where

A1 = λσ + ω1 + ω2 + ω3 + r∗ + d∗ + k∗ + X + K,
B1 = (d∗ + λσ + ω2 + ω3 + k∗)K + (λσ + k∗ + ω1 + ω3 + d∗)X

+λσ(ω1 + ω2 + r)
+(ω1ω2 + ω1ω3 + ω2ω3) + ω2d

∗ + ω1k
∗ + ω1r

∗ + ω3r
∗

+r∗d∗ + ω1d
∗ + ω3k

∗ + k∗d∗,
C1 = (k∗d∗ + ω2d

∗ + ω2ω3 + ω2λσ + k∗ω3)K + (ω1ω3 + ω1λσ + ω1d
∗ + ω1k

∗)X
+ω1r

∗d∗ + r∗ω1ω3 + k∗d∗ω1 + k∗ω1ω3 + d∗ω1ω2 + ω1ω2ω3

+r∗λσω1 + λσω1ω2.

Therefore A1 > 0 and C1 > 0. We can also show that A1B1 > C1 (using Maple)
and therefore, we conclude that the Routh-Hurwitz stability criterion is satisfied
by M2. In other words, all eigenvalues of M2 have negative real parts. We have
therefore shown that all eigenvalues of MJ have negative real parts as long as
R1 > 1 and R2 < 1. We conclude that the HIV-free equilibrium ET is locally
asymptotically stable if R1 > 1 and R2 < 1.
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