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a b s t r a c t 

Mathematical models have been used to study Ebola disease transmission dynamics and control for the 

recent epidemics in West Africa. Many of the models used in these studies are based on the model of 

Legrand et al. (2007), and most failed to accurately project the outbreak’s course (Butler, 2014). Although 

there could be many reasons for this, including incomplete and unreliable data on Ebola epidemiology 

and lack of empirical data on how disease-control measures quantitatively affect Ebola transmission, we 

examine the underlying assumptions of the Legrand model, and provide alternate formulations that are 

simpler and provide additional information regarding the epidemiology of Ebola during an outbreak. We 

developed three models with different assum ptions about disease stage durations, one of which simplifies 

to the Legrand model while the others have more realistic distributions. Control and basic reproduction 

numbers for all three models are derived and shown to provide threshold conditions for outbreak control 

and prevention. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Mathematical models have been very helpful in evaluating and 

identifying alternative strategies for infectious disease control and 

prevention. However, for the recent epidemics of Ebola in West 

Africa, the success of mathematical models has been very limited. 

As pointed out in Butler [2] , “mathematical models have failed to 

accurately project the outbreak’s course”. Although various reasons 

may explain why “on-the-ground data contradict the projections 

of published models”, including incomplete and unreliable data 

on Ebola epidemiology (especially in the hardest-hit areas) and 

lack of empirical data on how disease-control measures quanti- 

tatively affect Ebola transmission, it is important to examine the 

appropriateness of assumptions made in the models on which the 

projections are based. This is the objective of the current paper. 

There have been various modeling approaches, including determin- 

istic and stochastic models, or relatively simple models consisting 

of ordinary differential equations (ODEs) and more complicated 

agent-based models, among others. Many of the ODE models are 

variations of the model studied by Legrand et al. [8] , to which we 

refer as the Legrand model. It has been pointed out that some 
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of the assumptions made in the Legrand model may not have 

clear justifications (see, for example, Rivers et al. [11] ). Thus, it is 

important to examine the critical assumptions made in this model 

and better understand their possible impact on model outcomes. 

It often happens that, when a model is formulated, certain as- 

sumptions are made without consideration of their consequences. 

One of the most common assumptions made in ODE models is the 

exponential waiting time in disease stages. That is, the survival 

probability is described by a negative exponential function. For 

example, if the model assumes that an infected individual will 

recover at a constant per-capita rate γ , then it implicitly assumes 

that the infectious period is exponentially distributed, and the 

probability that an individual is still infectious s > 0 units of time 

since onset is given by 

P I (s ) = e −γ s . 

That is, if X I denotes the random variable for the waiting time in 

the infectious class I before exiting, then 

P [ X I > s ] = P I (s ) = e −γ s . 

In this case, the average waiting time before recovery (or the 

mean infectious period) is given by 

E [ X I ] = 

∫ ∞ 

0 

P I (s ) ds = 

1 

γ
. 
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