
A TWO-STRAIN TUBERCULOSIS MODEL WITH AGE OF
INFECTION∗

Z. FENG† , M. IANNELLI‡ , AND F. A. MILNER†

SIAM J. APPL. MATH. c© 2002 Society for Industrial and Applied Mathematics
Vol. 62, No. 5, pp. 1634–1656

Abstract. Long periods of latency and the emergence of antibiotic resistance due to incomplete
treatment are very important features of tuberculosis (TB) dynamics. Previous studies of two-strain
TB have been performed by ODE models. In this article, we formulate a two-strain TB model with
an arbitrarily distributed delay in the latent stage of individuals infected with the drug-sensitive
strain and look at the effects of variable periods of latency on the disease dynamics.
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1. Introduction. It is reported that eight million people develop active tuber-
culosis (TB) every year, each of which can infect between 10 and 15 people in one year
just by breathing [12], [20]. In the United States, the estimated total number of TB
infections lies between 10–15 million persons [14]. TB incidence (new cases per year)
and outbreaks of multidrug-resistant TB in the United States have also increased
over the past few years, and drug resistance has become a serious hindrance to global
TB control. The new TB control strategy, directly observed treatment short-course
(DOTS), produces an 85 percent cure rate for drug-sensitive TB, but its effectiveness
depends on several elements.

A first critical element is that the health care system needs to achieve a complete
cure of TB patients. Incomplete treatment of patients with infectious TB may lead
to relapse or to the development of antibiotic-resistant TB. Therefore, a challenge
in mathematical biology has been to study possible mechanisms for the survival and
spread of naturally resistant strains of TB, as well as for the generation of antibiotic-
resistant strains of TB.

A second key feature associated with the regular strain of TB is that the bacillus
has evolved to form a sort of symbiotic relationship with its human host. Only a rel-
atively small proportion of those who are infected with the sensitive strain eventually
develops disease symptoms (active TB). Most individuals seem to mount effective
immune responses to initial infections, that is, responses that limit proliferation of
the bacilli. This immune response may lead to long-lasting but partial immunity
(see [13]). Consequently, the age of infection (the time lapsed since infection) is an
important factor in disease progression.

Previous work on TB modeling has tried to incorporate these two features into
the models (see [2], [6], [7], [8]). Actually, one-strain and two-strain TB models have
been developed mainly using ODEs (see [1], [2], [3], [4]). The results in the second of
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these articles lead to the important conclusion that nonantibiotic-induced coexistence
is possible but rare for naturally resistant strains, while coexistence is almost the
rule for strains that result from the lack of compliance with antibiotic treatment by
TB-infected individuals.

Also, the effect of long incubation periods has been investigated in a single-strain
model with arbitrarily distributed delays in the latent stage (see [7]). It is shown
there that a distributed delay alone in the one-strain TB model does not change the
qualitative dynamics of the disease.

In this article, we consider a two-strain TB model with arbitrarily distributed
delays in the latent class of individuals with drug-sensitive TB. We shall use the
adjectives active, infectious, and infective as synonyms, while latent will mean infected
but not infectious. The latency period for the drug-resistant TB is neglected since
individuals infected with resistant TB usually die shortly after being diagnosed. One
central question to be addressed using this model is whether the introduction of
host heterogeneity in latency will change the basic conclusion of earlier studies of
ODE models. This formulation makes it possible to study the model in general cases
instead of using a quasi-steady-state assumption as done for the previous ODE model.
It also allows us to introduce control mechanisms for the disease, a problem which
will be studied in a subsequent paper [8].

We consider two scenarios based on the treatment failure rate q of the individuals
infected with drug-sensitive TB. The first case, q = 0, corresponds to the situation
where all treated individuals finish their treatment, and new cases of drug-resistant TB
are produced only through contacts with individuals with drug-resistant TB. Hence we
have a competition model between the regular strain and naturally resistant strains.
The analysis for q = 0 does not intend to imply that primary resistance actually
occurs without acquired resistance. We rather have in mind a population that at the
beginning of the study has some individuals with primary resistance. This situation is
a sort of limiting case for the case in which q > 0, and it constitutes a starting point for
our analysis of the case in which q > 0. The latter case takes into account the possible
appearance of resistant strains due to deficient compliance with treatment schedules;
i.e., a proportion q of treated individuals with drug-sensitive TB will develop resistance
due to incomplete treatment. Conditions on the endemicity of either one or both
strains are derived in terms of the basic reproductive numbers R1 and R2 of the
regular and resistant strains. We find that the incorporation of distributed delays
does not change the qualitative behaviors dramatically. More specifically, we show
that coexistence is impossible for naturally resistant strains, while coexistence is very
likely (if R1 > R2) for strains that result from the lack of compliance with antibiotic
treatment.

This paper is organized as follows: section 2 introduces a two-strain TB model
with arbitrarily distributed delays in the latent class (infecteds with drug-sensitive
TB). In section 3, we study its steady-states under the two distinct assumptions de-
scribed above: (1) we are dealing only with two competing strains; and (2) the second
strain is the result of antibiotic resistance. The basic reproductive numbers associated
with each strain are computed and related to the existence of the steady-states. The
roles of these reproductive numbers on the dynamics and stability properties of this
model are studied in section 4. Section 5 is devoted to the discussion of numerical
simulations that support or complete our analytic results. Section 6 discusses the
results and some of our current efforts and extensions including the control strategies
for TB epidemics.
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Fig. 1.

2. The model formulation. In this section, we introduce a two-strain TB
model with arbitrarily distributed delays in the latent stage of drug-sensitive TB. The
host population is divided into three epidemiological classes or subgroups: suscepti-
bles, infected with drug-sensitive TB, and infected with drug-resistant TB. Infecteds
with drug-sensitive TB are further subdivided into latents (infected but not infectious)
and actives (infected and infectious). Let us introduce the following notation:

S(t) = number of susceptibles at time t,

i(θ, t) = infection-age density of infected individuals
with the drug-sensitive strain at time t,

J(t) = number of infected individuals
with a drug-resistant strain at time t.

(2.1)

Here the variable θ denotes the age of the infection with drug-sensitive TB, i.e. the
time that has lapsed since the individual became infected. We note that this class
of infected individuals includes both latent and infectious individuals. In fact, as
already pointed out in the introduction, the majority of infected individuals remains
latent, while, as experimentally observed, only a small proportion of them develop
and exhibit the disease, becoming infective.

To account for this, we introduce the function p(θ) (0 ≤ p(θ) ≤ 1) as the pro-
portion of sensitive-strain-infected individuals that are active at infection-age θ. This
function is assumed constant in time and is based on experimental data (see section
5). Thus

p(θ)i(θ, t) = age density of infectious individuals,

(1 − p(θ))i(θ, t) = age density of latent individuals.
(2.2)

The dynamics of the model is described in Figure 1, where the demographic
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process is also indicated. In fact, we assume that the population involved is a closed
population undergoing a per capita mortality rate µ and a density dependent growth
rate with the per capita birth rate

β = β(N), β′(N) < 0.(2.3)

In (2.3), N denotes the total number of individuals, which actually changes with time,
namely,

N(t) = S(t) + J(t) + I(t),(2.4)

where we have set

I(t) =

∫ ∞

0

i(θ, t)dθ.(2.5)

Concerning the mechanism of infection, we give the following constitutive form
to the force of infection relative to the sensitive strain:

λ1(t) =
ρ1
N(t)

∫ ∞

0

p(θ)i(θ, t)dθ,(2.6)

with ρ1 = Ck > 0, where k is the infectivity per contact (probability of transmission
of disease per contact) and C is the contact rate per individual per unit of time.

The same function p(θ) is used to give a shape to the removal rate γ(θ), i.e., the
rate at which sensitive-strain-infected individuals leave the i class due to treatment.
In fact, we assume

γ(θ) =
[
(1 − r + qr)χ+ ν

]
p(θ),(2.7)

where χ denotes the treatment rate, that is, the fraction of infectious people detected
and treated per unit of time (for individuals with drug-sensitive TB), and ν is the
disease-induced mortality rate. The factor (1 − r + qr) in (2.7) introduces the effect
of incomplete treatment: in fact, we assume that a fraction r of the treated individ-
uals with sensitive TB does not recover due to incomplete treatment and that the
remaining fraction 1 − r is actually cured and becomes susceptible again. Moreover,
we assume that, among the individuals who do not finish their treatment, a frac-
tion q of them will develop drug-resistant TB, and the remaining fraction will remain
infectious. Therefore, γ(θ) is the sum of the three terms

(1 − r)χp(θ) = recovery rate of the treated individuals,

qrχp(θ) = rate of developing drug-resistant TB,

νp(θ) = disease-induced mortality rate of individuals
infected with the drug-sensitive strain.

(2.8)

Concerning the resistant class, J , we do not consider its age-structure nor latency
period since these individuals die quickly after acquiring drug-resistant TB. Thus we
assume the following constitutive form for the force of infection:

λ2(t) = ρ2
J(t)

N(t)
.(2.9)
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Additionally, we introduce an additional mortality rate δ, for the individuals of the
drug-resistant class, with the condition

β(0) > µ+ δ + ν,(2.10)

which is necessary in order to have a sustained population; i.e., when the population
size is small, the birth rate needs to exceed the total death rate.

Based on Figure 1, we formulate the following system:

d

dt
S(t) = β(N)N(t) − (µ+ λ1(t) + λ2(t))S(t)

+ (1 − r)χ
∫ ∞

0

p(θ)i(θ, t)dθ,

∂

∂t
i(θ, t) +

∂

∂θ
i(θ, t) + µ i(θ, t) + γ(θ)i(θ, t) = 0,

d

dt
J(t) = λ2(t)S(t) − (µ+ δ)J(t) + qrχ

∫ ∞

0

p(θ)i(θ, t)dθ,

i(0, t) = λ1(t)S(t),

S(0) = S0 > 0, i(θ, 0) = i0(θ) ≥ 0, J(0) = J0 > 0,

(2.11)

where the initial density i0(θ) is assumed to be integrable and compactly supported
in [0,∞). (These are technical assumptions that are also biologically natural.)

We note that, by standard methods, it is possible to prove existence and unique-
ness of solutions to the system (2.11) (see [11], [19]). Moreover, it is easy to show that
all the variables remain nonnegative and bounded for t > 0 for nonnegative initial
data.

The following notation will be used often in the paper:

K0(θ) = e
−µθ−

∫ θ

0
γ(s)ds

, A =
1

(1 − r + qr)χ+ ν
,

K1(θ) = ρ1p(θ)K0(θ) = −ρ1A
(
d

dθ
K0(θ) + µK0(θ)

)
,

K2(θ) = qrχp(θ)K0(θ) = −qrχA
(
d

dθ
K0(θ) + µK0(θ)

)
,

K3(θ) = νp(θ)K0(θ) = −νA
(
d

dθ
K0(θ) + µK0(θ)

)
,

Ki =

∫ ∞

0

Ki(θ)dθ, i = 0, 1, 2, 3.

(2.12)

Note that K0 and K1 are positive, while K2 (respectively, K3) is positive for q > 0
(respectively, ν > 0) and vanishes at q = 0 (respectively, ν = 0). Also, the following



A TWO-STRAIN TB MODEL WITH AGE OF INFECTION 1639

relationships are useful for simplifying future calculations:

K0 =
1

µ

(
1 − K1

ρ1A

)
, K2 =

qrχ

ρ1
K1, K3 =

ν

ρ1
K1.(2.13)

For convenience, we introduce the new variable

v(t) = i(0, t) = λ1(t)S(t).

Integrating the second equation in (2.11) along the characteristic lines t − θ =
constant, we get the following formula:

i(θ, t) =



i0(θ − t) K0(θ)

K0(θ − t) for θ ≥ t,

v(t− θ)K0(θ) for θ < t.

(2.14)

This can be used to replace the i and J equations in (2.11) by differential-integral
equations for v and J :

v(t) =
S(t)

N(t)

∫ t

0

K1(θ)v(t− θ)dθ + F1(t),

d

dt
J(t) = ρ2S(t)

J(t)

N(t)
−mJ(t) +

∫ t

0

K2(θ)v(t− θ)dθ + F2(t),

(2.15)

where m = µ+ δ is the removal rate from the J class due to death, and

F1(t) =
S(t)

N(t)

∫ ∞

t

i0(θ − t) K1(θ)

K0(θ − t)dθ,

F2(t) =

∫ ∞

t

i0(θ − t) K2(θ)

K0(θ − t)dθ.

We note that

lim
t→∞Fi(t) = 0 (i = 1, 2).

Moreover, using limθ→∞ i(θ, t) = 0 and integrating the second equation in (2.11)
(see (2.5)) give

d

dt
I(t) = λ1(t)S(t) − µI(t) −

∫ ∞

0

γ(θ)i(θ, t)dθ,

and, using (2.4), we have

d

dt
N(t) = β(N)N − µN(t) − δJ(t) −

∫ t

0

K3(θ)v(t− θ)dθ − F3(t),(2.16)

where

F3(t) =

∫ ∞

t

i0(θ − t) K3(θ)

K0(θ − t)dθ.
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Notice that

S(t) = N(t) − J(t) −
∫ t

0

v(t− θ)K0(θ)dθ − F4(t),

where

F4(t) =

∫ ∞

t

i0(θ − t) K0(θ)

K0(θ − t)dθ.

We note that, just as for i = 1, 2,

lim
t→∞Fi(t) = 0 (i = 3, 4).

This allows us to replace the first equation in (2.11) by (2.16) for N and to study
a system of differential and integral equations in the variables v(t) = i(0, t), J(t), and
N(t), which we find easier to analyze.

v(t) =

N(t) − J(t) −
∫ t

0

K0(θ)v(t− θ)dθ
N(t)

∫ t

0

K1(θ)v(t− θ)dθ + F̃1(t),

d

dt
J(t) = ρ2

(
N(t) − J(t) −

∫ t

0

K0(θ)v(t− θ)dθ
)
J(t)

N(t)

−mJ(t) +

∫ t

0

K2(θ)v(t− θ)dθ + F̃2(t),

d

dt
N(t) = β(N)N − µN(t) − δJ(t) −

∫ t

0

K3(θ)v(t− θ)dθ − F3(t),

(2.17)

where

F̃1(t) = F1(t) − F4(t)

N(t)

∫ t

0

K1(θ) v(t− θ) dθ,

F̃2(t) = F2(t) − ρ2 F4(t)

N(t)
J(t)

are linear combinations of the functions Fi(t), i = 1, 2, 3, 4, with bounded coefficients;
thus they also approach 0 as t→ ∞.

The system (2.17) is the main tool for the stability analysis that we will perform
in the following sections.

3. Steady-states and disease extinction. According to [15], any equilibrium
of the system (2.17), if it exists, must be a constant solution of the limiting system
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associated with (2.17), which is given by the following set of equations:

v(t) =
(N(t) − J(t) −K0 ∗ v)

N(t)
(K1 ∗ v) ,

d

dt
J(t) = ρ2 (N(t) − J(t) −K0 ∗ v) J(t)

N(t)
−mJ(t) +K2 ∗ v,

d

dt
N(t) = β(N)N(t) − µN(t) − δJ(t) −K3 ∗ v,

(3.1)

where

Ki ∗ v =

∫ ∞

0

Ki(θ)v(t− θ)dθ, i = 0, 1, 2, 3.

Thus we look for solutions (v∗, J∗, N∗) of the system

v∗ =
(N∗ − J∗ −K0v

∗)
N∗ K1v

∗,

ρ2 (N∗ − J∗ −K0v
∗)
J∗

N∗ −mJ∗ + K2v
∗ = 0,

β(N∗)N∗ − µN∗ − δJ∗ −K3v
∗ = 0.

(3.2)

Any solution of this system corresponds to the following steady-state for the distri-
bution of infecteds:

i∗(θ) = v∗K0(θ).

The system (3.2) always has the disease-free equilibrium

E0 = (0, 0, β−1(µ)),

while existence of nontrivial equilibria will depend on the values of the two parameters

R1 = K1 = ρ1

∫ ∞

0

p(θ)e
−µθ−

∫ θ

0
γ(s)ds

dθ

and

R2 =
ρ2
µ+ δ

=
ρ2
m

that are the basic reproductive numbers for the sensitive and resistant strains, respec-
tively. We can interpret R1 (respectively, R2) as the average number of secondary
infectious cases produced by an infected individual with the drug-sensitive bacillus
(respectively, by infected individual with the drug-resistant bacillus) during his or her
entire effective infectious period in a purely susceptible population.

Solving system (3.2), we see that, besides E0, the following equilibria are feasible,
under some conditions on R1 and R2. Namely, we have the following:
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(1) If R1 > 1 and q = 0, then the following equilibrium exists:

E1 = (v∗1 , 0, N
∗
1 ),

where

N∗
1 = β−1

(
µ+

K3

K0

(
1 − 1

R1

))
, v∗1 =

(
1 − 1

R1

)
N∗

1

K0
.

(2) If R2 > 1, then the following equilibrium exists:

E2 = (0, J∗2 , N
∗
2 ),

where

N∗
2 = β−1

(
µ+ δ

(
1 − 1

R2

))
, J∗2 =

(
1 − 1

R2

)
N∗

2 .

(3) If R1 > 1, q > 0, and R2 < R1, then the following equilibrium exists:

E∗ = (v∗, J∗, N∗),

where

N∗ = β−1

(
µ+ δξK2 + K3ξ(µ+ δ)

(
1 − R2

R1

))
, J∗ = ξK2N∗,

v∗ = ξ(µ+ δ)

(
1 − R2

R1

)
N∗, with ξ =

(
1 − 1

R1

)
K2 + K0(µ+ δ)

(
1 − R2

R1

) .
Note that, in case (3), we have the relations ξK2 ≤ 1 − 1

R1
≤ 1 and, similarly,

K3ξ(µ+δ)(1−R2

R1
) ≤ νK0ξ(µ+δ)(1−R2

R1
) ≤ ν(1− 1

R1
) ≤ ν, whence β(0) > µ+δ+ν >

µ+δξK2 +K3ξ(µ+δ)(1− R2

R1
), and thus N∗ > 0. Also, note that no other equilibrium

exists, unless q = 0 and R1 = R2 > 1, when there exists a continuum of equilibria: for
each σ > 1, choose any ε ∈ (0, R1−1

σR1
), ζ = 1

K0
(R1−1

R1
− ε), N∗ = β−1 (µ+ εδ + ζK3),

v∗ = ζN∗, and J∗ = εN∗; then E∗ = (v∗, J∗, N∗) is an equilibrium of (3.1). This is
a pathological case that we disregard. In Figure 2, we show the bifurcation diagram
of the equilibria.

The stability properties of the nontrivial equilibria are discussed in the next sec-
tion. Here we consider only the case when

R1 < 1 and R2 < 1.(3.3)

In this case, only the disease-free equilibrium E0 exists, and the disease goes to ex-
tinction. In fact, we have the following theorem.

Theorem 1. For any positive solution of the system (2.17), (v(t), J(t), N(t)), if
condition (3.3) holds, then the disease-free equilibrium E0 = (0, 0, β−1(µ)) is a global
attractor, i.e.,

lim
t→∞(v(t), J(t), N(t)) → (0, 0, β−1(µ)).
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Existence of Equilibria

1 R1

1

R2

E0, E1, E2

E0, E2

E0, E1E0

1 R1

1

R2

R2=R1

E0, E* , E2

E0, E2

E0, E1E0

                                                 (a) q=0                                                                        (b) q>0

Fig. 2.

To prove Theorem 1, we need the following two lemmas, which use the following
notation: for any bounded real-valued function f on [0,∞), let

f∞ = lim inf
t→∞ f(t), f∞ = lim sup

t→∞
f(t).

Lemma 1. Let f : [0,∞) → R be bounded, and let K ∈ L1(0,∞). Then

lim sup
t→∞

∣∣∣∣
∫ t

0

K(θ)f(t− θ)dθ
∣∣∣∣ ≤ |f |∞ ‖K‖L1(0,∞).

Proof. For any given ε > 0, choose Aε ∈ (0,∞) such that

|f |∞
∫ ∞

Aε

|K(θ)|dθ < ε.

Then, a fortiori, ∣∣∣∣
∫ t

Aε

K(θ)f(t− θ)dθ
∣∣∣∣ < ε for all t > Aε.

Now let t0 > Aε be such that

|f(t− θ)| < |f |∞ + ε for all t ≥ t0 and θ ≤ Aε.

Then we have, for t ≥ t0,∣∣∣∣
∫ t

0

K(θ)f(t− θ)dθ
∣∣∣∣ ≤

∫ Aε

0

|K(θ)f(t− θ)|dθ +

∣∣∣∣
∫ t

Aε

K(θ)f(t− θ)dθ
∣∣∣∣

≤ (|f |∞ + ε) ‖K‖L1(0,∞) + ε,

and, since ε is arbitrary, the thesis follows.
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Lemma 2 (see [18]). Let f : [0,∞) → R be bounded and twice differentiable with
bounded second derivative. Let tn → ∞ and f(tn) converge to f∞ or f∞ for n→ ∞.
Then

f ′(tn) → 0, n→ ∞.

To prove Theorem 1, let R1 < 1 and R2 < 1. For convenience, we use the
equivalent v and J equations in (2.15). Note that v(t) is nonnegative and bounded

and also that S(t)
N(t) < 1. Moreover, we have F1(t) → 0 as t → ∞ so that, using the v

equation in (2.15) and Lemma 1, we have

v∞ ≤ R1v
∞.

Since R1 < 1, we conclude that v∞ = 0. Thus

v(t) → 0 as t→ ∞.
Next we choose a sequence tn → ∞ such that J(tn) → J∞ and J ′(tn) → 0. Since
v(t) → 0 as t→ ∞, using the J equation in (2.15) and Lemma 2, we have

0 ≤ ρ2J∞ −mJ∞.
Since ρ2 < m, we see that J∞ = 0.

Finally, from the third equation in (3.1) and the relations 0 ≤ J(t) ≤ N(t) and∫∞
0
K3(θ)i(t, θ) dθ ≤ νI(t) ≤ νN(t), we have

d

dt
N(t) ≥ (β(N) − µ− δ − ν)N(t).

Since β(0) > m, it is easy to see that dN/dt is positive when N becomes small. Thus
N(t) is bounded away from zero for all t > 0 if N(0) > 0, i.e., N∞ > 0. We use Lemma
1 again to choose sequences tn → ∞, sn → ∞ for n → ∞, such that N(tn) → N∞,
N(sn) → N∞, N ′(tn) → 0, and N ′(sn) → 0. It also follows from the N equation,
noticing that J(t), v(t), F3(t) → 0 as t→ ∞, that

0 =
(
β(N∞) − µ)N∞ =

(
β(N∞) − µ)N∞.

Since N∞ ≥ N∞ > 0, the above equations yield

β(N∞) = β(N∞) = µ.

The monotonicity of β(N) yields N∞ = N∞ = β−1(µ), which finishes the proof of
Theorem 1.

4. Stability analysis. In this section, we are concerned with the cases in which
condition (3.3) is not fulfilled and new equilibria exist other than E0. Actually, a first
consequence of this situation is that E0 is unstable. Specifically, we have the following
theorem.

Theorem 2. If

R1 > 1 and/or R2 > 1,(4.1)

then the disease-free equilibrium E0 is unstable.
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Proof. Taking the linearization of system (3.1) at the point E0, we get the char-
acteristic equation

(1 − K̂1(λ)) (λ− ρ2 +m)
(
λ− β′(β−1(µ))β−1(µ)

)
= 0,

where f̂(λ) denotes the Laplace transform of f(θ), i.e.,

f̂(λ) =

∫ ∞

0

e−λθf(θ)dθ.

We see that, if (4.1) holds, then at least one solution of this equation has a positive real
part: if K̂1(0) = R1 > 1, then there is a positive real root of the factor (1 − K̂1(λ)),
while ρ2 −m > 0 if and only if R2 > 1.

Our next step is to consider the case in which q = 0 that corresponds to the possi-
ble existence of the two nontrivial equilibria E1 and E2, while there is no coexistence
equilibrium E∗ (see section 3). In this case, we have the following theorem.

Theorem 3. Let q = 0. Then the following hold.
(a) If R1 > 1, the boundary equilibrium E1 is unstable for R2 > R1 and stable

for R2 < R1 and ν = 0.
(b) If R2 > 1, the boundary equilibrium E2 is stable for R2 > R1 and unstable

for R2 < R1.
Proof. Let R1 > 1; then the equilibrium E1 exists, and the linearization of (3.1)

at this point gives the following characteristic equation:

det




1 − K̂1(λ)

R1
+

R1 − 1

K0
K̂0(λ) −R1 − 1

K0

(R1 − 1)2

R1K0

0 λ− ρ2
R1

+m 0

K̂3(λ) δ λ− β′(N∗
1 )N∗

1




= 0.

The roots of this equation are ρ2/R1 −m and others given by the following equation:(
1 − K̂1(λ)

R1
+

R1 − 1

K0
K̂0(λ)

)(
λ− β′(N∗

1 )N∗
1

)− (R1 − 1)2

R1K0
K̂3(λ) = 0.(4.2)

Since ρ2/R1 −m is positive if and only if R2 > R1, the first statement in part (a) is
proved.

Using (2.12), (4.2) can be rewritten for λ �= β′(N∗
1 )N∗

1 in the following form:

K̂1(λ)

R1
=

λ+ µ+ R1−1
K0

λ+ µ+ R1(R1−1)
ρ1AK0

+ ν
ρ1K0

(R1 − 1)2 λ+µ
λ−β′(N∗

1 )N∗
1

.(4.3)

We would like to show that (4.3) has no solution λ with nonnegative real part. In
fact, we are able to do this only for the case in which ν = 0. In order to prove the
second statement in part (a), we now assume that ν = 0. Then (4.2) has the root
β′(N∗

1 )N∗
1 < 0 and also the roots of the simplified (4.3):

K̂1(λ)

R1
=

λ+ µ+ R1−1
K0

λ+ µ+
(

R1

ρ1A

)(
R1−1
K0

) .(4.4)
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Note that the denominator in the right-hand side is not zero for any λ with λ ≥ 0.
Also note that, by (2.13),

R1

ρ1A
=

K1

ρ1A
= 1 − µK0 < 1.(4.5)

Then, for any λ with λ ≥ 0, from R1 > 1 and (4.5) we know that the modulus of
the fraction on the right-hand side of (4.4) is greater than one, while the modulus of
K̂1(λ)/R1 is always less than one. We conclude that (4.4) does not have roots with
nonnegative real parts. Therefore, all roots of (4.2) have negative real parts if and
only if R2 < R1, and part (a) is proved.

To prove part (b), we assume that R2 > 1 and linearize (3.1) at the equilibrium
E2, obtaining the characteristic equation

det




1 − K̂1(λ)

R2
0 0

ρ2xK̂0(λ) − K̂2(λ) λ+ ρ2x −ρ2x2

K̂3(λ) δ λ− β′(N∗
2 )N∗

2 − δx




= 0,(4.6)

where

x =

(
1 − 1

R2

)
> 0

since R2 > 1. The roots of (4.6) are given by the two equations

K̂1(λ)

R2
= 1 or λ2 + α1λ+ α2 = 0,(4.7)

where α1 = (ρ2 − δ)x − β′(N∗
2 )N∗

2 > 0 and α2 = −ρ2xβ′(N∗
2 )N∗

2 > 0 since x > 0,
ρ2 > δ, and β′(N∗

2 ) < 0. These two inequalities imply that the second equation in
(4.7) has two roots with negative real part. Concerning the first equation in (4.7),
we have that, since K̂1(0) = R1 and K1(t) ≥ 0, the dominant real root is negative
if R1 < R2 and positive if R1 > R2. It follows that E2 is stable if R2 > R1 and
unstable if R2 < R1, which finishes the proof of part (b).

Figure 3(a) is a bifurcation diagram for the case q = 0 that describes the situation
relative to Theorems 1 and 2. The stable equilibria are indicated for the different
values of the parameters R1 and R2. The other existing equilibria, listed in Figure
2(a), are not indicated and are all unstable. We note that in 3(a) the stability of E1

has only been proved for ν = 0.

We next consider the case q > 0 and discuss how the situation changes with q
(q ∈ (0, 1]) and ν. In this case (3.1) cannot have the boundary equilibrium E1.

It is clear that J∗2 (and hence E2) does not depend on q or ν, whereas v∗ = v∗(q, ν),
J∗ = J∗(q, ν), and N∗ = N∗(q, ν) are indeed functions of q and ν. Moreover, R1

depends only on τ = qrχ+ ν, R1 = R1(τ) is a strictly decreasing function of τ , and
R1(τ) → 0 as τ → ∞. Since R2 is independent of τ , we see that, if R1(0) > R2 > 1,
there exists a unique τc > 0 such that R1(τc) = R2. Hence E∗ exists if and only if
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Stability of Equilibria

1 R1

1

R2

R2=R1

E2

Stable

E0

Stable

E1

Stable

1 R1

1

R2

R2=R1

E2

Stable

E0

Stable

E*

Stable

                                             (a) q=0                                                                        (b) q>0

Fig. 3.

0 < τ < τc. We also have, for any ν ≥ 0,

lim
q→0+

v∗(q, ν) =

(
1 − 1

R1(ν)

)
β−1(µ)

K0
= v∗1 ,

lim
q→0+

J∗(q, ν) = 0,

lim
q→0+

N∗(q, ν) = β−1

(
µ+

K3

K0

(
1 − 1

R1(ν)

))
= N∗

1 ;

that is,

lim
q→0+

E∗(q, ν) → E1 = E1(ν).

Moreover, if qc =
τc − ν
rχ

> 0, then

lim
q→q−c

v∗(q, ν) = 0,

lim
q→q−c

J∗(q, ν) =

(
1 − 1

R1(τc)

)
N∗

2 =

(
1 − 1

R2

)
N∗

2 = J∗2 ,

lim
q→q−c

N∗(q, ν) = β−1

(
µ+ δ

(
1 − 1

R2

))
= N∗

2 ;

that is,

lim
q→q−c

E∗(q, ν) → E2.

Then we have the following analytic result for the system (3.1).
Theorem 4. Assume that q > 0. Then the following hold.
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(a) If R2 > 1, the boundary equilibrium E2 is stable if R2 > R1(τ) and unstable
if R2 < R1(τ).

(b) If R1(0) > R2 > 1, the interior equilibrium E∗ is stable if either τ is small
or τ is close to τc.

Proof. The proof of part (a) is identical to that of part (b) in Theorem 3. In fact,
the linearization at E2 produces the same characteristic equation.

Concerning E∗, we have the equation

det




1 − K̂1(λ)

R1
+ x∗R1K̂0(λ) x∗R1 x∗(1 −R1)

ρ2y∗K̂0(λ) − K̂2(λ) λ−D∗ ρ2y∗

(
1

R1
− 1

)

K̂3(λ) δ λ−B∗




= 0,(4.8)

where

x∗ =
v∗
N∗

= ξm

(
1 − R2

R1

)
, y∗ =

J∗
N∗

= ξK2,

B∗ = β′(N∗)N∗ + δξK2 + K3ξ(µ+ δ)

(
1 − R2

R1

)
, D∗ =

ρ2
R1

−m− ρ2y∗.

Next we bring up the following identities (see (2.12)):

K̂0(λ) =
1 − K̂1(λ)

ρ1A

λ+ µ
, K̂2(λ) = qrχ

K̂1(λ)

ρ1
, K̂3(λ) = ν

K̂1(λ)

ρ1
.

Then, after some simplification, (4.8) can be written as

0 = m1(λ)

(
1 − K̂1(λ)

R1

)
+m2(λ)

(
1 − K̂1(λ)

ρ1A

)
+m3(λ)

K̂1(λ)

ρ1
,

where

m1(λ) = (λ+ µ)

(
(λ−B∗)(λ−D∗) + δρ2y∗

(
1 − 1

R1

))
,

m2(λ) = x∗R1 (λ−B∗)
(
λ+m− ρ2

R1

)
,

m3(λ) = x∗(λ+ µ)

[
qrχR1

(
λ−B∗ + δ

(
1 − 1

R1

))

+ν(R1 − 1)

(
λ+m− ρ2

R1

)]
.

We now define

H(λ, q) = m1(λ) +m2(λ) − K̂1(λ)

R1

(
m1(λ) +

R1

ρ1A
m2(λ) − R1

ρ1
m3(λ)

)
,
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and we need to solve

H(λ, q) = 0.(4.9)

We note that, since τ = 0 is equivalent to q = ν = 0,

lim
τ→0+

H(λ, q, ν) = H(λ, 0, 0)

=

[
(λ+ ψ1) − K̂1(λ)

R1
(λ+ ψ2)

](
λ− β′(N∗

1 )N∗
1

)(
λ+ µ− ρ2

R1

)
,

with

ψ1 = µ+

(
1 − 1

R1

) R1

K0
> 0 and ψ2 = µ+

(
1 − 1

R1

) R2
1

AK0
> 0,

where R1, A, and K0 are all computed at q = ν = 0.
Since the equation H(λ, 0, 0) = 0 has the real roots β′(N∗

1 )N∗
1 and ρ2

R1
− µ but

does not have the root λ = −ψ2, its remaining roots are the solutions of the following
equation:

K̂1(λ)

R1
=
λ+ ψ1

λ+ ψ2
.

Now, since R1/A < 1 (see (4.5)), we have ψ2 < ψ1, and it is easy to show that

 λ+ ψ1

λ+ ψ2
> 1

for all λ with  λ > 0. On the other hand,  K̂1(λ)/R1 < 1 if  λ > 0. Hence (4.9)
has no roots with positive real part for τ sufficiently small because of the continuous
dependence on parameters. This is the first half of part (b).

Concerning the values of τ close to τc, we let τc = q0rχ + ν0 (q0 > 0) and note
that

lim
τ→τ−

c

H(λ, q, ν) = H(λ, q0, ν0) =

(
1 − K̂1(λ)

R1

)
(λ+ µ)(λ2 + α1λ+ α2),

where α1 and α2 are the same as in (4.7). Thus the equation H(λ, q0, ν0) = 0 has
three roots with negative real part from its cubic polynomial factor and a fourth root
λ = 0 from its first (transcendental) factor. In order to understand the stability of
E∗ for τ near τc, it suffices to determine the direction in which this root moves when
τ decreases from the value τc. The following conditions ensure that this root moves
to the left in the complex plane:

Hq(0, q0, ν0)Hλ(0, q0, ν0) < 0, Hν(0, q0, ν0)Hλ(0, q0, ν0) < 0.(4.10)

Now note that we have (since the polynomials m2(λ) and m3(λ) are identically zero
when τ = τc because of the factor x∗, as R1(τc) = R2)

Hλ(0, q0, ν0) = µβ′(N∗
2 )N∗

2

K̂ ′
1(0)

R2
ρ2

(
1 − 1

R2

)
> 0,
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Hq(0, q0, ν0) = − µm

ρ1K2
q0rχβ

′(N∗
2 )N∗

2

(R2 − 1
) d
dq

R1

∣∣∣∣
τ=τc

< 0,

and

Hν(0, q0, ν0) = − µm

ρ1K2
q0rχβ

′(N∗
2 )N∗

2

(R2 − 1
) d
dν

R1

∣∣∣∣
τ=τc

< 0.

Thus conditions (4.10) are fulfilled, and E∗ is stable as soon as τ is close enough to
τc. This finishes the proof of part (b).

In the previous theorem, we proved that, when τ is positive and small enough, the
interior equilibrium E∗ inherits the stability properties of E1 from which it bifurcates.
On the other hand, when τ is close enough to τc, then E∗ is stable and bifurcates
from E2, which is neutral when τ = τc. Figure 3(b) gives a bifurcation diagram for
this case.

5. Numerical exploration. In this section, we provide some numerical simu-
lations that support and extend the results of Theorem 3 for arbitrary q, 0 ≤ q ≤ qc,
when ν = 0.14.

We consider an explicit discretization of problem (2.11), based on backward Euler
finite differences for the ODEs, a linearized finite difference method of characteristics
for the PDE, and Simpson’s rule for the quadratures.

Let T be the final time of simulation, and let h be the discretization step. Define

M1 = sup{θ:i0(θ)>0}
h and M2 = T

h . It will be assumed, without loss of generality, that
M1 and M2 are positive integers. We shall use the symbols inj , Nn, Jn, In, λn to
denote, respectively, the approximations of i(jh, nh), N(nh), J(nh), I(nh), λ1(nh)
for j, n ≥ 0.

Our numerical method, defined for 1 ≤ n ≤M2, 0 ≤ j ≤M1 + n, is given by


inj −in−1
j−1

h + [µ+ γ(jh)] inj = 0,

in0 = λn−1
(
Nn−1 − In−1 − Jn−1

)
,

Nn−Nn−1

h = b
(
1 − Nn−1

L

)
Nn − µNn − δJn−1 − νAn−1,

In = h
3

∑M1+n−2

2
j=0 (inj + 4inj+1 + inj+2),

An = h
3

∑M1+n−2

2
j=0

[
p(jh)inj + 4p(jh+ h)inj+1 + p(jh+ 2h)inj+2

]
,

λn = h
3

ρ1

Nn

∑M1+n−2

2
j=0

[
p(jh)inj + 4p(jh+ h)inj+1 + p(jh+ 2h)inj+2

]
,

Jn−Jn−1

h = ρ2
Jn−1

Nn (Nn − In − Jn) − (µ+ δ)Jn + qrχAn.

We explore the behavior of the solution for a fairly realistic set of values of some
of the parameters, while others are given values that allow us to examine numerically
the stability of the coexistence equilibrium E∗. We selected them as follows:

µ = 0.014, χ = 2, r = 0.5, ρ1 = 7, ρ2 = 7, ν = 0.14, δ = 1.8.

Except for r (which is nondimensional), these parameters are in units of 1
yr . The

reciprocal of µ gives a median life of 70 years for uninfected individuals, while the
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reciprocal of χ gives a median sojourn time in the class of individuals with active
drug-sensitive TB of 182 days (the actual treatment lasts for six months (see [5])),
and that of ν gives a median survival time for untreated active TB of 7 years (see
[16]); ρ1 is the parameter effective contact rate (ECR) of [16], with a distribution
taken from [17] with mode 7.0 and maximum value 13. Lacking a better estimate, we
use for ρ2 the same value as for ρ1 and for δ, which is a value over 10 times larger than
that of ν—and one which gives a mean sojourn time of 200 days in the drug-resistant
infectious class (until death from drug-resistant TB occurs). For the birth function
β, we choose the logistic form

β(N) = b

(
1 − N

L

)
,

where b = 2 and L = 6 · 106. Furthermore, following the literature (see [17]), we take
the function p(θ) as piecewise constant in the specific form

p(θ) =




0.06, θ ∈ [0, 1),

0.084, θ ∈ [1, 2),

0.093, θ ∈ [2, 3),

0.097, θ ∈ [3, 4),

0.098, θ ∈ [4, 5),

0.099, θ ∈ [5, 6),

0.1, θ ∈ [6,∞),

(5.1)

where θ is measured in years.
When q is very small, the positive equilibrium E∗ is very close to the boundary

equilibrium E1 = (578091; 0; 5926271) with a prevalence of drug-sensitive TB of 81.6

percent (
I∗
1

N∗
1
× 100), where I∗1 is obtained from v∗1 using (2.5) and (2.14). On the

other hand, when q is very close to qc, the positive equilibrium E∗ is very close to the
boundary equilibrium E2 = (0; 1450133; 1957371) with a prevalence of drug-resistant

TB of 74.1 percent (
J∗
2

N∗
2
× 100) (see the discussion preceding Theorem 4).

We show in Figures 4–7 the results from simulations for four different values of
q, from very close to 0 to very close to qc ≈ 0.51897012.

In all cases, the simulations show that the dynamics stabilizes at E∗, which
matches the theoretical results for τ near the boundary of the interval [0, τc] and
suggests that the same stability result holds away from the boundary of this interval.

We also see that, as q increases from 0 to qc, the prevalence of drug-resistant TB,
J∗
N∗

× 100, increases from 0 to 74.1 percent, while the prevalence of drug-sensitive TB,
I∗
N∗

× 100, decreases from 81.6 percent to 0.

6. Discussion. In this paper, we constructed and analyzed a two-strain model
for drug-sensitive TB and drug-resistant TB with the purpose of examining the effects
of variable periods of latency on the transmission dynamics of TB at the population
level. This model combines a two-strain ODE model and a one-strain TB model with
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Fig. 4.

distributed delays that were previously developed [2], [7]. This paper is intended to
determine whether the conclusions from either the two-strain ODE model or the one-
strain distributed-delay model are changed when both multiple strains and distributed
delays are considered.

It is shown in [2] that, in a homogeneously mixing population, coexistence of nat-
urally resistant strains (the case of q = 0) is limited. However, antibiotic resistance
(the case of q > 0) enhances coexistence. This, as pointed out in their paper, reminds
us of the challenges facing public health officials. That is, drug-resistant TB will re-
main a serious threat to our communities as long as many members of our society do
not have regular access to medical care. A natural criticism of the two-strain ODE
model is that it did not take into account long and variable periods of latency—an
important feature of TB. The one-strain TB model in [7] is the first step in this direc-
tion. Their results show that the qualitative behavior of the model with distributed
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Fig. 5.

delays is not very different from those given by the corresponding ODE model.

The results of the two-strain model in this article lead to the same conclusion.
That is, the variable periods of latency do not lead to complex dynamics. We consid-
ered again two cases, q = 0 and q > 0, as was done for the ODE model. We derived
conditions for the existence and stability of all possible steady-states. These condi-
tions are expressed in terms of the basic reproductive numbers for the two strains.
These computations help us understand the role that key epidemiological parame-
ters play in the maintenance of TB, especially the role of the parameters associated
with an arbitrary distribution that models long and variable periods of latency. The
fact that better interpretations of model results may be obtained when using arbi-
trary stage distributions (instead of an exponentially distributed stage duration) has
been worked out recently (see [9], [10]). However, the introduction of an arbitrarily
distributed delay into the model makes the analytical analysis more difficult. In this
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Fig. 6.

paper, we have combined both analytical and numerical studies to obtain the stability
result of the interior equilibrium.

While the introduction of variable latency periods does not produce very different
qualitative dynamics, factors such as exogenous reinfection and heterogeneous contact
rates can indeed generate radically different dynamics from those given by the class
of models discussed in [2]. Exogenous reinfection is capable of sustaining TB even
when the basic reproductive number is below one (see [6]). Immigration effects on
TB incidence rates have been found in several developed countries. The influence of
immigrants from high-prevalence countries on the notifications in a low-prevalence
country can be observed in recent data from Switzerland. Undetected active disease
in immigrants is a significant source of infection among uninfected immigrants, as well
as for children of immigrant parents born in the new country. We are particularly
interested in looking at the impact of immigration of infected individuals from coun-
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tries where prevalence of TB is high on TB dynamics as well as their effects on the
disease control programs (see [8]).
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