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Abstract. A model for the spread of an infectious disease in a population with constant recruit-
ment of new susceptibles, developed in previous work, is further analyzed in the case that disease
survivors are permanently immune and that the disease dynamics are much faster than the demo-
graphic dynamics. Though the model allows for arbitrarily many stages of infection, all of which
have general length distributions and disease survival functions, the different time scales make it
possible to find explicit formulas for the interepidemic period (distance between peaks or valleys of
disease incidence) and the local stability or instability of the endemic equilibrium. It turns out that
the familiar formula for the length of the interepidemic period of childhood diseases has to be rein-
terpreted when the exponential length distribution of the infectious period is replaced by a general
distribution. Using scarlet fever in England and Wales (1897–1978) as an example, we illustrate
how different assumptions for the length distributions of the exposed and infectious periods (under
identical average lengths) lead to quite different values for the minimum length of the quarantine
period to destabilize the endemic equilibrium.
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1. Introduction. Most epidemic models assume that the infection periods (e.g.,
latent, infectious, isolation periods) are either exponentially distributed or have fixed
durations. The data analyses presented in Bailey (1975, Chapter 15), Gough (1977),
and Becker (1989) show various estimates for the latent period of measles. The esti-
mates do somewhat depend on the methods used and the circumstances considered,
but they agree on the fact that the standard deviation is not negligible on the one
hand but much shorter than the mean duration (about one fifth) on the other hand.
Sartwell (1950, 1966) draws a similar picture for the incubation periods of a host of
infectious diseases (see also Thieme (to appear) section 1.7).

While this shows that most epidemic models are not realistic in modeling the
duration of the various stages, idealization is a genuine feature of any mathematical
modeling and not necessarily a reason for concern. Recently, however, Keeling and
Grenfell (1997, 1998) demonstrated that infectious periods with small variance give
better agreement with persistence data for measles than exponential distributions. In
this paper, it is the main concern that, in models with exponentially distributed stage
durations, the stage exit rates enter all kinds of important formulas like the basic
reproduction ratio (or basic replacement ratio, the notorious R0), the formula for the
frequency of recurrent outbreaks of childhood diseases (interepidemic period), and
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conditions for the stability of the endemic equilibrium. In all these cases, stage exit
rates have been interpreted as reciprocals of the average stage durations. The concern
that this choice may be misleading in specific cases has motivated us to formulate an
epidemic model with arbitrarily distributed periods of infection (Feng and Thieme
(2000)) which will be analyzed in this paper under the assumption that the disease
dynamics are much faster than the demographics, an assumption which holds for most
childhood diseases but not for diseases with long incubation and/or infectious periods
like HIV/AIDS.

A primer in the mathematics of stage transition. Mathematically the
duration of a disease (and any other) stage can be described by a nonincreasing
function

P : [0,∞) → [0, 1], P (0) = 1,

with P (a) denoting the probability to be still in the stage after a time units. We call
P a duration function and the variable a stage age. (If the stage is life, P has the
more familiar name of a survival function or a survivorship.)

At this point let us ignore that the stage may also be left by death. The expected
(or average, or mean) duration of the stage, D, is then given by

D = −
∫ ∞

0

aP (da) =

∫ ∞

0

P (a)da(1.1)

and its variance V and standard deviation σ by

V = σ2 = −
∫ ∞

0

(a−D)2P (da) = 2

∫ ∞

0

aP (a)da−D2.(1.2)

(Throughout this paper we assume that all moments of P exist.)

For fixed stage age b > 0, P (a|b) = P (a+b)
P (b) is the conditional probability to stay

in the stage for a more time units, given that one has already stayed in the stage for
b time units. P (·|b) is again a duration function and

D(b) =

∫ ∞

0

P (a|b)da =

∫∞
b

P (a)da

P (b)

is the expected remaining duration at stage age b. Averaging these expectations we
obtain the average expectation of remaining duration, D̄,

D̄ =

∫∞
0

D(b)P (b)db∫∞
0

P (b)db
=

∫∞
0

aP (a)da

D
.(1.3)

The average expectation of remaining duration is somewhat difficult to grasp; if there
is a constant input of individuals into the stage, it is equal to the average stage age
(Kim and Aron (1989)). Further we have the following relation to D and V from
(1.2):

V = D(2D̄ −D)(1.4)

or

D̄ =
1

2

(
V

D
+D

)
≥ D

2
.(1.5)
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Notice that, depending on the standard deviation σ, the ratio D̄/D = (1/2)((σ/D)2+
1) can be any value between 1/2 and infinity and that D̄ ≤ D if and only if σ ≤ D.
If there is a maximum stage duration D•, i.e., P (a) = 0 if a > D• and P (a) > 0 if
a < D•, then

D̄ ≤ D•/2.(1.6)

Most epidemic models assume that individuals leave the stage (progressing to
another one) at a constant per capita rate, let us say, θ. This implies that the stage
duration is exponentially distributed, P (a) = e−θa, and has the peculiar consequence
that average duration, average expectation of remaining duration, and the standard
deviation are all the same,

D = D̄ = σ =
1

θ
, D• = ∞.

Another class of epidemic models assume that some of the stages have fixed length,
let us say, b,

P (a) =

{
1; 0 ≤ a < b,
0; a > b ,

then D = b = D•, σ = 0, and D̄ = D/2.
As a bottom line we summarize that, in the most commonly used epidemic models,

the reciprocals of the constant stage exit rates are identical to three entities which are
quite different in reality: the average duration, the average expectation of remaining
duration, and the standard deviation; so it is not clear how they are to be interpreted
when they appear in key epidemiologic parameter combinations.

Outline of the paper. This ambiguity has motivated us to develop a general
framework for epidemic models with arbitrarily many stages, all durations of which
have general distributions (Feng and Thieme (2000)). Our model framework also
allows for general disease survival functions at each stage. The demographics in
our model are rather special, however, as restricted to constant recruitment of new
susceptibles and to a constant natural per capita death rate. Some aspects of this
model are presented in section 2 for diseases which lead to complete recovery and
immunity for those infected individuals that survive the disease. We will see that
average stage durations are the appropriate ingredients for determining R0.

In section 3 (and the appendix) we further specialize to diseases where the disease
dynamics are much faster than the demographic dynamics. Taking advantage of the
different time scales (cf. Dietz (1976) and Andreasen (1989a, 1989b, 1993, 1995)) we
find an explicit approximation for the leading roots of the characteristic equation
associated with the endemic equilibrium. The sign of the real part of these roots
(a conjugate pair) determines the local stability of the endemic equilibrium while
its imaginary part is the key to the frequency of recurrent outbreaks. Dietz (1976)
suggests the following formula for the time between the peaks (or valleys) of two
subsequent outbreaks,

τ = 2π
√
A(DE +DI),

where A is the average age at infection and DE and DI are the average durations
of the latent (exposed) and infectious stage, respectively. This formula has been
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tested against data for childhood diseases by Anderson and May (1982, 1991) who
found very good agreement for many childhood diseases, but somewhat less good
agreement for Rubella, e.g. While the above formula is completely correct for the
models with exponentially distributed disease stages considered by Dietz (1976) and
Anderson and May (1982, 1991), we will find (in section 4) that, assuming general
length distributions of the latent and infectious stage, it has to be modified as

τ = 2π
√
A(DE + D̄I),

i.e., for the infectious period, the average duration has to be replaced by the average
expectation of remaining duration. See section 7 for some examples of how this
modification improves the agreement with disease data. These considerations should
be taken with a grain of salt, however, because both formulas for τ are obtained by
linearization about the endemic equilibrium fitting a scenario with vanishing or low
amplitude oscillations, while it is conceivable that the length of the interepidemic
period in recurrent outbreak is influenced by highly nonlinear effects.

In section 5 we consider extensions of standard incidence to several infectious
disease stages and a modified standard incidence function which takes into account
that the disease may decrease the mixing activity of individuals with disease symp-
toms. In Feng and Thieme (2000) we show that the endemic equilibrium is locally
asymptotically stable under standard incidence, provided there are no disease fatal-
ities. In section 5 we show that this remains valid if the disease dynamics are much
faster than the demographic dynamics and the disease mortality is not so severe that
almost everybody dies from the disease.

Finally (in sections 6 and 7) we revisit a model where individuals with symptoms
completely withdraw (or are withdrawn) from the epidemic scene. We have shown
(Feng (1994, dissertation); Feng and Thieme (1995)) that a sufficiently long isolation
(or quarantine) period may lead to instability of the endemic equilibrium and, via
Hopf bifurcation, to periodic oscillations of the disease dynamics. Lumping the latent
and infectious period and assuming exponential stage durations, we have found for
scarlet fever that an isolation period of at least 23 days makes the endemic equilib-
rium unstable. In this paper we separate latent and infectious periods. If both have
exponentially distributed durations, an isolation period of at least 18 days average
duration will make the endemic equilibrium unstable. If both periods have fixed du-
rations, an isolation period of at least 10 days destabilizes the endemic equilibrium. If
we interpolate reported maximum and minimum stage durations by piecewise linear
duration functions, an isolation period of at least 11 days is sufficient (see section 7).
We mention that Anderson, Arnstein, and Lester (1962) report isolation periods for
scarlet fever that last two or three weeks or even longer.

For most other childhood diseases, our analysis rules out that isolation alone is a
cause for unstable endemic equilibria. While long isolation periods can theoretically
destabilize the endemic equilibrium, the required lengths turn out not to be in a
realistic range. It is conceivable, however, that isolation adds to the other factors
that have been found to lead to recurrent epidemic outbreaks like seasonal variation
in per capita infection rates, stochastic effects, Allee-type effects in the infection rate,
and more dynamic demographics than the constant influx of susceptibles that we will
assume in this paper (see Dietz and Schenzle (1985), Hethcote and Levin (1989), Feng
and Thieme (1995), and Gao, Mena-Lorca, and Hethcote (1995, 1996)).

In this context, our main point consists of illustrating that the required minimum
length for an isolation period to destabilize the endemic equilibrium is cut into almost
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half, when exponential length distributions of the latent and infectious periods are
replaced by realistic distributions with the same average lengths. This may not be of
practical relevance for most childhood diseases, because the required minimum length
is still not in a realistic range, but should be reason enough to look out for similar
phenomena in other situations.

2. Model description and previous results for the case of permanent
recovery. We consider an endemic model with arbitrarily many stages of infection.
If N denotes the size of the epidemiologically relevant part of the population, we have

N = S +
n∑

j=1

Ij ,(2.1)

with S denoting the number of the susceptibles and Ij the number of the infected
individuals in the jth stage of infection. The incidence (number of new infections per
unit of time), B0, satisfies a functional relation

B0 = f(S, I1, . . . , In).(2.2)

In order to describe the duration of the various stages and the related disease fatalities
we introduce nonincreasing functions

Pj ,Fj : [0,∞) → [0, 1], Pj(0) = 1, Fj(0) = 1,

with the following interpretation: Pj(a) is the probability that the jth stage of the
infection lasts longer than a time units, while 1 − Fj(a) gives the probability to die
from disease-related causes during the jth stage before reaching stage age a. Pj is
called the duration function and Fj the disease survival function of the jth infection
period. The average duration of the jth disease stage is

Dj =

∫ ∞

0

Pj(a)da,(2.3)

while the average sojourn time in the jth stage is

Tj =

∫ ∞

0

e−µaFj(a)Pj(a)da.(2.4)

The average sojourn time takes into account that the sojourn may be cut short by
dying from the disease, described by Fj , or by dying from disease-unrelated causes.
The latter we call natural death and we assume it to occur at the constant per capita
mortality rate µ. So the life expectation in absence of the disease is L = 1

µ . The
following probabilities are also crucial:

pj = (−1)

∫ ∞

0

Fj(a)e
−µaPj(da)(2.5)

is the probability of getting through the jth stage alive;

q1 = 1, qj = p1 · · · pj−1, j = 2, . . . , n+ 1,(2.6)

give the probabilities with which an infected individual will survive all the stages 1 to
j − 1. Using these ingredients, a model has been derived in Feng and Thieme (2000);
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here we only summarize those parts that are needed for the understanding of this
paper.

At an endemic equilibrium we have

B∗
0 = f(S∗, I∗1 , . . . , I

∗
n),(2.7)

where

S∗ =
Λ−B∗

0(1− qn+1)

µ
, I∗j = B∗

0Tjqj , j = 1, . . . , n.(2.8)

Λ is the rate at which individuals enter the epidemiologically relevant part of the
population; it is also the recruitment rate of new susceptibles.

In this paper we assume that the infected individuals in the last stage have com-
pletely recovered from the disease and are completely immune, so there are no disease-
related deaths in the last stage and there is no return into the susceptible part of the
population. This means that Fn ≡ 1 and Pn ≡ 1 and, by (2.4) and (2.5),

pn = qn+1 = 0, Tn =
1

µ
= L.

In particular, infected individuals in the last stage are no longer infective, so we call
them recovered individuals and write

R = In.

Further we write I = (I1, . . . , In−1) and 0 for I when I1 = · · · = In−1 = 0. (This
notation is different from that in Feng and Thieme (2000), where I includes In.) The
following is assumed throughout this paper.

H2: The function f : [0,∞)n+1 → [0,∞) is continuous. Moreover, for every S0, R0 ≥
0, S0 + R0 > 0, there exists a neighborhood V of (S0, 0, R0) in Rn+1 such
that f can be extended to and is three times continuously differentiable on
V ∪ (0,∞)n+1. Since susceptible and recovered individuals are not infective
and there are no infections without infectives or susceptibles, we assume that

f(S, 0, R) = 0, f(0, I, R) = 0, S, I, R ≥ 0;

further

∂f

∂Ij
(S, 0, R) ≥ 0, S,R ≥ 0, S +R > 0,

with at least one of the derivatives being strictly positive if S > 0.

Recalling that the basic reproduction ratio, R0, is the number of secondary cases
one average freshly infected individual can cause when introduced into an otherwise
disease-free population, we find that

R0 = R0(µ) = lim
B→0

1

B
f

(
Λ−B

µ
, T1q1B, . . . , TnqnB

)
(2.9)

=

n−1∑
j=1

∂f

∂Ij
(N�, 0, . . . , 0)Tjqj ,

N� =
Λ

µ
.
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In previous work (Feng and Thieme (2000)) we have shown that the disease-free
equilibrium is locally asymptotically stable if R0 < 1, and unstable if R0 > 1. We
have also given additional assumptions for the endemic equilibrium not to exist if
R0 ≤ 1 and to exist and be unique if R0 > 1, further for the disease to die out if
R0 < 1 and to be (weakly or strongly) endemic if R0 > 1.

Recalling that Tn = 1
µ = L is the life expectation (in absence of the disease), the

equilibrium equation (2.7) can also be written as

1

qnL
R∗ = f(S∗, I∗, R∗).(2.10)

Now

f(S∗, I∗, R∗)
S∗ =

1

qnL

R∗

S∗

is the per capita rate at equilibrium of a susceptible individual to be infected. Its
reciprocal is the average time it takes a susceptible to become infected, i.e., at equi-
librium the average age at infection, A, is given by

A =
S∗

R∗ qnL.(2.11)

3. Fast disease dynamics. We assume that the demographic parameter µ (the
natural mortality rate) is small compared to the epidemic parameters and that

Λ = µN�(3.1)

for some N� > 0 that is kept fixed. N� is the population size which is approached in
the absence of the disease as time tends to infinity.

We also assume that R�
0 = R0(0) > 1, where

R0(µ) =

n−1∑
j=1

∂f

∂Ij
(N�, 0, . . . , 0)Tjqj(3.2)

and R0(µ) is the basic reproduction ratio introduced in (2.9). Recalling that Tj and
qj depend on µ, we write

Tj = T �
j , qj = q�j whenever µ = 0.(3.3)

R�
0 > 1 implies that R0(µ) > 1 for sufficiently small µ > 0.
In the special case we consider here, Tn = 1

µ = L is the life expectation and, by

(2.8), B∗
0 = µ

qn
R∗. Set x = 1

qn
R∗, then, by (2.8),

S∗ = N� − x, I∗1 = µT1x, I∗j = µTjqjx, j = 2, . . . , n− 1,(3.4)

R∗ = qnx, B∗
0 = µx.

The equilibrium equation (2.7), B∗
0 = f(S∗, I∗, R∗), takes the form

µx = f(N� − x, T1q1µx, . . . , Tn−1qn−1µx, qnx).(3.5)

Remark. Let us pause for a moment to make precise what it means that the
demographic parameters are small compared to the epidemic parameters. Recall that
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L = 1/µ is the life expectation and Tj are the average sojourn times in the infected
stages. The first is in the order of decades and the second in the order of a few weeks,
so µTj � 1 for j = 1, . . . , n− 1. Let us define

σ =

n−1∑
j=1

∂f

∂Ij
(N�, 0, . . . , 0).

From (3.2), we have that

σ min
j=1,...,n−1

Tjqj ≤ R0 ≤ σ max
j=1,...,n−1

Tjqj .

If the Tjqj do not vary too much between the infection stages, this implies that σTjqj
is of the same order of magnitude as R0, which is a number between 2 and 20 for most
infectious diseases (Anderson and May (1991), Table 4.1). If the survival probabilities
qj are not too small, this implies that δ := µ/σ � 1. Setting ξj = Tjqj and y = x/N�

we can reformulate (3.5) in dimensionless form as

δy =
1

σN� f(N
�(1− y), N�ξ1δy, . . . , N�ξn−1δy,N

�qny),

with δ � 1 and ξj being neither very small nor very large.
We rewrite (3.5) as a fixed point problem in x for the following function g which

is twice continuously differentiable in a neighborhood of (0, 0):

g(µ, x) =
1

µ
f(N� − x, T1q1µx, . . . , Tn−1qn−1µx, qnx), µ = 0,

g(0, x) =

n−1∑
j=1

∂f

∂Ij
(N� − x, 0, q�nx)T

�
j q

�
jx.

By R�
0 > 1, ∂f

∂Ij
(0, 0, R) = 0 (see Assumptions H2), and the intermediate value theo-

rem,

1 =

n−1∑
j=1

∂f

∂Ij

(
N� − x�, 0, q�nx

�
)
T �
j q

�
j(3.6)

for some x� ∈ (0, N�). We want to make sure that this is the only solution of (3.6).
So we make the following assumptions in addition to the overall Assumptions H2.

H3 (a) For all S,R > 0,

∂2f

∂S∂Ij
(S, 0, R) ≥ 0 and

∂2f

∂S∂Ij
(S, 0, R) ≥ ∂2f

∂Ij∂R
(S, 0, R)

with the last inequality being strict for at least one j ∈ 1, . . . , n− 1.

(b) There exists some ν > 0 such that
∫∞
0

eνaPj(a)da and − ∫∞
0

eνaPj(da) are
finite for all j = 1, . . . , n− 1.

The second inequality in (a) follows from the first if ∂2f
∂Ij∂R

(S, 0, R) ≤ 0, as it is

the case for many incidence functions (see sections 4 and 5). The assumption in (b)
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guarantees in particular that all moments of the length distributions of all infected
periods but the removed period exist.

With Assumption H3 (a) the right-hand side of (3.6) is strictly decreasing in
x�. Further, by the implicit function theorem, (3.5) has a unique solution x in a
neighborhood of x� which is a twice continuously differentiable function of µ such that
x = x� for µ = 0. This implies that the equilibria S∗, I∗, R∗ are twice continuously
differentiable functions of µ such that, for µ = 0,

S∗ = S� := N� − x�, I∗ = I� = 0, R∗ = R� := q�nx
�.(3.7)

For later use we conclude from (2.11) and note from (3.2) and (3.6) that

A

L
≈ S�

R� q
�
n =

S�

x�
, µ → 0,(3.8)

R�
0 =

n−1∑
j=1

∂f

∂Ij
(N�, 0, 0)T �

j q
�
j ,

1 =

n−1∑
j=1

∂f

∂Ij
(S�, 0, R�)T �

j q
�
j .

The stability of the endemic equilibrium is determined by the roots of a charac-
teristic equation (Feng and Thieme (2000), section 7). For µ = 0, λ = 0 is a double
root of the characteristic equation and all other roots have strictly negative real part
and are bounded away from the imaginary axis (see the appendix).

Similarly as in Feng and Thieme (1995) the roots of the characteristic equation
can be expanded in powers of ε =

√
µ.

Theorem 3.1. Let Assumptions H2 and H3 hold and consider the character-
istic equation associated with the endemic equilibrium. Then there exist numbers
µ0 > 0, ν > 0 such that, for all µ ∈ (0, µ0), the characteristic equation has two com-
plex conjugate roots λ in the strip |�λ| < ν, while all other roots satisfy �λ < −ν.
Moreover, for the two leading roots, we have �λ → 0 as µ → 0 and the expansion

λ = ±ı
√
µθ + µλ̃1 +O(µ3/2),

with O(µ3/2) indicating a function φ(µ) such that |φ(µ)| ≤ cµ3/2 for µ ∈ [0, µ0].
The proof of this theorem has been relegated to the appendix. There we also

show that θ is given by

θ =

∑n−1
j=1

[
∂2f

∂S∂Ij
(S�, 0, R�)− ∂2f

∂Ij∂R
(S�, 0, R�)q�n

]
T �
j q

�
jx

�∑n−1
j=1

∂f
∂Ij

(S�, 0, R�)T �
j q

�
j c1j

,(3.9)

while λ̃1 is given by

λ̃1 = −1

2


n−1∑

j=1

∂f

∂Ij
(S�, 0, R�)T �

j q
�
j c1j




−1

(3.10)

×
[
n−1∑
j=1

∂f

∂Ij
(S�, 0, R�)

c2j + c21j
2

T �
j q

�
j θ +

n−1∑
j=1

∂f

∂Ij
(S�, 0, R�)T �

j q
�
j c1j
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−1

2

n−1∑
j,k=1

∂2f

∂Ij∂Ik
(S�, 0, R�)x�T �

j T
�
k q

�
j q

�
k

+

n−1∑
j=1

∂2f

∂Ij∂R
(S�, 0, R�)q�nT

�
j q

�
jx

�d1

]
.

Here

cmj = amj +

j−1∑
k=1

bmk, j = 2, . . . , n− 1, cm1 = am1,(3.11)

dm =

n−1∑
k=1

bmk,

where

a1j =

∫ ∞

0

a
Fj(a)

T �
j

Pj(a)da,(3.12)

a2j =

∫ ∞

0

(a− a1j)
2Fj(a)

T �
j

Pj(a)da,

and

b1k = −
∫ ∞

0

a
Fk(a)

p�k
Pk(da),(3.13)

b2k = −
∫ ∞

0

(a− b1k)
2Fk(a)

p�k
Pk(da).

For completeness we remind the reader that

T �
j =

∫ ∞

0

Fj(a)Pj(a)da,(3.14)

p�j = −
∫ ∞

0

Fj(a)Pj(da),

q�1 = 1, q�j = p�1 · · · p�j−1, j = 2, . . . , n.

If λ̃1 < 0, the endemic equilibrium is locally asymptotically stable provided that
the demographic dynamics are slow enough compared with the disease dynamics. If
the disease dynamics are slightly perturbed away from the endemic equilibrium, they
return to the endemic equilibrium in damped oscillations whose quasi-period (distance
between two adjacent local maxima), τ , is

τ ≈ 2π√
µθ

.(3.15)

τ is sometimes called the interepidemic period (cf. Anderson and May (1991), Table
6.1). Notice that the Assumptions H3 guarantee that θ > 0.

In Feng and Thieme (2000, section 8) we discuss whether λ̃1 switching its sign
gives rise to periodic solutions via a Hopf bifurcation; periodic solutions that are close
to the endemic equilibrium will have periods which are close to τ .
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If λ̃1 > 0 the endemic equilibrium is unstable, provided that the demographic
dynamics are slow enough compared with the disease dynamics. Instability means
that there exists a neighborhood of the endemic equilibrium such that there are solu-
tions that leave this neighborhood though they start arbitrarily close at the endemic
equilibrium. Actually it follows from Theorem 3.1 that the roots of the characteristic
equation are bounded away from the imaginary axis. As we have discussed in Feng
and Thieme (2000, section 7), the semiflow generated by the solutions of the model is
continuously differentiable and its derivatives at the equilibrium have their radius of
the essential spectral strictly less than 1. This implies that the endemic equilibrium
is a hyperbolic fixed point of the semiflow, and so is a saddle with nonempty local
stable and unstable C1-manifolds. Both the local stable and unstable manifold are
thin in so far as they do not contain open sets, and actually the local unstable man-
ifold is two-dimensional. (See, e.g., Shub (1987, Theorem III.2, Theorem III.8, and
Exercise II.2 in Chapter 5). These invariant manifolds are for maps, but an extension
to semiflows is possible.)

Before we start looking at special forms of the incidence function f in the next
sections, let us finish with the following general stability result.

Theorem 3.2. Let Assumption H2 be satisfied. Further, let

∂2f

∂S∂Ij
(S, 0, R) >

∂2f

∂Ij∂R
(S, 0, R) ≥ 0,

∂2f

∂Ij∂Ik
(S, 0, R) ≤ 0, j = 1, . . . , n− 1.

Then the endemic equilibrium is locally asymptotically stable for sufficiently small
µ > 0.

4. Some special cases and the length of the interepidemic period. The
formulas in the previous section simplify considerably if only one of the infected stages,
let us say stage m, is infectious, 1 ≤ m < n. The stages before this stage can be
various exposed stages, while the stages afterward could be various stages where the
individuals are removed (e.g., isolated). Mathematically this is reflected in

∂f

∂Ij
(S, 0, R) = 0 ∀j = m,(4.1)

∂2f

∂S∂Ij
(S, 0, R) = 0 =

∂2f

∂Ij∂R
(S, 0, R) ∀j = m,

∂2f

∂Ij∂Ik
(S, 0, R) = 0 ∀j = m, k = m.

It follows from the third equation in (3.8) that

∂f

∂Im
(S�, 0, R�)T �

mq
�
m = 1.

Equations (3.9) and (3.10) simplify to

θ =

[
∂2f

∂S∂Im
(S�, 0, R�)− ∂2f

∂Im∂R
(S�, 0, R�)q�n

]
T �
mq

�
mx

�

c1m
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and

λ̃1 = − 1

2c1m

[
c2m + c21m

2
θ + c1m −

n−1∑
j=1

∂2f

∂Ij∂Im
(S�, 0, R�)x�T �

j T
�
mq

�
j q

�
m

+
1

2

∂2f

∂I2
m

(S�, 0, R�)x�(T �
m)2(q�m)2 +

∂2f

∂Im∂R
(S�, 0, R�)q�nT

�
mq

�
mx

�d1

]
.

Another type of simplification, at least for θ, can be obtained if

f(S, ·)
S

= f0(·) does not depend on S,(4.2)

f(·, R) does not depend on R.

Then ∂f
∂S∂Ij

= 1
S

∂f
∂Ij

and (3.6) and (3.9)

θ =
x�

S�


n−1∑

j=1

∂f

∂Ij
(S�, 0, R�)T �

j q
�
j c1j




−1

.

By (3.8), x�/S� ≈ L/A, and R�
0 = N�

S� which implies that

x�

S� =
N� − S�

S� = R�
0 − 1.

So

θ = (R�
0 − 1)


n−1∑

j=1

∂f

∂Ij
(S�, 0, R�)T �

j q
�
j c1j




−1

(4.3)

≈ L

A


n−1∑

j=1

∂f

∂Ij
(S�, 0, R�)T �

j q
�
j c1j




−1

.

Let us combine both simplifications.
Theorem 4.1. Let f satisfy Assumptions H2 and H3 and both (4.1) and (4.2).

Then

θ =
R�

0 − 1

c1m

and

λ̃1 =
1

2c1m

[
−1

2
(R�

0 − 1)

(
c2m
c1m

+ c1m

)
− c1m

+

n−1∑
j=1

∂2f

∂Ij∂Im
(S�, 0, R�)x�T �

j T
�
mq

�
j q

�
m − 1

2

∂2f

∂I2
m

(S�, 0, R�)x�(T �
m)2(q�m)2

]
.

Theorem 4.2. Let f satisfy the assumptions of Theorem 4.1. Then the leading
root λ of the characteristic equation for the endemic equilibrium satisfies

�λ ≈
√

1

Ac1m
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in the sense that �λ√Ac1m → 1 as µ → 0.
Proof. This follows from (4.3) and Theorem 3.1 and L = 1/µ.
In the case that the disease does not cause any fatalities, the parameters c1m also

have an easy epidemiological interpretation. After integration by parts

c1m = D̄m +

m−1∑
j=1

Dj ,(4.4)

where D̄m is the expectation of remaining duration of the infective stage and Dj is
the expected duration of the jth infected stage (which is an exposed stage),

Dj =

∫ ∞

0

Pj(a)da, D̄m =
1

Dm

∫ ∞

0

aPm(a)da.

This generalizes a formula found by Dietz (1976) (see also Anderson and May (1982))
and clarifies its interpretation. Since Dietz (1976) and Anderson and May considered
exponentially distributed durations of the various stages for which the expected du-
ration and the expectation of remaining duration coincide, they were led to formulate
(4.4) with Dm replacing D̄m. Recall that a stage with fixed duration (without any
variance) has D̄m = Dm

2 . As we have already mentioned in the introduction, one
can construct distributions for the stage duration such that D̄m/Dm takes any value
between 1/2 and infinity, but for realistic distributions one expects it to take values
between 1/2 and 1. Anderson and May (1991) have compared 2π

�λ with observed in-
terepidemic periods of various childhood diseases. They get very good agreement for
diseases with relatively short infectious periods and less good agreement for diseases
with longer infectious periods where the calculated values are larger than the observed
ones. A possible explanation may be that the mean duration of the infectious stage
has to be replaced by the expectation of remaining sojourn. See section 7 for more
details.

5. Standard incidence and disease-related reduction in activity levels.
In Feng and Thieme (2000) we show that the endemic equilibrium is locally asymp-
totically stable, if the incidence is of generalized mass action type

f(S, I,R) = S〈κ, I〉 = S
n−1∑
j=1

κjIj ,

or if there are no disease fatalities and the incidence is of generalized standard type

f(S, I,R) =
S

N
〈κ, I〉, N = S +

n−1∑
j=1

Ij +R.

Here I = (I1, . . . , In−1) and κ = (κ1, . . . , κn−1) are nonzero, nonnegative vectors in

Rn−1 and 〈κ, I〉 =∑n−1
j=1 κjIj is the inner (or scalar) product on Rn−1. In regards to

the controversy about whether standard or mass action incidence are more appropri-
ate we refer to Hethcote (1994), Hethcote (1976), Anderson and May (1991, section
12.1), and De Jong, Diekmann, and Heesterbeek (1995). If disease symptoms may
cause people to stay in voluntary or enforced isolation, it appears plausible to modify
standard incidence to the following functional form:

f(S, I,R) =
S 〈κ, I〉

S + 〈γ, I〉+R
.
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The numbers γj ∈ [0, 1] give the fraction to which the activity of an infected individual
in stage j is reduced and γ = (γ1, . . . , γn−1). The numbers κj now are of the form
κj = γj κ̃j , with κ̃j representing the infectivity of an individual in stage j. In the

following we will evaluate θ and λ̃1 in (3.9) and (3.10) for this special case in terms
of parameters that are accessible to estimation or educated guess. We will show
that the endemic equilibrium is locally asymptotically stable for generalized standard
incidence, if the disease dynamics are much faster than the demographics and at
least some infected individuals survive the disease. The endemic equilibrium may
lose its stability, however, when standard incidence is modified to include disease-
reduced activity and infection periods with reduced activity are very long. We start
by calculating the various partial derivatives of f :

∂f

∂Ij
(S, I,R) =

Sκj

S + 〈γ, I〉+R
− S〈κ, I〉γj

(S + 〈γ, I〉+R)2
.

Hence

∂f

∂Ij
(S, 0, R) =

Sκj

S +R
,

∂f2

∂S∂Ij
(S, 0, R) =

κj

S +R
− Sκj

(S +R)2
=

Rκj

(S +R)2
,

∂f2

∂Ij∂R
(S, 0, R) = − Sκj

(S +R)2
,

∂f2

∂S∂Ij
(S, 0, R)− ∂f2

∂Ij∂R
(S, 0, R)q�n =

κj

S +R
+(q�n−1)

Sκj

(S +R)2
=

κj

(S +R)2
(R+q�nS).

From (3.9),

θ =
R� + q�nS

�

S�(S� +R�)
x�

∑n−1
j=1 κjT

�
j q

�
j∑n−1

j=1 κjT �
j q

�
j c1j

,

and from (3.8),

1 =
S�

S� +R�

n−1∑
j=1

κjT
�
j q

�
j .(5.1)

So

θ =

(
R�

S� + q�n

)
x�

S�
1∑n−1

j=1 κjT �
j q

�
j c1j .

(5.2)

Again from (3.8),

R�
0 =

n−1∑
j=1

κjT
�
j q

�
j ,(5.3)

and from (5.1),

1 =
S�

S� +R�R�
0.(5.4)
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This implies by (3.7) that

R�
0 − 1 =

R�

S� = q�n
x�

S� .(5.5)

Substituting this into the formula for θ, (5.2), yields

θ =
R�

0 − 1

q�n

R�
0 − 1 + q�n∑n−1

j=1 κjT �
j q

�
j c1j

, where

n−1∑
j=1

κjT
�
j q

�
j = R�

0.

We can use (3.8) to tie θ to average age at infection, A, and life expectation, L; with
A ≈ S�

x� L and (5.5) we obtain R�
0 − 1 ≈ q�n

L
A , and

θ ≈ L

A
q�n
L+A

A

1∑n−1
j=1 κjT �

j q
�
j c1j

, where

n−1∑
j=1

κjT
�
j q

�
j = R0 ≈ q�n

L+A

A
.

We notice that, in the case that there is exactly one infective stage, we obtain the
same formula for �λ as in Theorem 4.2.

In order to find out the sign of λ̃1 in (3.10), we look at the following derivatives:

∂2f

∂Ij∂Ik
(S, 0, R) = −(κjγk + κkγj)

S

(S +R)2
.

So

1

2

n−1∑
j,k=1

∂2f

∂Ij∂Ik
(S�, 0, R�)x�T �

j T
�
k q

�
j q

�
k = − S�

(S� +R�)2


n−1∑

j=1

κjT
�
j q

�
j




n−1∑

j=1

γjT
�
j q

�
j


x�

= − x�

S� +R�


n−1∑

j=1

γjT
�
j q

�
j


 .

Here we have used (5.1). Similarly

n−1∑
j=1

∂2f

∂Ij∂R
(S�, 0, R�)q�nT

�
j q

�
jx

�d1 = − x�

S� +R� q
�
nd1.

Substituting these expressions into the formula (3.10) for λ̃1, we find that

λ̃1 � −R�
0 − 1

q�n
(R�

0 − 1 + q�n)
S�

x�

∑n
j=1 κj

c2j+c21j
2 T �

j q
�
j∑n−1

j=1 κjT �
j q

�
j c1j

−S�

x�

n−1∑
j=1

κjT
�
j q

�
j c1j −

n−1∑
j=1

γjT
�
j q

�
j + q�nd1,

with �meaning that the two expressions have the same sign. We use (5.5) to eliminate
S�,

λ̃1 � −(R�
0 − 1 + q�n)

∑n
j=1 κj

c2j+c21j
2 T �

j q
�
j∑n−1

j=1 κjT �
j q

�
j c1j

− q�n
R�

0 − 1

n−1∑
j=1

κjT
�
j q

�
j c1j −

n−1∑
j=1

γjT
�
j q

�
j + q�nd1.
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It may be tempting to conclude from this formula that the endemic equilibrium is
locally asymptotically stable, if q�n = 0, i.e., if nobody survives to the removed class.
But remember that we assumed that q�n is not too small, in particular not zero, in the
preparatory analysis of section 3. However, we can show that the endemic equilibrium
is locally asymptotically stable, if the activity in the various infected classes is not
much reduced.

Theorem 5.1. Let Assumption H3(b) be satisfied and the incidence f be given
as generalized standard incidence

f(S, I,R) = S
〈κ, I〉
N

, N = S +
n∑

j=1

Ij +R.

Then the endemic equilibrium is locally asymptotically stable if the disease dynamics
are much faster than the demographic dynamics.

Proof. From the last formula for λ̃1 we see that it is sufficient to show that

∆ := q�nd1 −
n−1∑
j=1

γjT
�
j q

�
j ≤ 0,

if γj = 1 for j = 1, . . . , n− 1. By (3.11) and (3.13),

∆ = −q�n
n−1∑
j=1

1

p�j

∫ ∞

0

aFj(a)Pj(da)−
n−1∑
j=1

q�j γj
∫ ∞

0

Fj(a)Pj(a)da.

Since
q�n
p�
j
≤ q�j by (2.6), we obtain by integration by parts that

∆ ≤
n−1∑
j=1

(1− γj)

∫ ∞

0

Fj(a)Pj(a)da ≤
n−1∑
j=1

(1− γj)T
�
j γ = 0.

We mention a related result by Gao, Mena-Lorca, and Hethcote (1996) for a
susceptible-exposed-infectious (SEI) model with exponentially distributed latent and
infectious periods, but without assuming different time scales. We also mention that,
in an HIV/AIDS model with infection-age dependent infectivity, no recovery from
the disease, and high disease fatality, the endemic equilibrium may lose its stability
(Thieme and Castillo-Chavez (1993)).

We could use the last estimate in the proof of Theorem 5.1 to figure out how
close the γj have to be to 1 for the endemic equilibrium to be locally asymptotically
stable. We do not go into this, but rather consider the case of a disease that causes
no fatalities. Then qj = 1 and

d1 =

n−1∑
j=1

D�
j , T �

j = Dj =

∫ ∞

0

Pj(a)da.

We obtain

λ̃1 � −R�
0

∑n−1
j=1 κj

c2j+c21j
2 Dj∑n−1

j=1 κjDjc1j
− 1

R�
0 − 1

n−1∑
j=1

κjDjc1j +

n−1∑
j=1

(1− γj)Dj .
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Let us assume that there is some k such that the individuals in the stages k +
1, . . . , n − 1 are completely isolated while the individuals in the stages 1, . . . , k have
no reduced activity, i.e.,

γj = 1, j = 1, . . . , k, κj = γj = 0, j = k + 1, . . . , n− 1.

Then

λ̃1 � −R�
0

∑k
j=1 κj

c2j+c21j
2 Dj∑k

j=1 κjDjc1j
− 1

R�
0 − 1

k∑
j=1

κjDjc1j +

n−1∑
j=k+1

Dj ,(5.6)

where

k∑
j=1

κjDj = R�
0.

In the case that there is exactly one infectious stage, namely j = k, then κj = 0 for
j = 1, . . . , k − 1 and formula (5.6) simplifies to

λ̃1 � −R�
0

c2k + c21k
2c1k

− R�
0

R�
0 − 1

c1k +

n−1∑
j=k+1

Dj .(5.7)

We see from (5.6) that increasing the lengths of the stages k+1, . . . , n−1 (the isolated
stages) makes the equilibrium less stable or more unstable.

6. A model with an isolated class. We consider a model of S−E−I−Q−R
type, with E denoting the size of the exposed part of the population, I the size of the
(effectively) infectious class, and Q the size of the isolated (quarantined) part. We
assume that there are no disease fatalities and that the disease dynamics are much
faster than the demographics. In an earlier work (Feng and Thieme (1995)) we argue
(similarly as in section 5) that the incidence should have the functional form

f(S,E, I,Q,R) = κ
SI

S + E + I +R
.

We could handle this incidence as a special case of section 5. In particular, it follows
from Theorem 5.1 that the endemic equilibrium is locally asymptotically stable if f is
the standard incidence κSI/N with N = S+E+ I +Q+R. We have shown in Feng
and Thieme (2000) (even without the assumption of different time scales) that the
endemic equilibrium is also locally asymptotically stable if the incidence is of mass
action type κSI.

Alternatively we base our analysis on the approach in section 4 which is more
straightforward in this case. Since we assume that the disease causes no fatalities, we
have

S(t) + E(t) + I(t) +Q(t) +R(t) → Λ

µ
= N�.

This implies that the endemic equilibrium and its stability remain the same if we
consider

f(S, I1, I2, I3, R) = κ
SI2

N� − I3
.
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f satisfies both (4.1) and (4.2) in section 4 with m = 2. It follows from Theo-
rem 4.1 that

λ̃1 =
1

2c12

[
−1

2
(R�

0 − 1)

(
c22
c12

+ c12

)
− c12 +

∂2f

∂I2∂I3
(S�, 0, R�)x�T �

3 T
�
2 q

�
3q

�
2

]
.

Now

∂2f

∂I2∂I3
(S, 0, R) = κ

S

(N�)2
.

By (3.8),

R�
0 = κT �

2 q
�
2 =

N�

S� and
x�

N� =
N� − S�

N� = 1− 1

R�
0

.

So

∂2f

∂I2∂I3
(S, 0, R)T �

2 q
�
2x

� =
R�

0 − 1

R�
0

and

x�

S� =
N� − S�

S� = R�
0 − 1.

Since the disease is not fatal, q�j = 1, and

λ̃1 � 1−R�
0

2

(
c22
c12

+ c12

)
− c12 +

R�
0 − 1

R�
0

T �
3 .

After reorganizing the terms and realizing that T �
3 = DQ is the expected duration

(mean length) of the isolation (quarantine) period,

λ̃1 � −D 
Q +DQ,

D 
Q =

R�
0(R�

0 + 1)

2(R�
0 − 1)

c12 +
R�

0

2

c22
c12

.(6.1)

This is the same formula as in (5.7). Recall (3.11) to (3.13), ci2 = ai2 + bi1, i = 1, 2.
Since Fj ≡ 1,

b11 = −
∫ ∞

0

aP1(da) = DE , b21 = −
∫ ∞

0

(a− b11)
2P1(da) = VE ,

with DE being the expected duration of the exposed stage and VE its variance, while

a12 =

∫∞
0

aP2(a)da

T2
= D̄I , a22 =

1

T2

∫ ∞

0

(a− a12)
2P2(a)da,

with DI being the average duration of the infective stage and D̄I the average expec-
tation of remaining duration in the infective stage. So

c12 = D̄I +DE , c22 = a22 + VE ,

and

D 
Q =

R�
0(R�

0 + 1)

2(R�
0 − 1)

(D̄I +DE) +
R�

0

2

a22 + VE

D̄I +DE
.(6.2)



ARBITRARILY DISTRIBUTED PERIODS OF INFECTION II 1001

Stability of the endemic equilibrium. We have the following result from
Theorem 3.1.

Theorem 6.1. If the expected duration of the isolation period, DQ, is shorter

than D 
Q, then the endemic equilibrium is locally asymptotically stable provided the

disease dynamics are fast enough compared to the demographic dynamics.
If DQ > D 

Q, then the endemic equilibrium is a saddle provided the disease dy-
namics are fast enough compared to the demographic dynamics.

R�
0 and DE have clear interpretations and reasonable data are available, VE and

D̄I have clear interpretations but hardly any data are available, while a22 is even hard
to interpret. We can rewrite it in the following form, however,

a22 =
1

DI

∫ ∞

0

[
(a−DI)

2 + 2(a−DI)(DI − D̄I) + (DI − D̄I)
2
]
P2(a)da

=
1

DI

∫ ∞

0

(a−DI)
2P2(a)da− (DI − D̄I)

2.

Integrating by parts,

a22 =
1

3
D2

I − (DI − D̄I)
2 +

1

3DI
Z3

I ,(6.3)

where Z3
I is the third central moment of the length distribution of the infectious pe-

riod. If Z3
I ≤ 0 (e.g., if the length of the infectious period is symmetrically distributed

about its mean), then

a22 ≤
[
ξ2

3
− (ξ − 1)2

]
D̄2

I , ξ =
DI

D̄I
≤ 2.

The last estimate follows from (1.5). The expression in the bracket has a global
maximum at ξ = 3/2, so

Z3
I ≤ 0 =⇒ a22 ≤ 1

3
D2

I − (DI − D̄I)
2 ≤ 1

2
D̄2

I .(6.4)

If Z3 = 0, the first inequality is an equality. In particular, if the infectious stage has
a fixed duration, then a22 = 1

3D̄
2
I . However, if the duration of the infectious period

is exponentially distributed, then a22 = b22 = VI = D2
I = D̄2

I .

Still, rewriting the equation for D 
Q as

D 
Q =

R�
0

2
(D̄I +DE)

[R�
0 + 1

R�
0 − 1

+
a22 + VE

(D̄I +DE)2

]
(6.5)

suggests that perhaps the second term in [·] is of little practical importance compared
to the first one which is bigger than 1. We will explore this further in the discussion
where we also apply this formula to scarlet fever.

Saddle point property of an unstable endemic equilibrium. If DQ > D 
Q,

it follows from Theorem 3.1 and the subsequent remarks that the endemic equilibrium
is a saddle of the solution semiflow with a two-dimensional local unstable C1-manifold.
This means in particular that there is a neighborhood of the endemic equilibrium such
that all solutions that start in this neighborhood but not on the stable manifold have
to leave this neighborhood. Notice that the stable manifold does not contain open
sets, so there are plenty of points in this neighborhood that are not in the stable
manifold.
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Hopf bifurcation of periodic solutions. It is a natural question whether,
if the endemic equilibrium is unstable, periodic solutions oscillate around it. One
would look for an answer in the framework of Hopf bifurcation. So far the model
system shows no explicit parameter. The natural bifurcation parameter is the length
of the isolation period. To bring this parameter, DQ = D3, into the model, we set

P̃3(a) = P3 (aD3) , F̃3(a) = F3 (aD3) , and replace P3(a) by P̃3(a/D3) and F3(a)
by F̃(a/D3). Notice that D̃3 =

∫∞
0

P̃3(a)da = 1. Then the right-hand side of the
characteristic equation (A.1) becomes an analytic function in (D3, λ) for D3 > 0,
�λ > −µ. It follows from Theorem 3.1 that we can apply the global Hopf bifurcation
theory by Fiedler (1986); remember that our model can be reformulated as a system of
Volterra integral equations in terms of S,E, I,Q,R (Feng and Thieme (2000), section
2.3).

Theorem 6.2. For each sufficiently small µ > 0 we obtain a continuum Cµ of
pairs (DQ,x), where x = (S,E, I,Q,R) is a periodic solution or a center (equilibrium
for which the characteristic equation has imaginary roots). The continuum contains
both centers and periodic solutions.

In our special situation we can easily extract the following extra information,
namely, that each continuum Cµ contains pairs (DQ(µ),x(µ)) with centers x(µ) such

that DQ(µ) → D 
Q, x(µ) → (S�, 0, 0, 0, R�) as µ → ∞. Recall S�, R� from (3.7). Un-

fortunately, in this context, it is not possible to infer from the global Hopf bifurcation
theory how big the continua (connected sets) are. Nor is it possible to say in which
direction they extend.

As for the difficulty in applying local Hopf bifurcation theorems we refer to the
discussion in Feng and Thieme (2000, section 8).

7. Length distributions of infection periods matter beyond their av-
erages. Exponentially distributed infections periods (where individuals leave the in-
fection stage at constant rates) have the curious feature that the reciprocal exit rate
equals three different things at the same time: the average stage duration, the aver-
age expectation of remaining duration, and the standard deviation of the stage. So
it is not surprising when formulas that have derived for endemic models with expo-
nentially distributed stage duration need to be modified when they are replaced by
general distributions.

The length of the interepidemic period. In section 4, we have found that
the formula by Dietz (1976) for the length of the interepidemic period,

τ = 2π
√
A(DE +DI),(7.1)

derived for a childhood disease model with exponentially distributed latent and infec-
tious periods, has to be modified for general distributions as

τ = 2π
√
A(DE + D̄I)(7.2)

with the average expectation of remaining duration replacing the average duration for
the infectious period (cf. (4.4)). In order to produce biennial outbreak patterns, Dietz
calculated for measles DE +DI should not be larger than 9 days (actually about 8.2
days). This seems to be in conflict with an average latent period of about 7.5 days
and an infectious period of about 6.5 days. He then argues that this deviation may
be due to infectives that are isolated as soon as symptoms show up or to other length
distributions of the latent or infectious period. Anderson and May (1991, Table 6.1)
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seem to have followed the first suggestion and take DE +DI = 12 days which is still
somewhat larger than 9 days and yields τ = 2.41 years which is rounded to 2 years
in Table 6.1.

Let us follow the second of Dietz’s suggestions. There seems to be little variation
in the length of the infectious period which is between 6 and 7 days, so we may try
D̄I ≈ DI/2 ≈ 3.5 which gives us DE + D̄I = 11 days, which is still larger than the
required 8.2 days but smaller than Anderson and May’s DE + DI = 12 days. We
can combine the two approaches deferring that the average length of the effective
infectious period is about 4 days. Assuming that all the variation comes from the
latent period, we would end up with DE + D̄I = 7.5 + 2 = 9.5 days.

Rubella is one of the childhood diseases where formula (7.1) does not give good
agreement with the reported average length of the interepidemic period, 3.5 years
(Anderson and May (1991), Table 6.1). From Table 6.1 we take A = 11 years. Again
DI is only the length of the effective part of the infectious period assuming that
children are isolated after symptoms appear. There seems to be almost no variation
in the length of the total infectious period of 11 to 12 days. One may infer from
the latent period of 7 to 14 days and the incubation period of 14 to 21 days that
the length of the effective infectious period is 7 or 8 days. Assuming that there is
almost no variation in the length of the effective infectious period, D̄I is about 4 days
yielding DE + D̄I ≈ 14 days, while DE + DI ≈ 18 days as in Anderson and May’s
(1991) table. Formula (7.1) now provides an interepidemic period of approximately
4.6 years, while formula (7.2) gives approximately 4.1 years. This is still larger than
the observed 3.5 years, but considerably closer.

A word of caution is in order at this place. It must be emphasized that formula
(7.2) only provides the interepidemic period as long as the endemic equilibrium is sta-
ble and the disease dynamics exhibit damped oscillations. The interepidemic periods
reported in Anderson and May (1991) refer to undamped recurrent disease outbreaks,
however, and the values provided by (7.2) may have no relation whatsoever to the
actual values, for (7.2) is obtained by linearization about the endemic equilibrium,
while the dynamics of undamped recurrent outbreaks are governed by strong nonlin-
ear effects (see, e.g., Schwartz and Smith (1983), Olsen, Truty, and Schaffer (1988),
Grenfell, Bolker, and Kleczkowski (1995)).

Stability of the endemic equilibrium. Continuing the discussion started in
Feng and Thieme (1995) whether a long enough isolation (or quarantine) period can
destabilize the endemic equilibrium and lead to undamped oscillations, in section 6
we found a threshold D 

Q such that the endemic equilibrium is locally asymptotically

stable if the expected length of the isolation period, DQ, satisfies DQ < D 
Q and

unstable if DQ > D 
Q,

D 
Q =

R�
0

2
(D̄I +DE)

[R�
0 + 1

R�
0 − 1

+
a22 + VE

(D̄I +DE)2

]
,(7.3)

where DE and DI are the average lengths of the latency (or exposed) period and the
(effective) infectious period, respectively, D̄I , the average expectation of the remaining
duration of the (effective) infectious period and VE , the variance of the duration of
the latency period. Further a22 > 0 and

a22 =
1

3
D2

I − (DI − D̄I)
2 +

1

3DI
Z3

I ,(7.4)
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where Z3
I is the third central moment of the (effective) infectious period.

Formula (7.3) yields an estimate from below for D 
Q,

D 
Q >

R�
0

2
(D̄I +DE) ≥ R�

0

2

(
DI

2
+DE

)
.

This shows that the average length of the isolation period must be quite long compared
to the average length of latency period if the basic reproduction ratio is large, in order
to make the endemic equilibrium unstable. This rules out isolation as single cause
of periodic outbreaks for quite a few childhood diseases. We mention that recurrent
outbreaks of childhood diseases can be caused by seasonal or stochastic fluctuations
in the per capita infection rate; see Dietz and Schenzle (1985), Hethcote and Levin
(1989), and Grenfell, Bolker, and Kleczkowski (1995) for reviews and references.

If
R�

0

2 (D̄I + DE) is not too large, the estimate above may also be a reasonable
approximation of (7.3), because the second term in [·] can perhaps be neglected com-
pared to the first one which is bigger than 1.

Let us corroborate this conjecture. If the length of the infectious period is sym-
metrically distributed about its mean, we have the estimate a22 ≤ D̄I/2. If the
infectious period has fixed duration, a22 = D̄I/3. However, if the infectious period
has exponential distribution, a22 = DI = D̄I .

The only data for VE we could find are the ones for measles in Bailey (1975,
Chapter 15), Gough (1977), and Becker (1989), all of which suggest VE

D2
E

≈ 1
25 . In

general, for diseases with a maximum latency period, D•
E ,

VE ≤ D2
E

(
D•

E

DE
− 1

)
.

For all childhood diseases in Anderson and May (1991, Table 3.1) one can safely

assume that
D•

E

DE
≤ 4

3 , hence VE ≤ D2
E

3 . This, together with the upper estimates for

a22, suggests that the term a22+VE

(D̄I+DE)2
may be of minor practical importance in the

formula for D in (7.3).
Most of the data are of the form that they give a minimum and maximum stage

duration, D◦ and D•. For simplicity we let

P (a) = 1, a ≤ D◦, P (a) = 0, a ≥ D•,

and the graph of P be a line connecting (D◦, 1) to (D•, 0) otherwise. In other words,
P is absolutely continuous and

P ′(a) = 0, a ∈ (0, D◦) ∪ (D•,∞),

P ′(a) = − 1

D• −D◦ , a ∈ (D◦, D•).

Then, for m ∈ N0,

∫ ∞

0

amP (a)da = − 1

m+ 1

∫ ∞

0

am+1P ′(a)da =
1

m+ 1

1

D• −D◦

∫ D•

D◦
am+1da

=
1

(m+ 1)(m+ 2)

(D•)m+2 − (D◦)m+2

D• −D◦ .
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With m = 0,

D =
D• +D◦

2
,

and we see that the stage length is symmetrically distributed about its mean such
that the third central moment is 0. Further,

D̄ =
1

3

(D•)3 − (D◦)3

(D•)2 − (D◦)2
.

Scarlet fever in England and Wales. For scarlet fever in England and Wales
(1897–1978), Anderson and May (1982, Tables 1 and 2; 1991, Table 6.1) report an
average age of infection between 10 and 14 years and an average life expectation that
rises from 60 to 70 years. We assume L = 65 years and A = 12 years which leads to
a basic reproduction ratio of R�

0 ≈ 6.4. Anderson and May (1991, Table 3.1) give a
latent period of 1 or 2 days, and infectious period of 14–21 days, and an incubation
period of 2 or 3 days.

Assuming that children stay at home as soon as symptoms occur, we assume an
effective infectious period of 1 or 2 days and an isolation period between 12 and 20
days. To be specific we assume DE = DI = 1.5 days. If we assume that the latency
period and the effective infectious period are exponentially distributed we obtain

D 
Q =

R�
0(R�

0 + 1)

2(R�
0 − 1)

3 +
R�

0

2
1.5 ≈ 18 days.

If we assume fixed latency and effective infectious periods, then

D 
Q ≈ 10 days.

Finally we use the approach of interpolating between minimum and maximum
durations by a piecewise linear duration function,

D◦
E = 1, D•

E = 2, D◦
I = 1, D•

I = 2.

Then

DE = DI = 1.5, D̄E = D̄I =
7

9
, VE = DE(2D̄E −DE) =

1

12
.

Since the length of the infectious period is symmetric about its mean, we can use the
first inequality in (6.5) as equality

a22 =
1

3
D2

I − (DI − D̄I)
2 =

37

162
≈ 0.228,

so

a22 + VE

(D̄I +DE)2
=

0.228 + 0.083

5.188
≈ 0.06

which confirms our previous impression that this term is of minor practical importance
in the evaluation of D 

Q. Finally we find

D 
Q ≈ 10.4 days.



1006 ZHILAN FENG AND HORST R. THIEME

We inferred from the data in Anderson and May (1991) that the isolation period
should lie between 12 and 20 days. This agrees with Anderson, Arnstein, and Lester
(1962) who report isolation periods for scarlet fever that last 2 or 3 weeks or even
longer. Formula (7.2) gives an interepidemic period of 1.7 years which is much lower
than the observed 3–6 years (Anderson and May (1991), Table 6.1). However, it
must be noticed that, for this model, the formula (7.2) which has been obtained by
linearization gives the interepidemic period only as long as the endemic equilibrium
is stable (and the oscillations are damped) or has just lost its stability such that the
oscillations have small amplitudes, i.e., for isolation periods smaller than 11 days.
Numerical calculations for the ODE model considered in Feng and Thieme (1995)
have shown that the interepidemic period very sensitively increases with the length
of the isolation period and that (7.2) can no longer be used for its determination.

Appendix: The roots of the characteristic equation. In Feng and Thieme
(2000, section 7) we derived the characteristic equation associated with an equilibrium
as

1 = −1−∏n
k=1 Kk(λ+ µ)

λ+ µ

∂f

∂S
(S∗, I∗, R∗) +

∂f

∂I1
(S∗, I∗, R∗)L1(λ+ µ)

+

n∑
j=2

∂f

∂Ij
(S∗, I∗, R∗)Lj(λ+ µ)

j−1∏
k=1

Kk(λ+ µ),

where S∗ and I∗j , R
∗ give the equilibrium numbers of individuals in the susceptible

and the various infected stages and

Kj(z) = −
∫ ∞

0

e−zaFj(a)Pj(da), Lj(z) =

∫ ∞

0

e−zaFj(a)Pj(a)da

are Laplace–Stieltjes and Laplace transforms. Notice that, differently from Feng and
Thieme (2000), we now write (I∗, R∗) rather than I∗ because we consider the case
where infected individuals in the last stage have completely and permanently recovered
from the disease. This implies that Fn ≡ 1 ≡ Pn such that Kn = 0 and Ln(z) =

1
z .

So the characteristic equation simplifies to

1 = − 1

λ+ µ

∂f

∂S
(S∗, I∗, R∗) +

∂f

∂I1
(S∗, I∗, R∗)L1(λ+ µ)

+

n−1∑
j=2

∂f

∂Ij
(S∗, I∗, R∗)Lj(λ+ µ)

j−1∏
k=1

Kk(λ+ µ)(A.1)

+
∂f

∂R
(S∗, I∗, R∗)

1

λ+ µ

n−1∏
k=1

Kk(λ+ µ).

Since it is our aim to expand λ in powers of ε =
√
µ with µ being close to 0 (see

Theorem 3.1 ), we may like to convince ourselves that we can reformulate (A.1) in
dimensionless ingredients. Recall that the average duration of the jth disease stage is
denoted by Dj and given by formula (2.3). As in the remark in section 3 we can argue
that µDj � 1 and that σDj is neither very small nor very large while δ = µ/σ � 1.

Define P̃j(s) = Pj(s/Dj) and λ̃ = λ/σ. Then
∫∞
0

P̃ (s)ds = 1 and

Lj(λ+ µ) = Dj

∫ ∞

0

e−(λ+µ)DjsFj(Djs)P̃j(s)ds
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= Dj

∫ ∞

0

e−(λ̃+δ)σDjsFj(Djs)P̃j(s)ds,

Kj(λ+ µ) = −
∫ ∞

0

e−(λ+µ)DjsFj(Djs)P̃j(ds)

= −
∫ ∞

0

e−(λ̃+δ)σDjsFj(Djs)P̃j(ds).

Setting P̆j(r) = P̃j(r/(σDj)), we have

Lj(λ+ µ) =
1

σ
L̆j(λ̃+ δ), Kj(λ+ µ) = K̆j(λ̃+ δ),

where L̆j and K̆j are versions of Lj and Kj with duration and disease survival func-
tions that operate in dimensionless variables. Equation (A.1) now takes the form

1 = − 1

λ̃+ δ

1

σ

∂f

∂S
(S∗, I∗, R∗) +

1

σ

∂f

∂I1
(S∗, I∗, R∗)L̆1(λ̃+ δ)

+
1

σ

n−1∑
j=2

∂f

∂Ij
(S∗, I∗, R∗)L̆j(λ̃+ δ)

j−1∏
k=1

K̆k(λ̃+ δ)

+
1

σ

∂f

∂R
(S∗, I∗, R∗)

1

λ̃+ δ

n−1∏
k=1

K̆k(λ̃+ δ).

We return to (A.1) having convinced ourselves that we can assume that all ingre-
dients are dimensionless and µ � 1. We rewrite this equation as

0 = −(λ+ µ)− ∂f

∂S
(S∗, I∗, R∗) + (λ+ µ)

∂f

∂I1
(S∗, I∗, R∗)L1(λ+ µ)(A.2)

+(λ+ µ)

n−1∑
j=2

∂f

∂Ij
(S∗, I∗, R∗)Lj(λ+ µ)

j−1∏
k=1

Kk(λ+ µ)

+
∂f

∂R
(S∗, I∗, R∗)

n−1∏
k=1

Kk(λ+ µ).

For µ = 0, the characteristic equation (A.2) collapses to

0 = −λ+ λ
∂f

∂I1
(S�, 0, R�)L1(λ) + λ

n−1∑
j=2

∂f

∂Ij
(S�, 0, R�)Lj(λ)

j−1∏
k=1

Kk(λ).(A.3)

It follows from (3.8) that λ = 0 is a double root of (A.3) and that there are no
other roots with �λ ≥ 0. Notice that Lj(λ) < Lj(0) = T �

j and Kk(λ) < Kk(0) = p�j
whenever �λ ≥ 0, λ = 0. Actually, by the Riemann–Lebesgue lemma, we can conclude
that there is some ν > 0 such that all nonzero roots of (A.1) satisfy �λ ≤ ν.

By Assumption H3 (b) and a Riemann–Lebesgue-type argument applied to (A.1)
that works uniformly for sufficiently small µ > 0, we see that there exists some µ0 > 0
and some ν > 0, c > 0 such that, for all µ ∈ (0, µ0), (A.1) has no roots with �λ > −ν
and |λ| > c. Rouché’s theorem now implies that, for µ ∈ [0, µ0), if µ0 > 0 is chosen
small enough, there are exactly two roots of (A.2) with �λ > −ν and they lie in the
strip |�λ| < ν. Moreover �λ → 0 as µ → 0.
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Set ε =
√
µ. The special case considered in Feng and Thieme (1995) motivates

us to look for λ in the form λ = ελ̃(ε) with λ̃(0) = 0 and λ̃ being continuously
differentiable.

In order to facilitate the bookkeeping in our expansion, we use the theory of
cumulants (Kendall and Stuart (1958)).

Lemma A.1. Let F be a probability distribution such that the Laplace–Stieltjes
transform

F̌(z) =

∫ ∞

0

e−zaF(da)

exists for z in a complex neighborhood U of 0. Then

F̌(z) = exp

( ∞∑
m=1

(−1)m

m!
amz

m

)
, z ∈ U,

where a1 is the mean and a2 the variance of F ,

a1 =

∫ ∞

0

aF(da), a2 =

∫ ∞

0

(a− a1)
2F(da).

Lemma A.2. For any sequence (am)m≥1,

exp

( ∞∑
m=1

(−1)m

m!
amz

m

)
= 1− a1z +

1

2
(a2 + a2

1)z
2 +O(z3)

for z in a sufficiently small neighborhood of 0 where convergence holds.
Lemma A.1 implies that

Lj(λ+ µ) = T �
j exp

( ∞∑
m=1

(−1)m

m!
amj(λ+ µ)m

)
,

with

a1j =

∫ ∞

0

a
Fj(a)

T �
j

Pj(a)da, a2j =

∫ ∞

0

(a− a1m)2
Fj(a)

T �
j

Pj(a)da.

Further

Kk(λ+ µ) = p�k exp

( ∞∑
m=1

(−1)m

m!
bmk(λ+ µ)m

)
,

with

b1k = −
∫ ∞

0

a
Fk(a)

p�k
Pk(da), b2k = −

∫ ∞

0

(a− b1k)
2Fk(a)

p�k
Pk(da).

Substituting these relations in (A.2), we obtain

0 = −(λ+ µ)− ∂f

∂S
(S∗, I∗, R∗)

+(λ+ µ)

n−1∑
j=1

∂f

∂Ij
(S∗, I∗, R∗)T �

j q
�
j exp

( ∞∑
m=1

(−1)m

m!
cmj(λ+ µ)m

)

+
∂f

∂R
(S∗, I∗, R∗)q�n exp

( ∞∑
m=1

(−1)m

m!
dm(λ+ µ)m

)
,
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where

cmj = amj +

j−1∑
k=1

bmk, j = 2, . . . , n− 1, cm1 = am1, dm =

n−1∑
k=1

bmk.

By Lemma A.2,

0 = −∂f

∂S
(S∗, I∗, R∗) + (λ+ µ)


n−1∑

j=1

∂f

∂Ij
(S∗, I∗, R∗)T �

j q
�
j − 1




+(λ+ µ)
n−1∑
j=1

∂f

∂Ij
(S∗, I∗, R∗)T �

j q
�
j

(
−c1j(λ+ µ) +

c2j + c21j
2

(λ+ µ)2

)

+
∂f

∂R
(S∗, I∗, R∗)q�n

(
1− d1(λ+ µ) +

d2 + d2
1

2
(λ+ µ)2

)

+(λ+ µ)4h1(λ, µ) + (λ+ µ)3µh2(λ, µ),

with twice continuously differentiable functions h1, h2. By (3.5) and Taylor expansion,

n−1∑
j=1

∂f

∂Ij
(S∗, I∗, R∗)T �

j q
�
j − 1

=

n−1∑
j=1

∂f

∂Ij
(S∗, I∗, R∗)T �

j q
�
j − 1

µx
f(N − x, T1q1µx, . . . , Tn−1qn−1µx, qnx)

=

n−1∑
j=1

∂f

∂Ij
(S∗, 0, R∗)(T �

j q
�
j − Tjqj)

+
1

2

n−1∑
j,k=1

∂2f

∂Ij∂Ik
(S∗, 0, R∗)µx�T �

j T
�
k q

�
j q

�
k + µ2h0(µ),

with a generic continuously differentiable function h0. Now

(T �
j q

�
j − Tjqj) = −µ(T ′

jq
�
j + T �

j q
′
j) + µ2O(µ),

where T ′
j and q′j are derivatives of Tj and qj with respect to µ evaluated at µ = 0.

Hence −T ′
j = T �

j a1j , while

q′j =
j−1∑
k=1

p′k
pk
qj = −qj

j−1∑
k=1

b1k.

So (T �
j q

�
j − Tjqj) = µT �

j q
�
j c1j , and using these relations we obtain

0 = −
n−1∑
j=1

[
∂2f

∂S∂Ij
(S∗, 0, R∗)− ∂2f

∂Ij∂R
(S∗, 0, R∗)q�n

]
µ�T �

j q
�
jx

+(λ+ µ)2
n−1∑
j=1

∂f

∂Ij
(S∗, I∗1 , . . . , I

∗
n)T

�
j q

�
j

(
−c1j +

c2j + c21j
2

(λ+ µ)

)
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+(λ+ µ)µ

n−1∑
j=1

∂f

∂Ij
(S∗, 0, R∗)T �

j q
�
j c1j

+(λ+ µ)µ
1

2

n−1∑
j,k=1

∂2f

∂Ij∂Ik
(S∗, 0, R∗)x�T �

j T
�
k q

�
j q

�
k

+(λ+ µ)µ

n−1∑
j=1

∂2f

∂Ij∂R
(S∗, 0, R∗)q�nT

�
j q

�
jx(−d1)

+(λ+ µ)4h1(λ, µ) + (λ+ µ)2µh2(λ, µ),

with continuously differentiable functions h1, h2. Substituting λ = ελ̃, dividing by
µ = ε2 and expanding further, we obtain

0 = −
n−1∑
j=1

[
∂2f

∂S∂Ij
(S�, 0, R�

n)−
∂2f

∂Ij∂R
(S�, 0, R�)q�n

]
T �
j q

�
jx

�

+(λ̃2 + 2ελ̃)

n−1∑
j=1

∂f

∂Ij
(S�, 0, R�)T �

j q
�
j

(
−c1j +

c2j + c21j
2

ελ̃

)

+ελ̃
n−1∑
j=1

∂f

∂Ij
(S�, 0, R�)T �

j q
�
j c1j + ελ̃

1

2

n−1∑
j,k=1

∂2f

∂Ij∂Ik
(S�, 0, R�)x�T �

j T
�
k q

�
j q

�
k

−ελ̃
n−1∑
j=1

∂2f

∂Ij∂R
(S�, 0, R�)q�nT

�
j q

�
jx

�d1 + ε2h(λ̃, ε),

with a continuously differentiable function h. It follows from (3.8) and the implicit
function theorem that this equation has a solution λ̃ that is a continuously differen-
tiable function of small ε > 0 . In order to find the first term in the expansion we set
ε = 0:

0 = −
n−1∑
j=1

[
∂2f

∂S∂Ij
(S�, 0, R�)− ∂2f

∂Ij∂R
(S�, 0, R�)q�n

]
T �
j q

�
jx

�

−λ̃2
n−1∑
j=1

∂f

∂Ij
(S�, 0, R�)T �

j q
�
j c1j .

Hence λ̃0 = ı
√
θ with θ being given by (3.9),

θ =

∑n−1
j=1

[
∂2f

∂S∂Ij
(S�, 0, R�)− ∂2f

∂Ij∂R
(S�, 0, R�)q�n

]
T �
j q

�
jx

�∑n−1
j=1

∂f
∂Ij

(S�, 0, R�)T �
j q

�
j c1j

.

Using the formula for λ̃0, dividing by ε, and then setting ε = 0 yields

0 =

n−1∑
j=1

∂f

∂Ij
(S�, 0, R�)T �

j q
�
j

(
−2(λ̃1 + 1)c1j −

c2j + c21j
2

θ

)

+
n−1∑
j=1

∂f

∂Ij
(S�, 0, R�)T �

j q
�
j c1j
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+
1

2

n−1∑
j,k=1

∂2f

∂Ij∂Ik
(S�, 0, R�)x�T �

j T
�
k q

�
j q

�
k

−
n−1∑
j=1

∂2f

∂Ij∂R
(S�, 0, R�)q�nT

�
j q

�
jx

�d1.

Solving for λ̃1 yields (3.10).
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