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Abstract

We explore the impact of plant toxicity on the dynamics of a plant–herbivore interaction, such as that of a mammalian browser and its plant
forage species, by studying a mathematical model that includes a toxin-determined functional response. In this functional response, the traditional
Holling Type 2 response is modified to include the negative effect of toxin on herbivore growth, which can overwhelm the positive effect of
biomass ingestion at sufficiently high plant toxicant concentrations. Two types of consumption decisions of the herbivore are considered. One of
these (Case 1) incorporates the adaptation of the herbivore to control its rate of consumption of plant items when that is likely to lead to levels
of toxicity that more than offset the marginal gain to the herbivore of consuming more plant biomass, while the other (Case 2) simply assumes
that, although the herbivore’s rate of ingestion of plant biomass is negatively affected by increasing ingestion of toxicant relative to the load it can
safely deal with, the herbivore is not able to prevent detrimental or even lethal levels of toxicant intake. A primary result of this work is that these
differences in behavior lead to dramatically different outcomes, summarized in bifurcation diagrams. In Case 2, a wide variety of dynamics may
occur due to the interplay of Holling Type 2 dynamics and the effect of the plant toxicant. These dynamics include the occurrence of bistability,
in which both a periodic solution and the herbivore-extinction equilibrium are attractors, as well the possibility of a homoclinic bifurcation.
Whether the herbivore goes to extinction in the bistable case depends on initial conditions of herbivore and plant biomasses. For relatively low
herbivore resource acquisition rates, the toxicant effect increases the likelihood of ‘paradox of enrichment’ type limit cycle oscillations, but at
higher resource acquisition rates, the toxicant may decrease the likelihood of these cycles.
c© 2007 Elsevier Inc. All rights reserved.

Keywords: Plant–herbivore; Chemical defense; Plant toxicity; Bifurcation diagram; Limit cycle; Extinction
1. Introduction

Plants defend themselves against consumption by herbivores
through a variety of secondary chemicals that are toxic to
herbivores, or decrease their ability to digest plant biomass.
This has consequences for the dynamics of plant–herbivore
interaction. Chemically-mediated interactions between plants
and herbivores have been shown to play an important role
in ecology, evolutionary biology, and resource management
(e.g., see Bryant et al. (1983, 1992, 1994), Coley et al. (1985),
Palo and Robbins (1991), Rosenthal and Berenbaum (1992) and
Villalba et al. (2002)). Although recent research indicates that
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a large part of the explanation for why ‘the world is green’
involves the top–down control of predators on herbivores (e.g.,
Terborgh et al. (2006)), defensive chemicals clearly play a role
both in directly limiting the amount of plant biomass consumed
and indirectly reducing it by inflicting higher mortality and
lower growth and reproduction on herbivores (e.g., Murdoch
(1966)).

Besides limiting plant consumption, chemical defenses
may have implications for the ‘paradox of enrichment’
(Rosenzweig, 1971), which predicts that increasing plant
carrying capacity can lead to destabilization of plant–consumer
interactions under certain conditions, leading to limit cycle
oscillations. Limit cycles can arise in consumer–resource
interactions with a Holling Type 2 functional response (Holling,
1959a,b), because with that saturating response the per capita
prey feeding rate of the consumer population decreases with
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Fig. 1. Graphs of the functional response C(N ). (a) C(N ) is monotonically increasing. (b) C(N ) is unimodal and reaches its maximum at Nm =
2G

eσ0(1−2hG)
.

increasing plant density. The effect of the toxicant could be
similar, if in effect it imposes additional resource handling time
on the herbivore. On the other hand, if toxicants can decrease
the herbivore ability to graze plants to low levels, it is also
intuitively possible that the likelihood of such limit cycles could
be reduced.

Many other patterns of plant–herbivore interactions, at the
population, community, and ecosystem levels, are affected by
plant chemical defenses. For this reason, it is important to
understand theoretically the sort of effects that can be expected.
However, prior models have not explicitly incorporated toxicity
effects on the dynamics of mammalian herbivores and plants.
To do this we have formulated a functional response that
incorporates the occurrence of a toxicant in a plant that, above
certain levels of intake by the herbivore, can have a negative
effect on herbivore growth. Unlike all previous functional
response models of plant–mammal interactions (e.g., Abrams
(1989), Lundberg (1988), Lundberg and Astrom (1990) and
Spalinger et al. (1988)), our model explicitly incorporates
reduction in herbivore growth by toxins. We do not attempt
to model the detailed mechanisms of the toxicant’s effect on
the herbivore, but simply postulate a negative influence in the
functional response of the herbivore that increases with toxicant
intake. Justification for the function used are given in the
discussion and an appendix in the online version of this paper.

The functional response used here is

C(N ) = f (N )

(
1 −

T f (N )

M

)
, (1)

which was originally formulated by Li et al. (2006). This
functional response contains two factors. The first factor is the
traditional functional response, representing ingestion per unit
time, derived on the basis of search by the consumer moving
at a constant speed through a space with randomly distributed
prey of biomass density N , which may be a Holling Type 2; i.e.,

f (N ) =
eσ N

1 + heσ N
. (2)

The parameter e in Eq. (2) is the resource encounter rate,
which depends on the movement velocity of the consumer and
its radius of detection of food items. The parameter σ (0 < σ ≤

1) is the fraction of food items encountered that the herbivore
ingests, while h is the handling time for each prey item, which
incorporates the time required for the digestive tract to handle
the item.

The second factor in (1), which accounts for the negative
effect of toxin, is

1 −
T f (N )

M
or 1 −

f (N )

4G
,

where G = M/(4T ). The parameter M is a measure of the
maximum amount of toxicant per unit time that the herbivore
can tolerate, T is the amount of toxicant per unit plant biomass,
and the factor 4 simplifies the peak value of C(N ) (see Eq. (4)).
Therefore, the smaller the value of G, the larger the effect the
toxin has on the herbivores.

The fraction of encountered resources ingested, σ , is one
of the parameters that we will adjust. If σ is assumed to be
constant, then when 1/(2h) < G < 1/h, C(N ) is monotone
increasing with N , reaching an asymptote (see Fig. 1(a)). Over
a range of smaller values of G, 1/(4h) < G < 1/(2h), C(N )

is unimodal, declining to an asymptote after reaching a peak,

C(Nm) = G, at Nm, where Nm =
G

eσ(1/2 − hG)
. (3)

(See Fig. 1(b)). This decrease in C(N ) is the result of the
increasing negative effect of plant toxicant, which affects the
herbivore physiologically, decreasing its ingestion rate.

We will consider two possible behavioral actions by the
herbivore under the condition of high plant density (N > Nm).
In the first, Case 1, the herbivores are able to avoid further
consumption beyond the optimal rate of G, for any value of
N > Nm . Because ingestion of biomass could occur at levels
high enough to be damaging, it is reasonable that some animals
can adjust their rates of ingestion by controlling the parameter
σ when resource encounter rates are high (e.g., see Provenza
et al. (2003) and Marsh et al. (2007)). Ingestion is controlled
through this parameter, which can be called the ‘consumption
choice coefficient’. We expect that

σ ∝ Nm/N (4)

when N > Nm , as that would effectively ‘freeze’ C(N ) at its
maximum value.
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Therefore, we write C(N ) as C(N , σ ). A function that has
this property is

σ(N ) =

{
σ0 for N ≤ Nm

σ0
Nm

N
for Nm < N ≤ K ,

(5)

where σ0 > 0 is a constant. Let C1(N ) be the corresponding
function for the non-constant σ(N ) given in Eq. (5); i.e.,

C1(N ) =

{
C(N , σ0) for N ≤ Nm
G for N > Nm .

(6)

In the second behavior, Case 2, the herbivore is assumed
unable to control its consumption rate. Therefore, when the
herbivore is in an environment where plant density is high,
or on the ‘descending limb’ of the C(N ) curve (or N >

Nm), it consumes to the point where there is a negative
effect on ingestion and growth due to detrimental physiological
effects of the toxicant. Although this physiological state
leads to decreased toxicant ingestion, our assumption is
that the herbivore’s weakened state is chronic, because any
improvement in health would lead again to a temporary higher
ingestion rate and then a return to the weakened state.

Our goal is to study these two cases and compare them
with the pure Holling Type 2 functional response within the
Rosenzweig–MacArthur (RM) model

d N

dt
= r N

(
1 −

N

K

)
− f (N )P, (7a)

d P

dt
= B f (N )P − d P, (7b)

where f (N ) is given by Eq. (2), the plant grows logistically,
and d is herbivore mortality. The dynamics of the RM model
are well known. It is known to be necessary that

N∗
=

d

eσ(B − hd)
< K (8)

for the herbivore to be able to have a non-zero equilibrium, and
that

dc =
B

h

(
heσ K − 1
heσ K + 1

)
(9)

is the Hopf bifurcation point, beyond which (e.g., for smaller
values of d) limit cycle oscillations occur. In the case of the
RM, such changes in behavior are often studied along one or
two axes of a parameter space. As our main interest in this study
is to explore the joint effect of the plant toxin and herbivore
browsing on the outcomes of the plant–herbivore interaction,
our analysis is performed using two key parameters, G and w =

BG−d . The former is a measure of the capacity of the herbivore
to tolerate the plant toxicant, per unit toxicant supplied by
the ingested plant. The latter represents the maximum possible
energy intake by the herbivore, minus loss to mortality, and so
is a measure of maximum individual fitness.
Table 1
Definition of parameters used in the Model (10a)–(10c)

Definition

r Intrinsic growth rate of plant
T Amount of toxin contained per unit plant
M Max amount of toxin a herbivore can consume per unit time
G M/4T
h Time for handling one unit of plant
e Rate of encounter per unit plant
σ Fraction of food items encountered that the herbivore ingest
B Conversion constant (herbivore biomass per unit of plant)
K Carry capacity of plant
d Per capital death rate of herbivore unrelated to plant toxicity

2. Analysis of the toxin-determined functional response
model

A model using a functional response similar to (1) with two
plant species and one herbivore population was analyzed in Li
et al. (2006). In that paper, the factor σ was not considered, and
the analysis was conducted only for the case when G is in the
interval (1/2h, 1/h) in which C(N ) is monotone increasing.
In the present paper, we consider the case when G is in the
interval (1/4h, 1/2h) in which the function C(N ) is unimodal
for constant σ . We also allow for the possibility that σ is a
function of plant density N with the property specified in Eq.
(6). For the analysis presented in this paper, we focus on a
model that includes only one plant species and one herbivore
population. This will allow us to explore in more detail the
new dynamical behavior of the toxin-determined functional
response model (TDFRM) for two cases;

(1) when C(N ) is constant after reaching its maximum due to
the dependence of σ on N , and

(2) when C(N ) is unimodal (in which case σ is independent of
N ).

2.1. The two-dimensional TDFRM

Let N = N (t) and P = P(t) denote the densities of plant
and herbivore biomasses at time t . Then the two-dimensional
TDFRM is described by the following equations:

d N

dt
= r N

(
1 −

N

K

)
− C(N )P, (10a)

d P

dt
= BC(N )P − d P, (10b)

C(N ) = f (N )

(
1 −

f (N )

4G

)
, (10c)

where f (N ) is given in Eq. (2). B is the conversion of
consumed plant biomass into new herbivore biomass (through
both growth and reproduction), d is the per capita rate of
herbivore death due to causes unrelated to plant toxicity, r is
the plant intrinsic growth rate, and K is the carrying capacity.
All parameters and their units are defined in Table 1.
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Fig. 2. Plot of the function g(N ), which is the N -nullcline that determines
interior equilibria. It has a single hump for N ∈ (0, K ).

2.2. Case 1: Dynamics for non-constant σ(N )

Although it is not difficult to imagine that animals, when
encountering food at high levels, may eat to a point that is
detrimental to them, as noted above it is also likely that many
species are adapted for controlling their rates of ingestion. We
consider the case where the herbivore’s ‘consumption choice
function’, σ(N ), that has this property is given in Eq. (5), and
the consequent alteration of C(N ) to C1(N ) is given in Eq. (6).
System (10a)–(10c) with C1(N ) has two boundary equilibria at
which P = 0:

E0 = (N0, P0) = (0, 0), EK = (NK , PK ) = (K , 0).

There is one possible interior equilibrium, which we denote
by E∗

= (N∗, P∗) with 0 < N∗ < K , and P∗ > 0. For ease
of presentation, we rewrite the equation for N (Eq. (10a)) as

d N

dt
= C(N ) (g(N ) − P) or

d N

dt
= C1(N )(g1(N ) − P)

(11)

where

g(N ) =
r N

(
1 −

N
K

)
C(N )

and g1(N ) =
r N

(
1 −

N
K

)
C1(N )

. (12)

For C(N ), the zero isocline for d N/dt is (see Fig. 2)

P = g(N ) =
r(K − N )(1 + heσ0 N )2

eσ0 K [1 + eσ0(h − 1/4G)N ]
for all N . (13)

For C1(N ), the zero isocline for d N/dt is

P = g(N ) for N ≤ Nm and P = g1(N )

=
r N (K − N )

K G
for N > Nm . (14)

2.2.1. Equilibria
The interior equilibrium point E∗

= (N∗, P∗) is determined
by the intersection of (14) and the zero isocline for d P/dt = 0;

BC1(N ) = d with 0 < N∗ < K . (15)

As stated in the introduction, our analysis takes place in the
bifurcation plane defined by parameters G and w = BG − d.
It can be shown that the interior equilibrium point lies on the
(G, w)-plane within the region bounded by

1
4h

< G <
1

2h
0 < w < BG. (16)
We introduce the curve wu(G) = BG to represent the upper
boundary.

The left-hand side of Eq. (15), BC1(N ), cannot exceed BG
(see Eq. (6)), which is reached at Nm , so any solution N∗ will be
bounded, N∗

≤ Nm . The solution N∗ can be found by setting
the right-hand side of d P/dt equal to 0 to obtain the single
solution;

N∗
=

G(B − 2dh) −
√

∆v

2eσ0
( B

4 + dh2G − BhG
)

where ∆v = BG(BG − d). (17)

The next consideration is whether this solution N∗ can occur
for values less than K , so that it can be an interior equilibrium
point. This involves the question of whether Nm < K or
Nm > K . Nm is given by Eq. (4), and from that equation it
can be shown that Nm < K when

G <
eσ0 K

2(1 + heσ0 K )
≡ Gc. (18)

What this means is that for all G < Gc, it is true that
Nm < K , so that C(N ) can attain its maximum value G for
values of N < K . Let us first focus on the G-axis (along which
w = BG − d = 0). An equilibrium point can exist on that axis
precisely where N∗

= Nm < K . However, if G > Gc, then
N∗ < K only when

BC(K ) > d or, what is equivalent, when

w ≡ BG − d > B[G − C(K )],

since in that case the boundary equilibrium point (0, K )

is unstable. To see this more clearly, examine the (G, w)

bifurcation plane in Fig. 3. Gc lies along the G-axis (w = 0).
Because the G-axis and w-axis are not independent, if

one moves from low values to the right along the G-axis, d
must increase to maintain w = 0. Below the threshold point,
Gc, C(N ) can always attain a maximum value, G, at Nm , which
can satisfy BG −d = 0. However, when the threshold value Gc
is exceeded, above which Nm > K , then, because C(K ) cannot
exceed G (see Fig. 1(b)), C(N ) cannot reach the level G within
the domain (0 < N∗ < K ). Thus, no equilibrium N∗ (<K )

can occur along the G-axis for G > Gc. If one moves off the
axis in the positive w-direction, by decreasing d, however, a
point is reached at which BC(K ) > d = 0 again. Denote the
curve separating the region of space in which the N∗ exists from
where it does not exist by wK (G) (see Fig. 3), where

wK (G) =

{
B[G − C(K )] for G > Gc
0 for G < Gc

(19)

for values of w > wK (G) on the (G, w)-plane, an interior
equilibrium exists.

2.2.2. Stability of equilibria and Hopf bifurcation
Two boundary equilibria, E0 and EK , exist for all G and w,

and stabilities can easily be established for these two equilibria.
E0 is always a saddle point. The Jacobian matrix at EK =
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Fig. 3. The top panel shows the bifurcation diagram for Case 1; i.e., where σ is not constant. The axes are G and w = BG − d . The bottom panels (a, b, c)
are sketches of the phase portraits for (G, w) in various regions. See the text for explanation. The parameter values used are: r = 0.01, K = 1700 000, h =

1/200, eσ0 = 0.00012, and B = 0.00003 (for the purpose of presentation figures are not drawn to scale).
(K , 0) is

J (EK ) =

(
C1(K )g′(K ) −C1(K )

0 BC1(K ) − d

)
,

which has two eigenvalues: λ1 = C1(K )g′(K ) and
λ2 = BC1(K ) − d . From Fig. 2 we know that g′(K ) < 0 and
hence λ1 < 0. Therefore, the stability of EK is determined by
the sign of λ2 = BC1(K ) − d . Recall that N∗ satisfies the
equation BC1(N∗) − d = 0. It turns out that the stability of EK
and the existence of E∗ are closely related, as briefly noted for
four cases, referring to the curve wK (G) in Fig. 3 (details in Liu
et al. (in press)).

(i) G > Gc and w < wK (Region II in Fig. 3). We know from
the discussion above that there is no interior equilibrium.
EK is locally asymptotically stable.

(ii) G > Gc and w > wK (part of Region I). A unique interior
equilibrium exists and EK is unstable.

(iii) G < Gc and w < wK = 0. There is no interior
equilibrium and EK is locally asymptotically stable.

(iv) G < Gc and w > wK = 0 (Regions I and III). There is a
unique interior equilibrium and EK is unstable.

Now we consider the stability of the interior point E∗
=

(N∗, P∗). Because it is true that N ≤ Nm , we have g1(N ) =

g(N ). The Jacobian matrix at this point is

J (E∗) =

(
C(N∗)g′(N∗) −C(N∗)

BC ′(N∗)P∗ 0

)
. (20)
Since C ′(N∗) > 0, it can be shown that the stability of E∗ is
determined by the sign of g′(N∗) (see Liu et al. (in press)). Let
Ng denote the point at which g(N ) assumes its maximum. From
Fig. 4 we observe that, in the case of Ng > Nm , g′(N∗) > 0 as
N∗ < Nm < Ng . Hence, E∗ is unstable. It can be shown that
Ng = Nm if and only if G = Ĝ, where

Ĝ =
eσ0 K

2(2 + heσ0 K )
<

eσ0 K

2(1 + heσ2 K )
= Gc.

If G > Ĝ then it follows that Ng < Nm , and thus g′(N∗) =

0 for a unique N∗ < Nm . It is shown in Liu et al. (in press) that
the equations

BC(N∗) − d = 0 and g′(N∗) = 0 (21)

determine the condition for the Hopf bifurcation in the (G, w)-
plane. For example, we can use Eq. (21) to solve for d as a
function of G (for G > Ĝ) to get a bifurcation curve in d,
which is denoted by

d = dHopf(G)

=
B

2hG(1 + ρh)2

×

[(
G + ρhG −

ρ

4

) (
5ρh

4
− 1 + hG + ρh2G

)]
−

(
G + ρhG −

3ρ

4

) √
∆g (22)
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Fig. 4. Graphs of C1(N ) and g1(N ) for establishing stability of the interior point E∗
= (N∗, P∗). See the text for explanation.
Fig. 5. A Hopf bifurcation surface in terms of the parameter, d, as a function
of G and eσ0.

where ∆g = h
(
G + ρhG −

ρ
4

)
(2 + hG + ρh2G −

ρh
4 ), ρ =

eσ0 K .

Then a corresponding Hopf bifurcation curve in the (G, w)-
plane will be given by

w = wHopf(G) ≡ BG − dHopf(G).

A Hopf bifurcation surface in terms of d , as a function of G
and eσ0, is plotted in Fig. 5. We can see that, for fixed values of
e and σ0, there is a Hopf bifurcation curve d = dHopf(G), which
will in turn determine a Hopf bifurcation curve w = wHopf(G).
It is shown in Liu et al. (in press) that the stability of E∗

switches from stable to unstable when w increases and passes
the curve wHopf, and that stable periodic solutions exist for
w > wHopf (and close to wHopf).

Notice that the curve wHopf(G) intersects w = 0 at Ĝ and
that 0 < wHopf(G) < BG for all G such that Ĝ < G < 1/2h;
thus, we can draw the curve as shown in the bifurcation diagram
(see Fig. 3). In this bifurcation diagram, the region to the left of
the vertical line G = Ĝ is denoted by III and the region to the
right of G = Ĝ is denoted by I. Thus E∗ is always unstable in
Region III.

In Region I, G > Ĝ and Ng < Nm . From the analysis above
we know that the curve wHopf(G) divides Region I into I1 and
Table 2
Local stability results when σ is not constant

I1 I2 II III

E0 Saddle Saddle Saddle Saddle
E∗ Unstable Stable DNE Unstable
EK Saddle Saddle Stable Saddle
PS Stable DNE DNE Stable

DNE: does not exist; PS: Periodic solution.

I2, such that E∗ is unstable in I1 and locally asymptotically
stable in I2 and that a limit cycle exists in Region I1 (see Fig. 3).
These results are summarized in Table 2 and depicted in the
bifurcation diagram Fig. 3(a)–(c).

To verify the above analytic results, numerical simulations
were performed for the system (10a)–(10c) with C(N ) =

C1(N ) given by Eq. (6). These are shown in Appendix 1 in
the online version of this paper.

The bifurcation diagram displays the interplay of the Holling
Type 2 functional response and the ‘toxicant’ factor, 1 −

f (N )/4G, on the behavior of the model. The upper-right-
hand corner of the diagram, where G ≈ 1/2h and w is
relatively large, is the area of the plane where the toxicant has
the least effect on the dynamics (Region I1). In this region,
the system behaves almost like a simple consumer–resource
system with a single interior equilibrium point and Holling
Type 2 dynamics. The large value of w means that the
consumer has a high per capita energy input relative to energy
loss (mortality). Therefore, in the sense of the ‘paradox of
enrichment’ (Rosenzweig, 1971), the node is unstable and there
is a stable limit cycle around it. If G is held fixed, but w

is decreased, this is the same as increasing the mortality rate
d. This increase in herbivore mortality tends to stabilize the
equilibrium in moving across the Hopf bifurcation line from
Region I1 to I2, where it becomes a stable node. A sufficient
further increase in d (decrease in w), however, causes extinction
of the herbivore, as energy intake cannot keep up with losses
(Region II).

If we decrease both G and w, but keep d fixed (d = d0),
along a diagonal straight line from the middle of the right-hand
side of the bifurcation diagram (Fig. 3) towards the lower-left-
hand corner, then we can see the effects of G alone on the
system behavior. The system undergoes a series of changes
leading from dominance of simple Holling Type II dynamics to
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dominance by the effect of the toxicant. As G and w decrease,
moving from Region I2 to I1, the single stable interior point,
E∗

1 = (N∗

1 , P∗

1 ), becomes unstable, producing a limit cycle.
An interesting aspect is the role that the toxicant effect,

G, and the product, eσ0, play in the occurrence of the Hopf
bifurcation. For the RM model, the Hopf bifurcation occurs at
d = dc, given by Eq. (9). For the TDFRM, the Hopf bifurcation
occurs at d = dHopf(G) (Eq. (22)). We can fix all parameters
involved in the expression on the right-hand-side of Eq. (9)
and consider the relation between dcand dHopf. There are three
scenarios depending on the value of eσ0. In Fig. 6(a)–(c), the
solid curve is d = dHopf(G) and the dashed line is dc. In (a),
dc > dHopf(G) for all G, in which case the Hopf bifurcation
occurs for smaller d , as compared with the RM model. In
(b), dc < dHopf(G) for G > G0 and dc > dHopf(G) for
G < G0, where G0 lies between Gc and 1/4h, in which
case the Hopf bifurcation occurs for larger (smaller) d if G
is large (smaller). In (c), dc < dHopf(G) for all G, in which
case the Hopf bifurcation occurs for larger d . Thus the toxicant
effect appears to be stabilizing for the largest value of eσ0 (top
panel), as a lower value of d is required to reach the Hopf
bifurcation than in the RM model. For the smallest value of
eσ 0 (bottom panel) the opposite is true. It is clear from Fig. 6
that a change in eσ0 affects the relative locations of the RM
and TDFRM Hopf bifurcations along the d-axis. Now examine
more closely the effect of G. Fig. 7 shows that for larger eσ0
(left panel), decreasing G can stabilize the system (limit cycle
oscillations disappear as G decreases along the constant line
d = d1 and passes G0), whereas for a substantially smaller eσ0
(right panel), decreasing G can destabilize the system (limit
cycle oscillations appear as G decreases along the constant
line d = d1 and passes G0), similar to what we see moving
along the dotted line towards lower values of G in Fig. 3.
We offer an explanation for these contrasting behaviors in
the Discussion. The bifurcation diagram (Fig. 3) shows only
the destabilizing scenario. The stabilizing scenario can occur
for higher values of eσ0, which change the (G, w)-plane’s
configuration. Decreasing G also increases the period of the
limit cycle (see Appendix 2 in the online version of this paper).

2.3. Case 2. Dynamics for constant σ(N )

The case that σ(N ) = σ0 for all N means that the herbivore
does not deliberately decrease the fraction of encountered prey
it ingests; however, for prey densities N > Nm its rate of
ingestion is lowered due to physiological stress by the toxin.
In this case, our results show that the system exhibits more
complex dynamics than Case 1, including both bistability and
homoclinic bifurcations. The functions C(N ) and g(N ) are now
given by Eq. (1) and the left-hand term in Eq. (12), respectively,
for all values of N . This differs from Case 1, in which C1(N ) =

G for N > Nm , and it makes a large difference in the dynamics.

2.3.1. Equilibria
The conditions on equilibria in Case 2 are similar to Case

1 for G > Gc. For G < Gc, however, things are different in
Fig. 6. Diagram showing how the position of the Hopf bifurcation (dHopf)

varies with G in Case 1, compared with where it occurs (dc) for the same
parameters of the Holling Type 2 functional response in the absence of a
toxicant effect. Three different values of eσ0 are used; (a) 0.00025, (b) 0.00023,
and (c) 0.00019. Other parameter values are: r = 0.01, K = 1700 000, h =

1/200, and B = 0.00003.

Case 2. Again, for G < Gc on the G-axis (w = 0), there is an
equilibrium point. This is because w = BG − d = 0 along this
axis, and C(N ) reaches a maximum of G at N = Nm , where
Nm < K . Therefore, one equilibrium point is possible. Recall
that in Case 1 there is no descending limb on the right-hand side
of C(N ) (N∗ > Nm), so that, for G < Gc, if d was decreased
so that w > 0, there was still only one equilibrium. Now, for
Case 2, where a descending limb is possible, we can see that
when G < Gc (so that Nm < K ) and d is decreased slightly,
there are two possible equilibria. This is best seen in Fig. 8,
where various positions of the line d/B are shown intersecting
with the functional response curve C(N ). As d decreases
further [we move in the positive w-direction of the (G, w)

bifurcation plane (Fig. 9)], the equilibrium corresponding to the
descending limb will ultimately disappear, because the point
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Fig. 7. Diagram showing how the position of the Hopf bifurcation (dHopf) varies with G in Case 1, compared with where it occurs (dc) for the same parameters of
the Holling Type 2 functional response in the absence of a toxicant effect. (a) eσ0 = 0.00025, and (b) eσ0 = 0.00012. Other parameter values are as in Fig. 6.
of intersection of d/B and C(N ) will at some point exceed K
(see Fig. 8). The dividing line between one and two interior
equilibria is represented by the part of the wK (G) curve to the
left of Gc, which was equal to 0 in Case 1 (see the broken line
along G-axis is Fig. 3). This wK (G) curve forms a new dividing
line between Regions I and III (see Fig. 9).

The two interior equilibria E∗

i = (N∗

i , P∗

i ) (i = 1, 2) satisfy
the equations

BC(N) = d and P = g(N ) (23)

with 0 < N∗ < K . Solving the first equation in Eq. (23) for N ,
we get the following quadratic equation:

a2 N 2
+ a1 N + a0 = 0,

where

a0 = −dG, a1 = eσ0G(B − 2hd),

a2 = e2σ 2
0 (BhG − B/4 − dh2G).

Solutions are shown in Appendix 3 in the online version of
this paper. In particular, it can be shown that there are now two
possible solutions, or two possible interior equilibria, N∗

1 and
N∗

2 . To repeat, this simply reflects the fact that C(N ), unlike
C1(N ), is unimodal.

We can examine the nature of the solutions of Eq.
(23) (and consequently the corresponding equilibria) on the
bifurcation plane (Fig. 9). As mentioned above, in order to form
biologically meaningful interior equilibria, the two solutions
N∗

1 and N∗

2 need to satisfy the conditions 0 < N∗

1 , N∗

2 < K .
Notice from Eq. (21) that N∗

1 and N∗

2 are intersections of the
curve C(N ) and the horizontal line d/B (see Fig. 8). Since
N (t) ≤ K and C(N ) assumes its maximum value, G, at Nm
(see Fig. 8), the number of intersection points can be either two,
or one, or none. The curve wK (G) determines the nature of the
interior equilibria. More specifically, from the examination of
Fig. 8, the following two properties hold:

(P1): If Nm < K , then the line d/B intersects with the curve
C(N ) at two points, N∗

1 and N∗

2 . These are both less than K ,
if w < wK , but the line d/B intersects with the curve C(N )

at only one point less than K , N∗

1 , for w ≥ wK . Thus there
are two interior equilibria E∗

i = (N∗

i , P∗

i ) if w < wK and
only one if w ≥ wK . The two equilibria are, (1) the original
equilibrium, E∗

1 from Case 1, which can be either stable or
Fig. 8. The N∗ component of an interior equilibrium is shown as an
intersection of the curve C(N ) with a horizontal line d/B. If d/B is between
the values of C(K ) and G, then there are two intersections, N∗

1 and N∗
2 in

(0, K ), corresponding to two interior equilibria. If d/B is smaller than C(K )

then there is only one intersection N∗
1 in (0, K ) (not labeled), corresponding to

the unique interior equilibrium.

unstable, and a new one, E∗

2 , which is a saddle point. The saddle
point is unstable, and can lead to extinction of the herbivore, so
its existence represents danger to the herbivore. If d is small
enough, however, the d/B line is lower than the C(K ) line
in Fig. 8, which means that the herbivore is much safer from
extinction.

(P2) If Nm > K , then the line d/B intersects with the curve
C(N ) at only one point, N∗

1 , for w ≥ wK , and there is no
intersection for w < wK .

Summarizing the results, we can divide the region of interest
in the (G, w)-plane into three subregions.

I. In this region the unique interior equilibrium is either E∗

1 =

(N∗

1 , P∗

1 ) (in this case N∗

2 > K ) or E∗

2 = (N∗

2 , P∗

2 ) (in this
case N∗

1 ≤ 0).
II. In this region there is no interior equilibrium.

III. In this region, two equilibria exist, E∗

i = (N∗

i , P∗

i ) (i =

1, 2) (0 < N∗

1 < N∗

2 < K ).

The locations of the interior equilibria in these regions are
depicted in Fig. 9.

2.3.2. Stability of equilibria and Hopf bifurcation
At an interior equilibrium E∗

= (N∗, P∗), where N∗ and
P∗ satisfy the same equations as given in Eq. (23), the Jacobian
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Fig. 9. The top panel shows the bifurcation diagram for Case 2, where σ = σ0 (constant). The axes are G and w = BG − d . The bottom panels (a)–(f) are the
sketches of phase portraits for (G, w) in various regions. See the text for explanation. The parameter values used are the same as in Fig. 3.
matrix is the same as that given in Eq. (20). The interior
equilibrium E∗

2 is always a saddle whenever it exists, since
g′(N∗

2 ) > 0. Setting g′(N∗

1 ) = 0, together with BC(N∗

1 ) −

d = 0, we can obtain the same Hopf bifurcation curve, w =

wHopf(G) as given in Case 1, such that the interior equilibrium
E∗

1 is stable for w < wHopf and unstable for w > wHopf. A more
detailed proof of this result can be found in Liu et al. (in press).
It can be checked that the two curves, wHopf(G) and wK (G)

intersect at only one point, and that wHopf(G) is increasing, lies
below the line wu(G) for all Ĝ ≤ G ≤ 1/2h, and intersects
the w-axis at Ĝ. Using the above information we know that the
curve wHopf(G) is as shown in the bifurcation diagram Fig. 9.
The curve wHopf(G) divides Region I into regions I1 and I2
and divides Region III into regions III1 (=III1a ∪ III1b) and
III2. Results for the stability of equilibria in these regions are
summarized in Table 3.

Notice that a saddle-node bifurcation occurs along the G-
axis, or w = 0 line (so as w increases from 0 the single
equilibrium divides into a saddle point and a node) and a
Table 3
Local stability results when σ is constant

I1 I2 II III1a III1b III2

E0 Saddle Saddle Saddle Saddle Saddle Saddle
E∗

1 Unstable Stable DNE Unstable Unstable Stable
E∗

2 DNE DNE DNE DNE Saddle Saddle
EK Saddle Saddle Stable Stable Stable Stable
PS Stable DNE DNE DNE Stable DNE

DNE: Does not exist; PS: Periodic solution.

Hopf bifurcation occurs along the curve wHopf(G). The curve
w = wHopf(G) intersects w = 0 at the point (Ĝ, 0), which
is a cusp point of co-dimension 2, implying the possibility of a
homoclinic bifurcation (discussed in more detail in Liu et al. (in
press); see also Appendix 4 in the online version of this paper).
The homoclinic curve w = wHom(G) is shown in Fig. 9, which
further divides Region III1 into two subregions, III1a and III1b.
The corresponding phase portraits in these regions are depicted
in Fig. 9(a)–(f). We remark that, although the above analytic
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results are only for local stability analysis, Fig. 9(a)–(f) actually
illustrate global bifurcation diagrams and show how the local
phase portraits of various equilibria may be connected.

To verify the above analytic results, numerical simulations
were performed for the system (Eqs. (10a)–(10c)). These are
shown in Appendix 5 in the online version of this paper.

As in Case 1, we can attempt to interpret ecologically the
features of the new bifurcation diagram (Fig. 9). Again, we
decrease both G and w, but keep d fixed (d = d0), along
a diagonal straight line from the middle-right-hand corner
of the bifurcation diagram (Fig. 9) towards the lower-left-
hand corner, then we can see the effects of G alone on the
system behavior. The system undergoes a series of changes
leading from dominance of simple Holling Type II dynamics to
dominance by the effect of the toxicant. As G and w decrease,
moving from Region I2 to I1, the single stable interior point,
E∗

1 = (N∗

1 , P∗

1 ), becomes unstable, producing a limit cycle,
a result of increasing toxicant effect. As G and w continue
to decrease and move into Region III1b, the saddle point
moves into the positive quadrant, with N∗

2 < K , so there
are now two interior equilibria. Biologically, the behavior for
decreasing G means that in this region of parameter space
the individual herbivores may have trouble dealing with the
amount of toxicant that they are ingesting, and the possibility
exists of the herbivore being in an alternative state of poor
physiological condition; the saddle point E∗

2 = (N∗

2 , P∗

2 ). The
limit cycle around the point E∗

1 can be changed to a stable
node by holding G fixed and decreasing w into Region III2.
In Region III the consumer population is in some danger of
going to extinction due to the toxicant ingested from the plant,
because the herbivore has no control over its rate of ingestion,
which is completely determined by the density of plant food
items, N . The fate of the herbivore population depends on the
initial values of N and P . If N starts at a large value, then,
because the herbivore feeding rate increases with plant density,
the herbivores’ consumption will drive them to extinction and
the system will approach the boundary equilibrium N = K ,
P = 0. Also, even if N is initially small, but P also starts
out very small, the herbivore may ultimately go to extinction.
This is because an initially small value of P allows N to grow
long enough to reach density levels that lead to the herbivore
population dying out from toxicity. A relatively small initial
value of N , together with relatively large P , however, could
allow the system to be captured by the stable limit cycle around
E∗

1 .
Further decreases in G and w from Region III1b take the

system across the homoclinic threshold into Region III1a. In this
region, the limit cycle is close enough to the saddle that it is no
longer possible for a stable limit cycle to exist, as it is ‘captured’
by the saddle point. Now trajectories from every point in the
(N , P)-plane lead towards the saddle point and ultimately to
the boundary point E = (K , 0), where the herbivore is extinct.
Ecologically this means that the level of toxicant in the plant
is so high that the herbivore cannot survive on the plant. It can
obtain enough energy from the plant to survive only at the cost
of absorbing so much toxicant that it dies.
3. Discussion

This paper analyzes the equilibria and dynamics of a
toxicant-determined functional response using bifurcation
diagrams. Without the multiplicative factor representing
toxicant effect in Eq. (1), this model would reduce to the RM
model (Eqs. (7a) and (7b)); i.e., C(N ) reduces to f (N ). Our
study is limited to one resource, or plant type, of the herbivore,
so the effects of alternative diets are not possible in this model.
The herbivore has only two choices. In Case 1 it can reduce its
feeding rate when the density of resources exceeds the density
Nm , and thus prevent declining growth due to physiological
damage from the toxin. In Case 2 the herbivore continues to eat
beyond the rate at which it experiences harm from the toxicant.
In this case, it does not behaviorally limit intake. However,
when food density exceeds Nm , the toxic effects of the food will
put the herbivore in a physiological state in which its ingestion
decreases to a lower level.

In Case 1 the qualitative dynamics of the herbivore-plant
system are changed somewhat from the RM model. Decreasing
the value of G, while d is held constant (meaning that the
effects are due to the toxicant alone) lowers the rate of ingestion
of food, and viability of the consumer becomes completely
impossible for G < 1/4h. The toxicant also has an effect on
the stability, shifting the value of d at which a Hopf bifurcation
occurs. In Appendix 6 in the online version of this paper we
both offer a justification of the TDFRM and show that, for
relatively large values of G, the effect of decreasing G is
very similar in effect to increasing the herbivore’s handling
time of plant resources. Therefore, just as an increase in
handling time, h, in the RM model often decreases the dc of
the Hopf bifurcation (that is, it is stabilizing) (see Eq. (9)),
a decrease in G can decrease dHopf (or be stabilizing, as in
Fig. 7(a)). However, we also observed that decreasing G can
be destabilizing (Figs. 3 and 7(b)). This occurs for larger values
of eσ0 and again is consistent with what happens in the RM
model for large values of eσ0 (such that heσ0 K ≈> 1). In
that case an increase in h leads to an increase in dc in the RM
model. We show in Appendix 6 in the online version of this
paper that decreasing G in the TDFRM has the same qualitative
effect as increasing h in the RM or TDFRM. For all G < Ĝ
the interior equilibrium point is always unstable in the (G, w)-
plane. Decreasing values of G are also shown to cause a rapid
increase in the period of the limit cycle (Appendix 3 in the
online version of this paper). This appears to result from the
slow recovery of the herbivore from population declines, and
indicates that herbivore cycles may be longer when plants are
heavily defended by chemicals.

Research on herbivores indicates that aversion of toxic
plants (conditioned food aversions) can occur in large domestic
animals (Provenza et al., 2003), and has been indicated for
other herbivores as well. However, the possibility of continued
feeding on toxic resources to the point at which negative effects
occur should be considered, at least, possible. In Case 2, in
which this is allowed to happen, the qualitative behavior of the
plant–herbivore interaction is drastically changed. Now there is
the possibility of two interior equilibria. One state is the healthy
state in which N = N∗

1 is low enough that the herbivore’s food
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intake is below its peak level In this state herbivore grazing
exerts a top–down effect, controlling the plant biomass down
to this level. The other equilibrium, at a higher plant biomass
level, N∗

2 , represents a weakened state of the herbivore with a
smaller population value. In this state the herbivore density is
depressed, as it is controlled by the plant defenses. Its ingestion
rate is decreased because of physiological damage from the
toxin. The herbivore population is not trapped in that state,
because E∗

2 is a saddle point (unstable). A slight decrease in
N would produce positive feedback mechanisms taking the
herbivore back to E∗

1 , either a stable equilibrium or stable limit
cycle. But a slight increase in N would push the herbivore
population in the opposite direction, towards extinction.

Although our model considers only fixed chemical defenses
of the plant, it can be compared with a model of induced
defenses (Edelstein-Keshet and Rausher, 1989), which also
predicts a depression of herbivore density due to plant defenses.
Those authors modeled herbivore per capita growth rate as
r0(1 − Q̄/qc), where Q̄ is the average level of plant defenses,
qc is the critical level of defenses at which the herbivore growth
rate goes to zero, and r0 is the herbivore growth rate in the
absence of defenses. The authors also found that, unlike our
two model cases, only under unusual conditions did persistent
fluctuations arise. However, their model differs from ours
in that herbivore growth depends only on plant quality, not
quantity, and that the defenses are induced. More recently, Vos
et al. (2004) also found that a predator–prey interaction with
inducible defenses may be more stable than one with fixed
defenses.

Only one food source is considered in the TDFRM, so
while the model demonstrates that strong selective pressure
should occur for food aversion, the model does not include
the possibility of selection among a variety of food choices,
which have varying degrees of toxins of different types. As
has been noted (e.g., Dearing et al. (2005)) many terrestrial
herbivores feed on a variety of plants to reduce the impact of
any given toxicant. Kent et al. (2005) have shown that variations
in feeding between preferred and non-preferred prey can result
in cycles similar to real cycles. In particular, they noted that
the lengthening of the periods of microtine cycles from south to
north may be a result of slower recovery of favored plant species
as a function of latitude. Our model predicts cycles that increase
in period with strength of toxicant effects. However, we agree
that rigorous study of herbivore cycles requires consideration of
multiple resource species. The TDFRM model presented here is
capable of being extended to multiple plant species and multiple
herbivores. One of the uses to which the model will be put
in the future is to examine coexistence of plant and herbivore
species when not only the parameters of life history and trophic
interaction but also parameters for plant toxicant production
and herbivore ability to tolerate toxicants differ among species.
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