Lesson 38. Poisson formula

The Poisson formula enables us to solve the boundary
value problem V2®d = 0 in the unit disk, with prescribed
values ®(e*) on the boundary:
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where P(r,0) = 4 is the Poisson kernel.
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Using conformal mappings, this solves a boundary value
problem in any domain D for which a conformal map-
ping of D onto the unit disk is known.

Example. For a harmonic function @& in a disk |z| < R,
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Example. For a harmonic function ® in the upper half
plane y > 0,
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The Poisson formula in the unit disk can be derived
in terms of Fourier series, as r"*cosnf = Rez"™ and
r'*sinnf = Im z™ are harmonic. Thus, if

P(e") =ag+ Y (ancosnt + by sinnt)
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then ®(re??) = ag + > r"(an cosnb 4 by sinnb).
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Here we prove it using complex integration.



To see the connection with Cauchy’s formula, let W(z)
be a harmonic conjugate of ®(z), so that
F(z) = ®(z) +iW(z) is analytic in the unit disk |z| < 1.
We assume F' to be continuous in the closed disk |z| < 1.
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Here C is the unit circle traversed counterclockwise,
¢ =e", and d¢ = ie® dt = i dt.

Since % IS outside C, replacing z by % in the integral we

get, by Cauchy’'s Theorem,
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Subtracting these two integrals and using, for ( = et
z=re?, and ¢ — z = e(1 — rei(t=0)),
¢ z ¢(C— 2z 1—r2
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we get F(ret?) = 2—/0 F(YP(r t — 6) dt.
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Taking real parts we get
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There are some useful identities for the Poisson kernel:

for z = re'? and r < 1,
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Using this series form of the Poisson kernel, we get the
(complex) Fourier series representation for &:
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Since & is real, we can write ¢, = an + 16, Where
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Bn = L /QWCD(e’it) sinntdt  (B—p = —PBn).
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Using a«—, = o, and p_, = —Bn, the second sum van-
ishes and the first becomes the ordinary Fourier series
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Here ag = Z/O md(e') dt, an = ;/O P (e') cosnt dt,
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Example. Find ®(re?) if ®(e?) = cos? 6.

As cos? 9 = (1 + cos26), we have
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Example. Find ®(re?) if ®(e?) = sin6coso.

As sinf cosf = 5sin26, we have
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Mean value property. The Poisson formula for a har-
monic function & in a disk |z| < R:
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For r = 0, we get ®(0) = 2—/0 ®(Re't) dt.
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This implies the mean value property of a harmonic
function ® in a domain D:

For any circle C in D centered at zg € D, the value
d(zp) equals the mean value of ® on C.



Upper and lower bounds for the Poisson kernel.
As (R—1)2 < R?2—2Rrcosf +r2 < (R4 )2, we have
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Combining this with the Poisson formula and mean
value property, we obtain Harnack’s inequality for a
positive harmonic function ® in |z| < R:
If |2] =r < R then
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The maximum principle says that a function & har-
monic in a domain D cannot take its maximal value
inside D, unless it is a constant. Replacing ® by —&,
we obtain the minimum principle.

Proof. If & takes its maximal value M at zg € D then,
from the mean value property, it must be a constant
(equal M) in any disk centered at zg and contained in
D. Since D is connected, we can repeat this argument
for any point of that disk, eventually covering a path
from zp to any other point of D by disks such that
$d = M inside each of them.

A similar argument with Cauchy’s formula shows that
|f(z)] has a maximum principle for an analytic func-
tion f(z). However, |f(z)| does not have a minimum
principle unless f #= 0 in D, then |f(z)| is harmonic.
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