Items: 21 - 40 of 119
[21] 95b:13020 Heinzer, William; Johnston, Bernard; Lantz, David; Shah, Kishor Coefficient ideals in and blowups of a commutative Noetherian
domain.
J. Algebra 162 (1993), no. 2, 355--391. (Reviewer: J. K. Verma) 13D40 (13H05 13H10 13H15)
[22] 95a:13008 Heinzer, William; Rotthaus, Christel; Sally, Judith D. Formal fibers and birational extensions.
Nagoya Math. J. 131 (1993), 1--38. (Reviewer: Takashi Harase) 13B15 (13B35 13E05)
[23] 95a:13004 Heinzer, William J.; Lantz, David; Wiegand, Sylvia M. Prime ideals in birational extensions of polynomial rings.
Commutative algebra: syzygies, multiplicities, and birational algebra
(South Hadley, MA, 1992),
73--93, Contemp. Math., 159, Amer. Math. Soc., Providence, RI, 1994. (Reviewer: L. J. Ratliff, Jr.) 13A15 (13B25)
[24] 94i:13010 Heinzer, William J.; Lantz, David C. ACCP in polynomial rings: a counterexample.
Proc. Amer. Math. Soc. 121 (1994), no. 3, 975--977. 13E99 (13F20)
[25] 94i:13001 Commutative algebra: syzygies, multiplicities, and birational
algebra.
Papers from the AMS-IMS-SIAM Summer Research Conference held at Mount
Holyoke College, South Hadley, Massachusetts, July 4--10, 1992.
Edited by William J. Heinzer, Craig L. Huneke and Judith D. Sally.
Contemporary Mathematics, 159. American Mathematical Society, Providence, RI, 1994. viii+444 pp. ISBN: 0-8218-5188-8 13-06
[26] 94g:13001 Heinzer, William; Johnston, Bernard; Lantz, David First coefficient domains and ideals of reduction number one.
Comm. Algebra 21 (1993), no. 10, 3797--3827. (Reviewer: L. J. Ratliff, Jr.) 13A15 (13B22 13H10)
[27] 94d:13020 Heinzer, William; Rotthaus, Christel Formal fibers and complete homomorphic images.
Proc. Amer. Math. Soc. 120 (1994), no. 2, 359--369. (Reviewer: J. W. Brewer) 13F40 (13J15)
[28] 93k:13025 Gilmer, Robert; Heinzer, William An application of Jónsson modules to some questions concerning
proper subrings.
Math. Scand. 70 (1992), no. 1, 34--42. (Reviewer: Johnny A. Johnson) 13E99 (13E05 13E10)
[29] 93k:13019 Gilmer, Robert; Heinzer, William The family of residue fields of a zero-dimensional commutative
ring.
J. Pure Appl. Algebra 82 (1992), no. 2, 131--153. (Reviewer: Evan G. Houston) 13C15 (13C05)
[30] 93k:13004 Heinzer, William; Johnston, Bernard; Lantz, David; Shah, Kishor The Ratliff-Rush ideals in a Noetherian ring: a survey.
Methods in module theory (Colorado Springs, CO, 1991),
149--159, Lecture Notes in Pure and Appl. Math., 140, Dekker, New York, 1993. (Reviewer: L. J. Ratliff, Jr.) 13A15 (13C99 13D40)
[31] 93k:13003 Gilmer, Robert; Heinzer, William Primary ideals with finitely generated radical in a commutative
ring.
Manuscripta Math. 78 (1993), no. 2, 201--221. (Reviewer: L. J. Ratliff, Jr.) 13A15 (13B25 13F05)
[32] 93j:13027 Gilmer, Robert; Heinzer, William; Lantz, David The Noetherian property in rings of integer-valued polynomials.
Trans. Amer. Math. Soc. 338 (1993), no. 1, 187--199. (Reviewer: Jean-Luc Chabert) 13G05 (13B22 13B25 13E05)
[33] 93e:13028 Gilmer, Robert; Heinzer, William Artinian subrings of a commutative ring.
Trans. Amer. Math. Soc. 336 (1993), no. 1, 295--310. (Reviewer: Liam O'Carroll) 13E10 (12D15 12F99 13A99)
[34] 93c:13002 Heinzer, William; Lantz, David; Shah, Kishor The Ratliff-Rush ideals in a Noetherian ring.
Comm. Algebra 20 (1992), no. 2, 591--622. (Reviewer: L. J. Ratliff, Jr.) 13A15 (13C13)
[35] 93a:13010 Abhyankar, Shreeram S.; Heinzer, William J. Singular locus of an infinite integral extension.
J. Algebra 143 (1991), no. 2, 436--469. (Reviewer: Sherwood Washburn) 13F40 (14E20 14J99)
[36] 92j:13011 Gilmer, Robert; Heinzer, William Zero-dimensionality in commutative rings.
Proc. Amer. Math. Soc. 115 (1992), no. 4, 881--893. (Reviewer: Liam O'Carroll) 13C15 (13A99 13E10)
[37] 92j:13003 Heinzer, William; Sally, Judith D. Extensions of valuations to the completion of a local domain.
J. Pure Appl. Algebra 71 (1991), no. 2-3, 175--185. (Reviewer: Liam O'Carroll) 13A18 (13B35 13F30)
[38] 92h:13015 Gilmer, Robert; Heinzer, William Products of commutative rings and zero-dimensionality.
Trans. Amer. Math. Soc. 331 (1992), no. 2, 663--680. (Reviewer: James A. Huckaba) 13C15 (13E10)
[39] 92f:13003 Anderson, David F.; Dobbs, David E.; Eakin, Paul M., Jr.; Heinzer, William J. On the generalized principal ideal theorem and Krull domains.
Pacific J. Math. 146 (1990), no. 2, 201--215. (Reviewer: Salah-Eddine Kabbaj) 13A15 (13B22)
[40] 92a:13004 Abhyankar, Shreeram S.; Heinzer, William J. Derivativewise unramified infinite integral extensions.
J. Algebra 136 (1991), no. 1, 197--247. (Reviewer: Liam O'Carroll) 13B15 (13B22 13J15)
Items: 21 - 40 of 119