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duction: Neural Networks!

FIG. 1 — Organization of a biological brain. (Red areas indicate
active cells, responding to the letter X.)
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FIG. 2 — Organization of a perceptron.

! “The perceptron: A probabilistic model for information storage and

organization in the brain.".
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Introduction: Neural Networks (Fully-Connected

Feed-Forward NN)

i i 1
Let x(© = x and x() = & (Wn,-l)x(n,_1+1) [x(’_ )]> fori=1,...,L—1
L 1
Output: u(x) = W( )(”L L41) [ (L 1)}

nL—1

The neural network function structure?

2 Least-Squares Neural Network (LSNN) Method For
Linear Advection-Reaction Equation: Discontinuity Interface.
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Activation Functions and Shallow Neural Network

Shallow neural network (one hidden layer):

./\/ln(O', d) = {C_l + ZC,‘O’(W,"X— b,') (¢, b € Ryw; € Sdl}
i=0

Some activation functions:
Q ReLU: o(x) = max{0, x}
Q Sigmoid: o(x) = L

1+ex
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A New Class of Approximating Functions

Universal Aproximation Theorem (Cybenko 1989,

Hornik-Stinchcombe-White 1990)

M(o,d) = {v(x) € M,(o,d) : n € Z,} is dense in C(K) for any
compact set K C RY, provided that o € C(R) is not a polynomial.

A Priori Error Estimate

See, e.g., Daubechies-DeVore-Foucart-Hanin-Petrova 2021, Yarotsky 2017,
DeVore-Hanin-Petrova 2021.
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Shallow Neural Networks and Free Knot Linear Splines

C° piecewise linear functions on a fixed mesh in [0, 1]:
n
HINE {Z cidi(x): ¢ € ]R} ,
i=1
where
(x = xi—1)/(xi — xi—1), X € (Xi—1, %),

di(x) =< (Xig1 — x)/(Xiv1 — xi), X € (Xi, Xi41),

0, otherwise.
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Shallow Neural Networks and Free Knot Linear Splines

C° piecewise linear functions on a fixed mesh in [0, 1]:
n
HINE {Z cidi(x): ¢ € ]R} ,
i=1
where
(x = xi—1)/(xi — xi—1), X € (Xi—1, %),

di(x) =< (Xig1 — x)/(Xiv1 — xi), X € (Xi, Xi41),

0, otherwise.

CP piecewise linear functions on a moving mesh in [0, 1]:

So(n) = {Z cidi(x; xi—1,xi, xi+1) : ¢ € R, x; € [0, 1]}

i=1
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Shallow Neural Networks and Free Knot Linear Splines

One-dimensional shallow neural network:

M,([0,1]) = M, (1) = {C_l + ZH:C,'U(X —bj):ci € R, b €0, 1]}
i=0
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Shallow Neural Networks and Free Knot Linear Splines

One-dimensional shallow neural network:
M,([0,1]) = M, (1) = {C_l + Z cio(x — bj) : ¢ € R, b; € [0, 1]}
i=0

Important inclusion®:

So(n) € Mu(l) € S¥(n+1)

“Nonlinear Approximation and (Deep) ReLU Networks".
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Goals

Solve PDEs using NNs

Design fast NN methods
Design suitable NN architectures
Utilize geometric interpretation of parameters in the NN
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Why Neural Networks?
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Solution u(x) of a singularly perturbed reaction-diffusion equation
approximated by NN. Left: 32 uniform breakpoints. Right: optimized NN model
with 32 breakpoints, 500 iterations of the dBN method.
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1D Diffusion Problem

Consider the one-dimensional Poisson equation

{ —(a(x)d'(x)) = f(x), xel=(0,1),
ul0)=ca, u(l)=75

Ritz formulation: find u € H*(/) such that

1 1
u= argmin {1/ a(x)(v’(x))2dx/ f(x)v(x)dx}
vert(y L2 Jo 0
v(0)=a,v(1)=p
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Modified Ritz Formulation

Given v > 0, let J: H'(/) — R be the modified energy functional given by

J(v):2/0 a(x) dx—/ F(x)v(x)ax+ 2 (v(b) - )
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Modified Ritz Formulation

Given v > 0, let J: H'(/) — R be the modified energy functional given by

1 1 ~
W= /0 200V (x))dx — /O Fv(x)ot L (v(b) ~ )

Let

Mn(/) = {c_1+2c;a(x—b;) : C,'GR,OSb,‘S].,b,‘<b,‘+1}
i=0

Ritz neural network approximation: find u,(x) € Mp(/) such that

Iun) = vew?(/) Jv)
v(0)=«
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Error Estimate

Proposition

Let u be the exact solution of the diffusion problem and u, € M,(/) be
the Ritz neural network approximation. Assume that a € L°°(/), then
there exists a constant C depending on u such that

lu—unlla < € (07 +4712),

where ||v[2 = [ a( ))2dx +v(v(1))2.
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Systems of Algebraic Equations

Let

n
Up = Up(x) = up(x;¢,b) = a + Z cio(x — bj)
i=0

be a solution of the previous minimization problem. Then the linear and
nonlinear parameters

c=(co,...,cn)" and b= (bg,...,bs)"
satisfy the following system of algebraic equations

Ved (up) =Ved(e,b) =0 and VyJ(u,) = VpJ(c,b) =0.
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Linear Parameters ¢

The equation V¢J(c,b) = 0 has the form
(A(b) + yddT> c = f(b) + (8 — a)d,

where

1
A(b) = / (X)Wt (x) (Veuy(x)) T dx
0
1
ie, (Ab)); = / a(x)o’(x — bj_1)o’(x — bj_1)dx
JO

1
f(0) = [ 7 Veun(x)ds
d=(b—bg,....b—b,)T
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Coefficient Matrix

fblo a(x)dx bll a(x)dx f% a(x)dx --- bl,, a(x)dx
fbll a(x)dx bil a(x)dx b a(x)dx é” a(x)dx
Ab) = fb12 a(x)dx [, a(x)dx [, a(x)dx --- [ a(x)dx |,
. . u R
Jp ax)dx [, a(x)dx [, a(x)dx .- [ a(x)dx
particularly, when a(x) =1

1—by 1—by 1—by --- 1—b,
1—-b1 1—by 1—by --- 1—b,
A(b) — 1—b2 1—b2 1—b2 1—b,—,
1-b, 1—-b, 1—b, --- 1—b,
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Condition Number

Let a(x) = 1, then the condition number of the coefficient matrix A(b) is
bounded above by O (n/hmin).
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Inverse of the Coefficient Matrix (Uniform Partition)

For the uniform mesh and a(x) = 1, the inverse of the coefficient matrix is

given by
1 1
n+1 T n+1 0 0
1 2 1 0
n+1 n+1 n+1
0o - 2. L 0 0
- n+1 n+1 n+1
Ab)™t = ) .
2 1
n+1 n+1
1 2
0 0 0 T n+1 n+1
Nov 2024 18 /39
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Inverse of the Coefficient Matrix

The coefficient matrix is invertible and its inverse is given by

g —g 0 0 0 0
1 1 1 1
== 55 =5 U 0 0
_1 1,1 _1
A(b),l 0 '52 S2 + S3 S3 O 0 ’
0 0 0 0 sﬂ: + % —é
1 1 1
0 =5 5"

where s; 1= fbb_‘;l a(x)dx.
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Nonlinear Parameters b

Forj=0,1,...,n, let
g(bj) = f(c) +4( (Zc, )

Then the Hessian matrix V2J(c, b) has the form
H(c,b) = B(c, b) + ~ec,
where B(c, b) := diag(—cog(bo), - .., —cng(bn))
Nov 2024 20/39
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A Damped Block Newton (dBN) Method

We want to solve
VeJ(c,b)=0 and V,J(c,b)=0.
The equation VcJ(c,b) = 0 has the form
(A(b) +7dd") ¢ = (b) +7(8 ~ a)d,
The Hessian matrix V2J(c,b) has the form
H(c,b) = B(c,b) + ~yec,

where B(c,b) is a diagonal matrix.
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The Sherman-Morrison Formula

Let A(b) = A(b) +~vdd”, by the Sherman-Morrison formula, we have

;1 7A(b)'ddTA(b) !
1+~dTA(b)-d

Ab) = A(b)~
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The Sherman-Morrison Formula

Let A(b) = A(b) +~ydd", by the Sherman-Morrison formula, we have

1 7A(b)*ddTA(b)~*
1+~dTA(b)-d

If c;g(b;) # 0 foralli=0,1,...,nand 1 —yc"B~1(c,b)c # 0, then the
Hessian matrix 7(c, b) is invertible. Moreover, its inverse is given by

A(b)™! = A(b)~

H ' (c,b) = — {B_l(c, b) + vB~1(c,b)cc "B (c, b)] .

1—~c"B1(c,b)c
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A Damped Block Newton (dBN) Method

Let (c(k)7 b(k)) be the previous iterate. We then compute the current state
(ct+1) b(k+1)) by doing the following:

Compute the current linear parameters ¢

VeJ(c, b)) = 0.

(k+1) solving
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A Damped Block Newton (dBN) Method

Let (c(k)7 b(k)) be the previous iterate. We then compute the current state
(ct+1) b(k+1)) by doing the following:

Compute the current linear parameters c(k*1) solving

VeJ(c, b)) = 0.

Set the search direction

pf) = —2(ckHD) b))~y J(ck+D) pK),
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A Damped Block Newton (dBN) Method

Let (c(k)7 b(k)) be the previous iterate. We then compute the current state
(ct+1) b(k+1)) by doing the following:

Compute the current linear parameters c(k*1) solving

VeJ(c, b)) = 0.

Set the search direction

pf) = —2(ckHD) b))~y J(ck+D) pK),

Compute the stepsize 7
Nk = argmin J(c(k‘H), b(k) + np(k)).
neRy
Set the current nonlinear parameters by
bk+1) = p(k) 4y p(k).
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If cgkﬂ)g(bgk)) vanishes for some i € {0,...,n}, then the
corresponding nonlinear parameter will remain unchanged, i.e.,
plk1) — bgk), and be removed at the step (ii) of the method.

1
The computational cost per iteration is O(n). More specifically, the
linear parameters c(k*t1) and the direction vector p(¥) are calculated
in 8(n+ 1) and 4(n + 1) operations, respectively.
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Numerical Experiments

(x — 1)? 4
ux) = x (eXp (‘ 001 ) — P (‘9 x 0.01>>

Consider the relative H! seminorm error given by

e, — lu— Un\Hl(/)
|ulH(ry
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Numerical Experiments

0.35 0.35
[ —
: Un up
0.30 % Break points 0.30 4 x  Break points
0.25 0.25
0.20 0.20
0.15 0.15
0.10 0.10
0.05 0.05
0.00 0.00 :
0.‘0 0.‘2 0.‘4 0.‘6 0.‘8 l.‘O
Initial NN model with 22 uniform Optimized NN model with 22
breakpoints, e, = 0.227 breakpoints, 500 iterations,
e, = 0.100

Using ReLU networks for approximating the function in Example 1
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Numerical Experiments: dBN vs BFGS

— BFGS ax10® — BFGS
dBN dBN
7x107?
8 8
5 5
13 E
. :
A M
z 2 6x10
5x1072
5 % % % % 5 % % % % % %
Iterations Iterations
en vs number of iterations using 32 en vs number of iterations using 64
neurons, the ratio between the final neurons, the ratio between the final
errors is 0.673 errors is 0.783

César Herrera (Purdue) Fast Iterative Solver for NN Method Nov 2024 29/39



Numerical Experiments: Non-smooth Solution

Example 2

u(x) = x2/3

This function belongs to H75 (/) for any € > 0. We highlight that the
order of convergence for approximating this solution with n uniform
breakpoints is at most O (n~1/6).
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Numerical Experim Non-smooth Solution

Results of using ReLU networks for approximating u(x) = x?/3

1.0 — u : : : : 5 1.0 — u
X Breacpints £ 111

084 it

0.6 q

044 i

024 HEY 4

0.0—Zkk;kxxx ' ool ki k & X & & % & k4
0.‘0 0.‘2 0.4 0.6 0.8 l.‘O 0.‘0 0.‘2 ().‘4 0.‘6 0:8 l.‘O
Initial NN model with 23 Optimized NN model with 23

uniform breakpoints, e, = 0.284 breakpoints, 500 iterations,

e, = 0.056
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Summary

The key points of our method:
Good initialization.

Non-linear parameters «—> uniform mesh.
Linear parameters «—> best linear parameters for the uniform mesh.

Coefficient matrix has a sparse, tridiagonal inverse.
Hessian matrix (from the non-linear parameters) is diagonal.
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Fast Iterative Solver For Neural Network Method: I. 1D Diffusion Problems

Zhigiang Cai, Anastassia Doktorova, Robert D. Falgout, César Herrera

The discretization of the deep Ritz method [18] for the Poisson equation leads to a high-dimensional non-convex minimization problem, that is difficult and expensive to
solve numerically. In this paper, we consider the shallow Ritz approximation to one-dimensional diffusion problems and introduce an effective and efficient iterative
method, a damped block Newton (dBN) method, for solving the resulting non-convex minimization problem.

The method employs the block Gauss-Seidel method as an outer iteration by dividing the parameters of a shallow neural network into the linear parameters (the:
‘weights and bias of the output layer) and the non-linear parameters (the weights and bias of the hidden layer). Per each cuter iteration, the linear and the non-linear
parameters are updated by exact inversion and one step of a damped Newton method, respectively. Inverses of the coefficient matrix and the Hessian matrix are
tridiagonal and diagonal, respectively, and hence the cost of each dBN iteration is (J(n). To move the breakpoints (the non-linear parameters) more efficiently, we
propose an adaptive damped block Newton (AdBN) method by combining the dBN with the adaptive neuron enhancement (ANE) method [25]. Numerical examples
demonstrate the ability of dBN and AdBN not only to move the breakpoints quickly and efficiently but alse to achieve a nearly optimal order of convergence for AdBN.
These iterative solvers are capable of outperforming BFGS for select examples.

Subjects:  Numerical Analysis (math.NA)
MSC classes: &
Citeas arXiv:2404. 17750 [math.NA]
(or arxiv:2404.17750v1 [math.NA] for this version)
hitps:f/dol org/10. 48550/arXiv.2404.17750 @
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Fast lterative Solver for Neural Network Method:

II. 1D General Elliptic Problems and Data Fitting

—_—u 0.00 —_— U
— Up —_—Un
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Solution u(x) of a singularly perturbed reaction-diffusion equation
approximated by NN. Left: 32 uniform breakpoints. Right: optimized NN model
with 32 breakpoints, 500 iterations of the dBN method.
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Singularly Perturbed Reaction-Diffusion Equation
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(a) FOSLS u with Leaky ReLU

u(x) approximated by NN. Left: Scientific Machine Learning
approach®,1-32-32-24-24-1, 2962 parameters, about 14 hours. Right: dBN
method, 1-32-1, 64 parameters, 2 minutes (100 iterations).

4 “Deep least-squares methods: An unsupervised learning-based

numerical method for solving elliptic PDEs".
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Fast Iterative Solver For Neural Network Method: Il. 1D Diffusion-Reaction Problems And Data
Fitting

Zhigiang Cai, Anastassia Doktorova, Robert D. Falgout, César Herrera

This paper expands the damped block Newton (dBN) method introduced recently in [4] for 1D diffusion-reaction equations and least-squares data fitting problems. To
determine the linear parameters (the weights and bias of the output layer) of the neural network (NN), the dBN method requires solving systems of linear equations
involving the mass matrix. While the mass matrix for local hat basis functions is tri-diagonal and well-conditioned, the mass matrix for NNs is dense and ill-conditioned.
For example, the condition number of the NN mass maitrix for quasi-uniform meshes is at least O(n“) We present a factorization of the mass matrix that enables
salving the systems of linear equations in O(n) operations. To determine the non-linear parameters (the weights and bias of the hidden layer). one step of a damped
Newton method is employed at each iteration. A Gauss-Newton method is used in place of Newton for the instances in which the Hessian matrices are singular. This
modified dBN Is referred to as dBGN. For both methods, the compitational cost per iteration is O(n). Numerical results demonstrate the ability dBN and dBGN to
efficiently achieve accurate results and outperform BFGS for select examples.

Subjects. Numerical Analysis (math.NA); Machine Learning (cs.LG)
MSC classes: 65K10, 65705
Cite as: arXiv-2407.01496 [math.NA]

(or arXiv:2407.01496v1 [math.NA] for this version)
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Current and future work

Convergence analysis of our methods.
Design a similar method for 1D elliptic problems with nonsymmetric
variational formulation, such as —v”" + v +u=Ff

Design fast iterative solvers for multi-dimensional problems
2D elliptic problems
Advection-reaction equation
Hyperbolic conservation laws
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