Fast Iterative Solver for Neural Network Method: 1D Diffusion Problems

César Herrera¹Zhiqiang Cai¹Anastassia Doktorova¹Robert D. Falgout²

¹Department of Mathematics, Purdue University ²Lawrence Livermore National Laboratory

Preliminary Exam, Purdue University March 2024

César Herrera (Purdue)

Fast Iterative Solver for NN Method

March 2024

- 1 Poisson's Equation and Neural Network Approximation
- **2** Systems of algebraic equations
- 3 Coefficient matrix
- A Damped Block Newton (dBN) Method
- 6 Numerical results

1 Poisson's Equation and Neural Network Approximation

- Systems of algebraic equations
- Coefficient matrix
- A Damped Block Newton (dBN) Method
- **5** Numerical results

1D Diffusion Problem

Consider the Poisson equation

$$\begin{cases} -(a(x)u'(x))' = f(x), & x \in I = (0,1), \\ u(0) = \alpha, & u(1) = \beta \end{cases}$$

Ritz formulation: find $u \in H^1(I)$ such that

$$u = \arg\min_{\substack{v \in H^{1}(I) \\ v(0) = \alpha, v(1) = \beta}} \left\{ \frac{1}{2} \int_{0}^{1} a(x) (v'(x))^{2} dx - \int_{0}^{1} f(x) v(x) dx \right\}$$

Let

$$\mathcal{M}_n(I) \;\; = \;\; \left\{ c_{-1} + \sum_{i=0}^n c_i \sigma(x - b_i) \,:\; c_i \in \mathbb{R}, 0 \leq b_i \leq 1, b_i < b_{i+1}
ight\}$$

César Herrera (Purdue)

ㅋ ㅋ

Given $\gamma > 0$, let $J : H^1(I) \to \mathbb{R}$ be the modified energy functional given by

$$J(v) = \frac{1}{2} \int_0^1 a(x) (v'(x))^2 dx - \int_0^1 f(x) v(x) dx + \frac{\gamma}{2} (v(b) - \beta)^2$$

Ritz neural network approximation: find $u_n(x) \in \mathcal{M}_n(I)$ such that

$$J(u_n) = \min_{\substack{v \in \mathcal{M}_n(I) \\ v(0) = \alpha}} J(v)$$

César Herrera (Purdue)

3

Error estimate

Let $\Sigma_n(I)$ be the set of functions $S : \mathbb{R} \to \mathbb{R}$, where S is a CPwL function with at most *n* distinct breakpoints in *I*. We have the following inclusion¹:

$$\Sigma_{n-1}(I) \subset \mathcal{M}_n(I) \subset \Sigma_n(I)$$

Theorem

Let *u* be the exact solution of the diffusion problem and $u_n \in M_n(I)$ be the Ritz neural network approximation. If $u \in H^2(I)$, then

$$\|u - u_n\|_a \leq \frac{C}{n} |u|_{H^2(I)} + \frac{2\sqrt{2}}{\sqrt{\gamma}} |a(1)u'(1)|,$$

where $||v||_a^2 = \int_0^1 a(x)(v'(x))^2 dx + \gamma(v(1))^2$.

¹I. Daubechies et al. "Nonlinear Approximation and (Deep) ReLU Networks". English (US). in: *Constructive Approximation* 55.1 (Feb. 2022), pp. 127–172. ISSN: 0176-4276. DOI: 10.1007/s00365-021-09548-z.

César Herrera (Purdue)

Fast Iterative Solver for NN Method

March 2024

6/31

Poisson's Equation and Neural Network Approximation

2 Systems of algebraic equations

B Coefficient matrix

A Damped Block Newton (dBN) Method

5 Numerical results

Let

$$u_n = u_n(x) = u_n(x; \mathbf{c}, \mathbf{b}) = \alpha + \sum_{i=0}^n c_i \sigma(x - b_i)$$

be a solution of the previous minimization problem. Then the linear and nonlinear parameters

$$\mathbf{c} = (c_0, \dots, c_n)^{\mathcal{T}}$$
 and $\mathbf{b} = (b_0, \dots, b_n)^{\mathcal{T}}$

satisfy the following system of algebraic equations

$$abla_{\mathbf{c}} J(u_n) = \mathbf{0} \quad \text{and} \quad \nabla_{\mathbf{b}} J(u_n) = \mathbf{0}.$$

César Herrera (Purdue)

The equation $\nabla_{\mathbf{c}} J(u_n) = 0$ has the form

$$(A(\mathbf{b}) + \gamma \mathbf{d} \mathbf{d}^T) \mathbf{c} = \mathbf{f}(\mathbf{b}) + \gamma(\beta - \alpha) \mathbf{d},$$

where

•
$$A(\mathbf{b}) = \int_0^1 a(x) \nabla_{\mathbf{c}} u'_n(x) (\nabla_{\mathbf{c}} u'_n(x))^T dx$$

• $\mathbf{f}(\mathbf{b}) = \int_0^1 f(x) \nabla_{\mathbf{c}} u_n(x) dx$
• $\mathbf{d} = (b - b_0, \dots, b - b_n)^T$

César Herrera (Purdue)

E

Lemma

For j = 0, 1, ..., n, the j^{th} equation of $\nabla_{\mathbf{b}} J(u_n) = \mathbf{0}$ is given by

$$\frac{\partial}{\partial b_j}J(u_n)=c_j\left(\int_{b_j}^1 f(x)\,dx-\gamma u_n(1)-a(b_j)\left(\sum_{i=0}^{j-1}c_i+\frac{c_j}{2}\right)+c_j\gamma\beta\right)=0.$$

César Herrera (Purdue)

Fast Iterative Solver for NN Method

March 2024

< 同 > < 回 >

10/31

E

Lemma

For $j = 0, 1, \ldots, n$, let

$$g(b_j)=f(c_j)+a'(b_j)\left(\sum_{i=0}^{j-1}c_i+rac{c_j}{2}
ight).$$

Then the Hessian matrix $\nabla^2_{\mathbf{b}} J(u_n)$ has the form

$$\mathcal{H}(\mathbf{c}, \mathbf{b}) = \mathbf{B}(\mathbf{c}, \mathbf{b}) + \gamma \mathbf{c} \mathbf{c}^{\mathsf{T}},$$

where $\mathbf{B}(\mathbf{c}, \mathbf{b}) := \text{diag}(-c_0 g(b_0), \dots, -c_n g(b_n))$

César Herrera (Purdue)

Ξ

Poisson's Equation and Neural Network Approximation

Systems of algebraic equations

Ocertification Coefficient matrix

A Damped Block Newton (dBN) Method

6 Numerical results

Coefficient matrix

$$A(\mathbf{b}) = \begin{pmatrix} \int_{b_0}^{1} a(x)dx & \int_{b_1}^{1} a(x)dx & \int_{b_2}^{1} a(x)dx & \cdots & \int_{b_n}^{1} a(x)dx \\ \int_{b_1}^{1} a(x)dx & \int_{b_1}^{1} a(x)dx & \int_{b_2}^{1} a(x)dx & \cdots & \int_{b_n}^{1} a(x)dx \\ \int_{b_2}^{1} a(x)dx & \int_{b_2}^{1} a(x)dx & \int_{b_2}^{1} a(x)dx & \cdots & \int_{b_n}^{1} a(x)dx \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \int_{b_n}^{1} a(x)dx & \int_{b_n}^{1} a(x)dx & \int_{b_n}^{1} a(x)dx & \cdots & \int_{b_n}^{1} a(x)dx \end{pmatrix}$$

particularly, when a(x) = 1

$$A(\mathbf{b}) = \begin{pmatrix} 1-b_0 & 1-b_1 & 1-b_2 & \cdots & 1-b_n \\ 1-b_1 & 1-b_1 & 1-b_2 & \cdots & 1-b_n \\ 1-b_2 & 1-b_2 & 1-b_2 & \cdots & 1-b_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1-b_n & 1-b_n & 1-b_n & \cdots & 1-b_n \end{pmatrix}$$

César Herrera (Purdue)

< 17 ▶

E> E

,

Lemma

Let a(x) = 1, then the condition number of the coefficient matrix $A(\mathbf{b})$ is bounded by $\mathcal{O}(n/h_{\min})$.

César Herrera (Purdue)

Fast Iterative Solver for NN Method

// 문 ▶ ◀ 문 ▶ March 2024 Э

Lemma

The coefficient matrix is invertible and its inverse is given by

$$A(\mathbf{b})^{-1} = \begin{pmatrix} \frac{1}{s_1} & -\frac{1}{s_1} & 0 & 0 & \cdots & 0 & 0\\ -\frac{1}{s_1} & \frac{1}{s_1} + \frac{1}{s_2} & -\frac{1}{s_2} & 0 & \cdots & 0 & 0\\ 0 & -\frac{1}{s_2} & \frac{1}{s_2} + \frac{1}{s_3} & -\frac{1}{s_3} & \cdots & 0 & 0\\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & 0 & 0 & \cdots & \frac{1}{s_{n-1}} + \frac{1}{s_n} & -\frac{1}{s_n}\\ 0 & 0 & 0 & 0 & \cdots & -\frac{1}{s_n} & \frac{1}{s_n} + \frac{1}{s_{n+1}} \end{pmatrix},$$

where $s_i := \int_{b_{i-1}}^{b_i} a(x) dx$.

Poisson's Equation and Neural Network Approximation

Systems of algebraic equations

B Coefficient matrix

A Damped Block Newton (dBN) Method

6 Numerical results

César Herrera (Purdue)

We want to solve

$$abla_{\mathbf{c}} J(u_n) = \mathbf{0} \quad \text{and} \quad
abla_{\mathbf{b}} J(u_n) = \mathbf{0}.$$

The equation $\nabla_{\mathbf{c}} J(u_n) = 0$ has the form

$$(A(\mathbf{b}) + \gamma \mathbf{d} \mathbf{d}^T) \mathbf{c} = \mathbf{f}(\mathbf{b}) + \gamma (\beta - \alpha) \mathbf{d},$$

The Hessian matrix $\nabla^2_{\mathbf{b}} J(u_n)$ has the form

$$\mathcal{H}(\mathbf{c}, \mathbf{b}) = \mathbf{B}(\mathbf{c}, \mathbf{b}) + \gamma \mathbf{c} \mathbf{c}^{\mathsf{T}},$$

where B(c, b) is a diagonal matrix.

A Damped Block Newton (dBN) Method

Let $(\mathbf{c}^{(k)}, \mathbf{b}^{(k)})$ be the previous iterate. We then compute the current state $(\mathbf{c}^{(k+1)}, \mathbf{b}^{(k+1)})$ by doing the following:

(i) Compute the current linear parameters $\mathbf{c}^{(k+1)}$ using

$$\left(A(\mathbf{b}^{(k)}) + \gamma \mathbf{d}\mathbf{d}^{T}\right)\mathbf{c} = \mathbf{f}(\mathbf{b}^{(k)}) + \gamma(\beta - \alpha)\mathbf{d},$$

(ii) Assume that the Hessian matrix $\mathcal{H}(\mathbf{c}^{(k+1)}, \mathbf{b}^{(k)})$ is invertible. Set the search direction

$$\mathbf{p}^{(k)} = -\mathcal{H}(\mathbf{c}^{(k+1)}, \mathbf{b}^{(k)})^{-1} \nabla_{\mathbf{b}} J(u_n(x; \mathbf{c}^{(k+1)}, \mathbf{b}^{(k)})).$$

(iii) Compute the stepsize η_k

$$\eta_k = \operatorname*{argmin}_{\eta \in \mathbb{R}_+} J(u_n(x; \mathbf{c}^{(k+1)}, \mathbf{b}^{(k)} + \eta \mathbf{p}^{(k)})).$$

Set the current nonlinear parameters by

$$\mathbf{b}^{(k+1)} = \mathbf{b}^{(k)} + \eta_k \mathbf{p}^{(k)}.$$

César Herrera (Purdue)

- We notice that we can compute all the matrix inverses exactly.
- If c_i^(k+1)g(b_i^(k)) vanishes for some i ∈ {0,...,n}, then the corresponding nonlinear parameter will remain unchanged, i.e., b_i^(k+1) = b_i^(k), and be removed at the step (ii) of the method.
- The computational cost of the matrix operations in our algorithm is $\mathcal{O}(n)$.

Poisson's Equation and Neural Network Approximation

Systems of algebraic equations

Coefficient matrix

A Damped Block Newton (dBN) Method

6 Numerical results

Numerical results

The first test problem involves the function

$$u(x) = x\left(\exp\left(-\frac{(x-\frac{1}{3})^2}{0.01}\right) - \exp\left(-\frac{4}{9\times0.01}\right)\right)$$

Figure: Graph of the test function u(x)

César Herrera (Purdue)

Fast Iterative Solver for NN Metho

March 2024

ㅋ ㅋ

dBN vs BFGS

< ⊡ ▷
 < ≡ ▷
 < ≡ ▷
 March 2024

Convergence rate

n	en	r
60	$4.65 imes 10^{-2}$	0.749
90	$3.41 imes 10^{-2}$	0.751
120	$2.49 imes10^{-2}$	0.771
150	$1.97 imes10^{-2}$	0.783
180	$1.78 imes10^{-2}$	0.775
210	$1.59 imes10^{-2}$	0.775
240	$1.27 imes10^{-2}$	0.796
270	$1.22 imes 10^{-2}$	0.787
300	$1.09 imes10^{-2}$	0.792
330	$1.01 imes 10^{-2}$	0.792
360	$9.94 imes10^{-3}$	0.783
390	$9.54 imes10^{-3}$	0.780
420	$8.07 imes 10^{-3}$	0.798

Table: Relative errors $e_n = \frac{|u_n^{(k)} - u|_{H^1(l)}}{|u|_{H^1(l)}}$ and rates r for n neurons after 1000iterations.César Herrera (Purdue)Fast Iterative Solver for NN MethodMarch 2024

23/31

Let $\mathcal{K} = [c, d] \subseteq [0, 1]$, define the indicator of \mathcal{K} using the ZZ-estimator

$$\xi_{\mathcal{K}} = \|\boldsymbol{a}^{-1/2} \left(\boldsymbol{G}(\boldsymbol{a}\boldsymbol{u}_n') - \boldsymbol{a}\boldsymbol{u}_n' \right) \|_{L^2(\mathcal{K})},$$

where $G(au'_n)$ is the projection of au'_n onto the continuous piecewise linear space of functions.

Given $u_n \in \mathcal{M}_n(I)$, we determine a partition of [0, 1]

$$\mathcal{K}_n = \{ [b_{i-1}, b_i] \}_{i=0}^{n+1} = \{ \mathcal{K}^i \}_{i=0}^{n+1},$$

where $b_{-1} := 0$.

Then, we define a subset $\widehat{\mathcal{K}_n} \subset \mathcal{K}_n$ using the average marking strategy²:

$$\widehat{\mathcal{K}_n} = \left\{ \mathcal{K} \in \mathcal{K}_n : \xi_{\mathcal{K}} \geq \frac{1}{\# \mathcal{K}_n} \sum_{\mathcal{K} \in \mathcal{K}_n} \xi_{\mathcal{K}} \right\}$$

where $\#\mathcal{K}_n$ is the number of elements in \mathcal{K}_n . For a refinement step, a meshpoint gets added at the midpoint within each element of $\widehat{\mathcal{K}_n}$.

²Min Liu and Zhiqiang Cai. "Adaptive two-layer ReLU neural network: II. Ritz approximation to elliptic PDEs". In: *Computers Mathematics with Applications* 113 (2022), pp. 103–116. ISSN: 0898-1221. DOI: https://doi.org/10.1016/j.camwa.2022.03.010.

César Herrera (Purdue)

Fast Iterative Solver for NN Method

March 2024

Given a tolerance ϵ , start with a small number of neurons n_0 , then

(i) Compute the solution u_n

(ii) Estimate the total error by computing $\xi = \left(\sum_{K \in \mathcal{K}} \xi_K^2\right)^{1/2} / |u_n|_{H^1(I)}$

(iii) If $\xi \leq \epsilon$, then stop; otherwise go to step (iv)

(iv) Add new neurons to the network by using the network enhancement strategy, then go to step (i) $% \left(i\right) =\left(i\right) \left(i\right) \left($

(a) Initial NN model with 22 uniform breakpoints, $\frac{|u-u_n|_1}{|u|_1} = 0.227$

(b) Optimized NN model with 22 breakpoints, 500 iterations, $\frac{|u-u_n|_1}{|u|_1} = 0.100$

(c) Adaptive NN model with 22 breakpoints: 10 initial breakpoints, 2 refinements (13, 22 neurons), $|u - u_n|_1/|u|_1 = 0.083$

Figure: Results of using ReLU networks for approximating function u(x)

< 17 ▶

$\mathsf{dBN} + \mathsf{Adaptivity}$

NN (<i>n</i> neurons)	en	ξn	r
Adaptive (19)	$9.77 imes 10^{-2}$	0.953	0.790
Adaptive (29)	$7.30 imes10^{-2}$	0.730	0.807
Adaptive (46)	$4.19 imes10^{-2}$	0.563	0.829
Adaptive (77)	$2.52 imes 10^{-2}$	0.430	0.847
Adaptive (130)	$1.53 imes10^{-2}$	0.328	0.859
Adaptive (204)	$1.05 imes10^{-2}$	0.265	0.857
Adaptive (272)	$8.02 imes10^{-3}$	0.226	0.861
Fixed (204)	$1.78 imes10^{-2}$	0.396	0.757
Fixed (272)	$1.28 imes10^{-2}$	0.336	0.777

Table: Comparison of an adaptive network with fixed networks for relative error $e_n = \frac{|u_n^{(k)} - u|_{H^1(l)}}{|u|_{H^1(l)}}$, relative error estimators ξ_n , and rates r

Э

Figure: Results of using ReLU networks for approximating $u(x) = x^{2/3}$

(b) Optimized NN model with 23 breakpoints, 500 iterations, $\frac{|u-u_n|_1}{|u|_1} = 0.056$

(c) Adaptive NN model with 23 breakpoints: 9 initial break points, 2 refinements (14, 23 neurons), $\frac{|u-u_n|_1}{|u|_1} = 0.042$

- Key compotents of dBN: decoupling and the use of exact inverses for the matrices
- **Performance:** dBN outperforms state of the art methods such as BFGS
- Convergence rate: adaptivity improves the convergence rate
- **Drawback:** dBN as defined here only applies to the one dimensional setting

- Current work
 - Mass matrix, 1D difussion-reaction and datta fitting problems
 - Convergence of NN Gauss-Newton methods
- Future work
 - 2D problems
 - Deep NN methods