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Abstract

I use Fermat’s sum of squares theorem and Gauss’ proof to motivate quadratic reciprocity
and basic ideas in algebraic number theory. In particular, splitting of primes in the Gaussian
integers is a key tool. Quadratic reciprocity is proved by studying the splitting behavior of
primes in cyclotomic fields and their unique quadratic subfields. The Artin symbol is related to
the Legendre symbol, motivating higher reciprocity laws and class field theory.

1 Motivating problem

A natural question in number theory is to identify the integers that are the sum of two squares,
i.e. solve the Diophantine equation

x2 + y2 = n.

The ancient identity
(x2 + y2)(z2 + w2) = (xz ± yw)2 + (xw ∓ yz)2

reduces this question to the problem of deciding which primes are the sum of two squares. The
following pattern was identified by Fermat.

Theorem 1. A prime p ∈ Z is the sum of two squares if and only if p = 2 or p ≡ 1 mod 4.

Example 1.

2 = 12 + 12, 5 = 12 + 22, 13 = 22 + 32, 17 = 12 + 42, 29 = 22 + 52, 73 = 32 + 82, etc.

The direction p = x2 + y2 =⇒ p = 2 or p ≡ 1 mod 4 is trivial. But how on Earth do you use
the congruence condition to produce integers x, y such that p = x2 + y2?

I’m sure there are nice ways of motivating this argument, but let me just flash it in front of
your eyes to see what key ideas go into the proof.

Proof. (1) Use number fields/rings! If p = x2 + y2, note that p factors as (x + iy)(x − iy) in Z[i].
We now have the hint that we should consider prime factorizations in Z[i].

(a) We first identify the units of Z[i]. They are the x+ iy such that x2 + y2 = 1 (why?) so we
find that Z[i]× = {±1,±i}. Cool.

(b) The quantity x2+ y2 associated to x+ iy seems important; let’s call it the norm N(x+ iy).
It’s easy to see that N(αβ) = N(α)N(β). We can reinterpret (a) as the statement α ∈ Z[i]× ⇐⇒
N(α) = 1. Exercise: this is true for arbitrary number rings. Prove it!
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(c) If p is a prime in Z, consider its factorization in Z[i] (why is a UFD btw, in fact its Euclidean
with norm being the norm): p = πe1

1 · · ·πer
r . Then

p2 = N(p) =
r∏

i=1

N(πi)
ei ,

so r ≤ 2 (b/c norm of an irreducible can’t be 1, ow it’s a unit) and ei ≤ 2. This leaves two
possibilities: p is irreducible in Z[i] or p = ππ̄ (with N(π) = p). In fact, it’s easy to show that
N(π) is prime in Z iff π is irreducible in Z[i] (Ex: generalize this as much as possible).

Hence we deduce the following lemma:

Lemma 1. p = x2 + y2 iff p is reducible in Z[i].

(2) Relate the (ir)reducibility of p to squares mod p! I don’t really know how to motivate this
well, so let’s just dive in.

If p = x2 + y2, then if z is the inverse of y mod p, we have 0 ≡ pz2 ≡ (xz)2 + 1 mod p,
i.e. (xz)2 ≡ −1 mod p, so −1 is a square mod p. OK and? Well, the converse holds too! If
−1 ≡ u2 mod p, then p|u2 +1. To show that p is the sum of two squares, it is enough to show that
p is reducible. Suppose for contradiction that p is irreducible, hence prime because Z[i] is a UFD
(note how crucial of an assumption this is). Then since p|u2 + 1 = (u+ i)(u− i), we have p|u± i,
but it obviously doesn’t. So p is reducible, and p is the sum of two squares.

(3) Relate −1 being a square mod p to p ≡ 1 mod 4. We tackle this in the next section. In
summary, the structure of the proof goes as follows:

p = x2 + y2 ⇐⇒ p is reducible in Z[i] ⇐⇒ −1 is a square mod p ⇐⇒ p ≡ 1 mod 4.

Okay, lit. So somehow the properties of squares mod p is important here, so let’s study this in
more detail.

Exercise 1. Relate the the conditions that p = x2 + 2y2 or p = x2 + xy + y2 to −2 and −3 being
squares mod p. What happens to p = x2 + 3y2? What goes wrong with p = x2 + 5y2?

Exercise 2. Let n be a nonzero integer and p be an odd prime not dividing n. Then

p|x2 + ny2, gcd(x, y) = 1 ⇐⇒
(
−n

p

)
= 1.

2 Quadratic Residues

Definition 2. We say a is a quadratic residue mod p if p ∤ a and there is some x ∈ Z such that
x2 ≡ a mod p.

The Legendre symbol (
a

p

)
=


0 p|a
1 a is a QR mod p

−1 a is not a QR mod p.
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At once, we have
(
ab
p

)
=

(
a
p

)(
b
p

)
.

For a fixed (odd) prime p, it would be nice to have an easy way to characterize the quadratic
residues mod p. Do we all know FLT? ap−1 ≡ 1 mod p.

Proposition 3 (Euler). Let p be an odd prime:(
a

p

)
≡ a

p−1
2 mod p.

Proof. In general, ap−1 ≡ 1 mod p. Consider the polynomial

tp−1 − 1 =
(
t
p−1
2 − 1

)(
t
p−1
2 + 1

)
.

If a ≡ x2 mod p, then a
p−1
2 ≡ xp−1 ≡ 1 mod p, so the squares mod p divide t

p−1
2 − 1. Thus the

nonsquares divide the other factor (since all nonzero a divide tp−1 − 1). Sick.

Note that in the proof of Theorem ??, we were not characterizing when a specific number is a
square mod p, but the converse; for which primes p is −1 is a quadratic residue? The answer we
want is that p = 2 or p ≡ 1 mod 4, the former case being clear.

Corollary 4. Let p be an odd prime:(
−1

p

)
= 1 ⇐⇒ p ≡ 1 mod 4.

Proof. By the proposition,(
−1

p

)
≡ (−1)

p−1
2 mod p ⇐⇒ (−1)

p−1
2 = 1 (since p > 2) ⇐⇒ p ≡ 1 mod 4.

This concludes the proof of Theorem ??. To solve the problem of characterizing p = x2 + 2y2,

we need to find a condition for when
(
−2
p

)
= 1. Since −2 = 2(−1), it is enough to characterize

primes for which 2 is a square. In fact, to characterize primes for which n is a square mod p, it’s
enough to do so for −1, 2, and odd primes p. This leads to the utterly cracked theorem known as
quadratic reciprocity:

Theorem 5 (Gauss’ law of quadratic reciprocity). Let p and q be odd primes:(
−1

p

)
= (−1)

p−1
4 =

{
+1 p ≡ 1 mod 4

−1 p ≡ −1 mod 4
,

(
2

p

)
= (−1)

p2−1
8 =

{
+1 p ≡ ±1 mod 8

−1 p ≡ ±3 mod 8
,

and (
p

q

)(
q

p

)
= (−1)

(p−1)(q−1)
4 .

The last condition can be interpreted as p is a square mod q iff q is a square mod p (if either is
1 mod 4), and p is a square mod q iff q is not a square mod p if both are 3 mod 4.

Example 2. We identify the primes for which 14 is a quadratic residue.
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3 All of algebraic number theory

We now need some algebraic number theory. This is not the most elementary proof, but the
elementary proofs are not enlightening.

3.1 Structure of integer rings

Theorem 6 (Integer rings are Dedekind domains). Let K/Q be a number field, and OK be the
ring of integers in K. Then OK is a Noetherian integrally closed domain of dimension 1 (Dedekind
domain), and is free as a Z-module of rank |K : Q|. In particular, every ideal I in OK factors
(uniquely) as a product of prime ideals: I = pe11 · · · perr .

Proof sketch. Integrally closed is apriori true; dimension 1 follows because dimZ = 1 and an
integral extension of rings preserves dimension (going-up theorem). Since OK is a torsion-free
Z-module, it is free (structure of modules over a PID). For the claim that it has rank |K : Q|,
see Neukirch pg. 12-13 (or any ANT book); this implies Noetherian. The statement about prime
factorization follows from the primary decomposition theorem for Noetherian rings and the fact
that the localization of a Dedekind domain is a DVR, where primary ideals are powers of prime
ideals, and these behave well under localization.

Given a factorization
pOL = Pe1

1 · · ·Peg
g ,

he ei are the ramification indices. Moreover, k(Pi) = OL/Pi over k(p) = OK/p is a finite extension
of finite fields; the degree fi is called the residue field degree. It is obvious that ei and fi are
multiplicative over towers: i.e. if M/L/K is a tower of field extensions, and we have a chain of
primes p ⊊ P ⊊ x, then e(x/p) = e(x/P)e(P/p) and f(x/p) = f(x/P)f(P/p).

Theorem 7 (Basic structure of Dedekind and Galois extensions). Let L/K be an extension of
number fields with integer rings OK , OL. Fix a prime p of K.

(a) We have the fundamental identity

g∑
i=1

eifi = |L : K|.

(b) If the extension L/K is Galois, then e1 = · · · = eg, f1 = · · · = fg, and Gal(L/K) acts
transtively on SpecOL/p. Thus the fundamental identity reduces to

efg = |L : K|.

(c) Define the decomposition group D(P/p) = {σ ∈ Gal(L/K) : σP = P}. Then D(P/p) acts
on k(P)/k(p) via σ̄(x + P) = σ(x) + P. The map D(P/p) → Gal(k(P)/k(p)) : σ 7→ σ̄ is
surjective; the kernel is the inertia group I(L/K).

(d) We have #D(P/p) = ef , hence #I(P/p) = e.

The latter two statements can be condensed into the “fundamental short exact sequence”

1 → I(P/p) → D(P/p) → Gal(k(P)/k(p)) → 1.
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Remark 8. Over p-adic fields. there is a unique prime in each field, so the sequence simplifies to

1 → I(L/K) → Gal(L/K) → Gal(kL/kK) → 1.

Proof. (a) Since p (resp. Pi) contain p, k(p) and k(Pi) are Fp-vector spaces; finite degree follows
from the fact that OK (resp. OL) are of finite rank over Z, so their dimension is in fact at most
|K : Q| (resp. |L : Q|) over Fp. The fundamental identity follows from the Chinese remainder
theorem and Nakayama’s lemma, and is a good exercise for both. Here goes: we have

OL/pOL =
r⊕

i=1

OL/P
ei
i .

We have a filtration OL/P
ei
i ⊋ Pi/P

ei
i ⊋ · · · ⊋ Pei−1

i /Pei
i ⊋ 0 whose associated gradeds are iso-

morphic to k(Pi), so dimk(p)OL/P
ei
i = eifi. Lifting a k(p)-basis of OL/pOL to generators for OL

over OK (use Nakayama) implies that dimk(p)OL/pOL = |L : K|.

(b) The equality of the ei and fi follows from the transitivity of the Galois action. If P′ ̸= σP
for any σ, by CRT there is a x ∈ OL such that

x ≡ 0 mod P′ and x ≡ 1 mod σP ∀σ ∈ Gal(L/K).

Hence NL/K(x) =
∏

σ∈Gal(L/K) σx is in P′ ∩ OK = p, but x /∈ σP for all σ ∈ Gal(L/K) implies
σx /∈ P, so

∏
σ∈Gal(L/K) σx /∈ P ∩ OK = p, a contradiction.

(c) Since k(P)/k(p) is an extension of finite fields, it is Galois (this is actually true for general
residue field). As such, pick a primitive element k(P) = k(p)(θ̄) and a lift θ in OL. Then the
minimal polynomial of θ̄ divides the reduction of the minimal polynomial of θ, so the conjugates of
the roots of θ̄ are roots of f̄(X), so there is a zero θ′ of f(X) such that θ′ ≡ σθ mod P,

(d) This is just orbit-stabilizer applied to the transitive action of Gal(L/K) on SpecOL/p.
Note that D(P/p) = Gal(L/K)P whose index in Gal(L/K) is the size of the orbit, i.e. g. The rest
follows easily.

Theorem 9 (Dedekind-Kummer Theorem). Let L/K be an extension of number fields, and suppose
OL = OK [θ] for some θ ∈ L. Let f(x) ∈ OK [x] be the minimum polynomial of θ over K. For a
prime p ∈ SpecOK , if

f(x) ≡ f1(x)
e1 · · · fg(x)eg mod p,

then the ideals Pi := fi(θ)OL + pOL are prime, and

pOL = Pe1
1 · · ·Peg

g .

Moreover, the residue class degrees f(Pi|p) are deg f̄i(x) for each i.

Proof. What are the primes of

O[θ]/p = O[X]/(f̄(X) + p) ≃ k(p)[X]/
(∏

f̄i(X)ei
)
≃

g⊕
i=1

k(p)[X]/(f̄i(X)ei)

?

Corollary 10. Keep notation as above. A prime p ∈ SpecOK is unramified if and only if p does
not divide the discriminant of f(x). If L/K is Galois, p is totally split if and only if f(x) has a
root modulo p. A prime p ∈ SpecOK is inert if and only if f(x) is irreducible modulo p.
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3.2 Splitting and the Artin Symbol

Suppose L/K is a finite extension of number fields, unramified at p. Pick a prime P|p. Then the
inertia group I(P/p) is trivial. Hence D(P/p) ≃ Gal(k(P)/k(p)). The latter is cyclic, being a finite
extension of finite fields, and is generated by the Frobenius element x 7→ xq. Hence the unique lift
of Frobenius to D(P/p) exists, and we call it the Artin symbol(

L/K

p

)
∈ Gal(L/K).

Note that it is well-defined up to conjugacy, we suppress the dependence on P. If L/K is abelian,
there is truly no dependence on P, and this will be the case for our situation.

Definition 11. We say p splits completely in L if all Pi|p have fi = ei = 1, so g = |L : K|.

We say p is inert if g = 1 and p is unramified, so f = |L : K|.

Proposition 12. Keep the situation of L/K a Galois extension with group G, fix p ∈ SpecK, and
let P be any prime lying over p.

1.
(
L/K
p

)
= 1 iff p splits completely.

2. The Artin symbol generates Gal(L/K) if and only if p is inert in L. In particular, non-cyclic
extensions have no inert primes.

Proof. Let e and f denote the common ramification indices of the primes lying over p. Then p splits
completely by definition when e = f = 1. In particular, p is unramified, henceDp ≃ Gal(k(P)/k(p))
which is trivial since f = 1. Since the Artin symbol generates Dp, it is trivial.

Recall p is inert if and only if e = g = 1, hence f = #Dp. Moreover, g = 1 means only one
prime lies over p, hence Dp = G which is isomorphic to Gal(k(P)/k(p)) since p is unramified. Since
the Galois group of an extension of finite groups is cyclic, the Artin symbol generates Dp = G. In
particular, G is cyclic. Thus, non-cyclic extensions have no inert primes as claimed.

A cute corollary to this is that Φn is reducible modulo every prime whenever (Z/nZ)× is non-
cyclic (i.e. n ̸= 2, 4, p or 2p for an odd prime p). Indeed, Φn(x) is irreducible modulo p if and only
if p is inert in Q(ζn), whose Galois group is (Z/nZ)×.

3.3 Criterion for ramification

Theorem 13. Let K/Q be a number field, and ω1, . . . , ωn be an integral basis of OK/Z. The
discriminant is given by

dK/Q = disc(ω1, . . . , ωn) = det(σiωi)
2 = det(TrK/Q(ωiωj)).

The ramified primes are precisely those dividing the discriminant.

If 1, α, . . . , αd−1 is a power basis and f(X) is the minimal polynomial of α, its discriminant is
given by (f ′(α)).
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3.4 Cyclotomic Fields

Now we can start attacking our goal of proving quadratic reciprocity. The main insight required is
that the nth cyclotomic field Q(ζn) is a ray class field, i.e. it is ramified precisely at primes dividing
n with the

Proposition 14. Let p be a prime and put ζ = ζpr . The extension Q(ζ)/Q of degree φ(pr) has

(a) Galois group Gal(Q(ζ)/Q) = (Z/prZ)× ≃ (Z/(p− 1)pr−1Z);

(b) integer ring Z[ζpr ];

(c) is ramified only at p, and the ideal p = (1− ζ) is the unique prime lying over p.

Proof sketch. (a) Y’all should know this. |Q(ζ) : Q| = φ(pr), and the automorphisms induced by
ζ 7→ ζa for (a, pr) = 1 are φ(pr)-many; since Q(ζ)/Q is normal, we’re done.

(b) The set 1, ζ, . . . , ζd−1 is a basis for Q(ζ)/Q, and has p-power discriminant ±ps; this will
imply (c) once we know that it’s Z-span is the integral basis. This implies psO ⊂ Z[ζ] ⊂ O. From
the identity

p =
∏

i∈(Z/prZ)×
(1− ζi),

it follows that p = (1−ζ) is prime and O/pO ≃ Fp, so O ⊂ Z+(1−ζ)O, and O = (1) = (1−ζ, ζ) =
Z[ζ] + p. Multipying by 1− ζ and substituting, we get that

λO = λ2O + λZ[ζ] =⇒ λ2O + Z[ζ] = O.

Taking higher powers of λ, we see that O = Z[ζ].

Lemma 2. The ring of integers in Q(
√
d) is

O =

{
Z[
√
d] d ≡ 2, 3 mod 4

Z[(1 +
√
d)/2] d ≡ 1

and has discriminant 4d and d respectively.

Proof. Exercise.

4 The proof

We consider the following setup. Fix an odd prime p, and consider the extension Q(ζp)/Q. Fix a
prime ℓ ̸= p.

Lemma 3. The field Q(ζp) contains a unique quadratic subfield, namely Q(
√
p∗) where p∗ =

(−1)(p−1)/2p.

Proof. Since Gal(Q(ζp)/Q) ≃ (Z/pZ)× ≃ Z/(p − 1)Z is cyclic of even order, there is a unique
subgroup of index 2 corresponding to a unique quadratic subextension of degree 2 (by Galois
theory). Quadratic extensions are of the form Q(

√
d). By Lemma ??, such an extension is ramified

at 4d if d ≡ 2, 3 mod 4, and d if d ≡ 1 mod p. By the ramification being multiplicative in towers,
we need d = ±p; so the discriminant of Q(ζp) is p if p ≡ 1 mod 4, and 4p if p ≡ 3 mod 4, but the
discriminant of Q(

√
−p) is p if p ≡ 3 mod 4, so p∗ = (−1)(p−1)/2p gives the right ramification. This

explains the sign in quadratic reciprocity!
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Lemma 4. Denote the Artin symbol
(
Q(ζp)/Q

ℓ

)
by σℓ ∈ Gal(Q(ζp)/Q). Then

σℓ(
√

p∗) =

(
ℓ

p

)√
p∗

Proof. The Artin symbol generates Gal(L/K) if and only if p is inert in L. In particular, non-cyclic
extensions have no inert primes.

Lemma 5. Let ℓ and p be distinct odd primes, and denote the Artin symbol
(
Q(ζp)/Q

ℓ

)
by σℓ. Then

σℓ(
√
p∗) =

(
ℓ
p

)√
p∗.

Proof. Note that |Q(ζp) : Q| = p − 1 is even, and fix an isomorphism Gal(Q(ζp)/Q) ≃ (Z/pZ)×
which is cyclic of order p−1. By the Galois correspondence, the quadratic field Q(

√
p∗) corresponds

to the unique subgroup of index 2 in (Z/pZ)×, namely the subgroup of quadratic residues. Thus if
σℓ ↔ ℓ is a square modulo p, we have σℓ(

√
p∗) =

√
p∗, else if ℓ is not a square, σℓ(

√
p∗) = −

√
p∗,

thus σℓ acts as the Legendre symbol on
√
p∗ as asserted.

Lemma 6. We have σℓ acts trivially on
√
p∗ if and only if p∗ is a square modulo ℓ.

Proof. Immediate consequence of Proposition ??. Spelling it out, we have σℓ fixes
√
p∗ if and only

if σℓ|Q(
√
p∗) = 1, thus Dℓ = 1, meaning fℓ = 1, so ℓ splits completely in Q(

√
p∗). This means

x2 − p∗ ≡ 0 mod ℓ has a root by Dedekind-Kummer, i.e. p∗ is a quadratic residue modulo ℓ.

Proof of Quadratic Reciprocity. We have ℓ is a square modulo p if and only if σℓ acts trivially on
Q(

√
p∗), if and only if p∗ is square modulo ℓ.

This strategy is not limited to the case of odd primes p and ℓ. The so-called supplementary
laws can be proved by a similar manner.

Proposition 15. Let p be an odd prime.

(a)
(
−1
p

)
= (−1)

p−1
2 .

(b)
(
2
p

)
= (−1)

p2−1
8 .

Proof. (a) Let K = Q(i) and p ̸= 2 be prime, hence p is unramified in K, and σp denote the Artin

symbol
(
K/Q
p

)
. Then σp(i) = 1 ⇐⇒ p splits in K ⇐⇒ x2 + 1 splits modulo p, i.e.

(
−1
p

)
= 1.

Hence

σp(i) =

(
−1

p

)
i.

If p ≡ 1 mod 4, we have
σp(i) = ip = i1+4k = i,

while if p ≡ 3 mod 4, we have
σp(i) = ip = i3+4k = i3 = −i,

so
(
−1
p

)
= 1 if and only if p ≡ 1 mod 4. More succinctly,(

−1

p

)
= (−1)

p−1
2
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which is consistent with Euler’s criterion.

(b) Let ζ be an 8th root of unity, and set K = Q(ζ). Fix a prime p ̸= 2 so that p is unramified
in K. Then (ζ + ζ−1)2 = ζ2 + (ζ−2) + 2ζζ−1 = 2, so ζ + ζ−1 =

√
2. Fix a prime p ̸= 2, and let σp

denote the Artin symbol
(
K/Q
p

)
. Then σp(

√
2) = 1 ⇐⇒ p splits in Q(

√
2) ⇐⇒ x2 − 2 has a root

modulo p, i.e.
(
2
p

)
= 1. Hence

σp(
√
2) =

(
2

p

)√
2.

If p ≡ ±1 mod 8, then

σp(
√
2) = σp(ζ + ζ−1) = ζp + ζ−p = ζ1+8k + ζ−1+8k = ζ + ζ−1 =

√
2,

while if p ≡ ±3 mod 8, we have

σp(
√
2) = σp(ζ + ζ−1) = ζp + ζ−p = ζ3+8k + ζ−3+8k = ζ3 + ζ−3 = −

√
2,

so σp fixes
√
2 if and only if p ≡ ±1 mod 8, i.e.

(
2
p

)
= 1 if and only if p ≡ 1 mod 8. More succinctly,(

2

p

)
= (−1)

p2−1
8 .

The “mod 8” condition for the latter supplementary law always struck me as somewhat strange.
In retrospect, we see that the 4 and 8 appearing in both laws come from the fact that

√
−1 and√

2 lie in the 4th and 8th cyclotomic fields respectively. The central nature of cyclotomic fields
foreshadows class field theory. Indeed, class field theory characterizes the primes that split in
abelian extensions of a number field K in terms its class group. The Kronecker-Weber theorem
states that every abelian extension of Q is cyclotomic, thus cyclotomic fields control the arithmetic
of abelian extensions of Q (in a functorial and reciprocal manner).
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