Mathematics 174

Division 2, Section 1

Test 1

February 19, 1988

SHOW YOUR WORK

SKETCH means DRAW CAREFULLY WITHOUT A DRAFTING KIT.
(1) Express $(\mathbf{a}+\mathbf{b}) \times(\mathbf{a}-\mathbf{b})$ as a scalar multiple of $\mathbf{a} \times \mathbf{b}$.
(2) Recall that if $\mathbf{r}(t)=(x(t), y(t), z(t))$ is a space curve from $t=0$ to $t=1$, then the arc length $s(t)$ is given by

$$
s(t)=\int_{0}^{t}\left\|\mathbf{r}^{\prime}(\tau)\right\| d \tau
$$

Let

$$
\mathbf{r}(t)=t \mathbf{i}+2 e^{t} \mathbf{j}+e^{2 t} \mathbf{k}
$$

(a) Find $\mathbf{r}^{\prime}(0)$. Find an equation for the line tangent to the curve at $(0,2,1)$.
(b) Find an equation for the plane normal to the curve at $(0,2,1)$.
(c) Find $\frac{d \mathbf{r}}{d s}(0)$. Find the unit tangent vector $\mathbf{T}(t)$.
(d) Find the curvature of the curve at $(0,2,1)$.
(e) What is the length of the curve between $(0,2,1)$ and $\left(1,2 e, e^{2}\right)$?
(3) A planet travels around the sun in an elliptical orbit of the form

$$
\mathbf{r}(t)=2 \cos t \mathbf{i}+1.5 \sin t \mathbf{j} .
$$

Find the velocity $\mathbf{v}(t)$ and the acceleration $\mathbf{a}(t)$. What is the maximum magnitude of the acceleration?
(4) Sketch in the $x-y$ plane the level curve $f(x, y)=0$ when

$$
f(x, y)=\ln \left(x^{2} y^{2}\right) .
$$

(5) Sketch the surface

$$
x^{2}-y^{2}+z^{2}+1=0 .
$$

