MA 174: Multivariable Calculus
EXAM I
Feb. 14, 2007

NAME \qquad
\qquad

NO CALCULATORS, BOOKS, OR PAPERS ARE ALLOWED. Use the back of the test pages for scrap paper.

Points awarded

1. (5 pts) \qquad
2. (5 pts) \qquad
3. (5 pts) \qquad
4. (5 pts) \qquad
5. (5 pts) \qquad
6. (5 pts) \qquad
7. (5 pts) \qquad
8. (5 pts)
9. (5 pts) \qquad
10. (5 pts) \qquad
11. (5 pts) \qquad

Total Points: \qquad $/ 55$

1. The plane S passes through the point $P(1,2,3)$ and contains the line $x=3 t$, $y=1+t$, and $z=2-t$. Which of the following is an equation for S ?
A. $x+2 y+z=0$
B. $x-2 y+z=0$
C. $x-2 y+z=5$
D. $x+2 y+z=5$
E. $x-y+z=5$
2. A particle starts at the origin with initial velocity $\vec{i}+\vec{j}-\vec{k}$. Its acceleration is $\vec{a}(t)=6 t \vec{i}+2 \vec{j}+6 t \vec{k}$. Find its position at $t=1$.
A. $\frac{1}{6} \vec{i}+\frac{1}{2} \vec{j}+\frac{1}{3} \vec{k}$
B. $\frac{7}{6} \vec{i}+\frac{1}{2} \vec{j}-\frac{5}{6} \vec{k}$
C. $3 \vec{i}+3 \vec{j}-5 \vec{k}$
D. $\vec{i}+2 \vec{j}-\vec{k}$
E. $2 \vec{i}+2 \vec{j}+0 \vec{k}$
3. Find the arc length of the curve defined by $\vec{r}(t)=(\cos (t), \sin (t), 2 t),-\pi \leq t \leq \pi$.
A. π
B. 2π
C. $2 \sqrt{3} \pi$
D. $2 \sqrt{5} \pi$
E. $2 \sqrt{7} \pi$
4. Find a parametric equation for the tangent line to the curve

$$
\vec{r}(t)=\left(3 t+2, t^{2}, \ln (t)\right)
$$

at $t=1$.
A. $x=3 t \quad y=2 t \quad z=1+t$
B. $x=5+3 t \quad y=1+2 t \quad z=t$
C. $x=3+2 t, y=e^{t}(\cos t-\sin t), z=\frac{1}{t+1}$
D. $x=3+2 t \quad y=1+t \quad z=1$
E. $x=2-t \quad y=1+t \quad z=3-3 t$
5. If $L=\lim _{(x, y, z) \rightarrow(0,3,4)} \frac{x+5 y-5 z}{\sqrt{x^{2}+y^{2}+z^{2}}}$, then
A. $L=-3$
B. $L=-2$
C. $L=-1$
D. $L=0$
E. the limit does not exist
6. If $f(x, y)=\ln \left(x+2 y^{2}\right)$, then the partial derivative $f_{x y}$ equals
A. $\frac{-2 x}{\left(x+2 y^{2}\right)^{2}}$
B. $\frac{-4 y}{\left(x+2 y^{2}\right)^{2}}$
C. $\frac{4 x y}{\left(x+2 y^{2}\right)^{2}}$
D. $\frac{-8 x y}{\left(x+2 y^{2}\right)^{2}}$
E. $\frac{4\left(x^{2}-y^{2}\right)}{\left(x+2 y^{2}\right)^{2}}$
7. Find the unit tangent vector \mathbf{T} of $\vec{r}(t)=(\sin (3 t)) \vec{i}+(\cos (3 t)) \vec{j}+(4 t) \vec{k}$ at any t.
A. $\mathbf{T}=\frac{3}{5} \cos (3 t) \vec{i}-\frac{3}{5} \sin (3 t) \vec{j}+\frac{4}{5} \vec{k}$
B. $\mathbf{T}=\frac{3}{5} \sin (3 t) \vec{i}-\frac{3}{5} \cos (3 t) \vec{j}+\frac{4}{5} \vec{k}$
C. $\mathbf{T}=3 \cos (3 t) \vec{i}-3 \sin (3 t) \vec{j}+4 \vec{k}$
D. $\mathbf{T}=\sin (3 t) \vec{i}-\cos (3 t) \vec{j}+4 t \vec{k}$
E. $\mathbf{T}=1$
8. Find the curvature of the curve defined by $\vec{r}(t)=(\sin (3 t)) \vec{i}+(\cos (3 t)) \vec{j}+(4 t) \vec{k}$ at $t=2$. Recall: $\kappa=\left|\frac{d T}{d s}\right|=\left|\frac{d T}{d t}\right| /|\mathbf{v}|$
A. $\frac{3}{5}$
B. $\frac{3}{4}$
C. $\frac{3}{25}$
D. $\frac{9}{25}$
E. 9
9. Find $\frac{\partial z}{\partial y}$ at $(-2,2,2)$ if $z(x, y)$ is defined by the equation

$$
x e^{y}+y e^{z}=0
$$

A. -1
B. $-\frac{1}{2}$
C. 0
D. $\frac{1}{2}$
E. 1
10. Find a vector \vec{a} and a vector \vec{b} such that the following does not hold

$$
|\vec{a} \times \vec{b}|=|\vec{a}| \cdot|\vec{b}| \cdot|\cos \theta| .
$$

(You need to specify \vec{a} and \vec{b}, and calculate $|\vec{a} \times \vec{b}|$ and $|\vec{a}| \cdot|\vec{b}| \cdot|\cos \theta| \cdot$)
11. Let C be the intersection of $x^{2}+y^{2}=16$ and $x+y+z=5$. Find a parametric equation for C.

