Math 174 Exam II

Name:

1. (10) Find the directional derivative of $f(x, y, z)=z \ln \left(x^{2}+y^{2}-3\right)$ at $(2,2,5)$ in the direction of $3 \mathbf{j}+4 \mathbf{k}$.
2. (10) Let (x, y) be rectangular coordinates and (r, θ) be polar coordinates. Compute $(\partial r / \partial x)_{y}$ when $x=3$ and $y=4$.
3. (10) Find the equation of the tangent plane to the surface given by $x^{2}+3 x y^{3} z=1$ at $(x, y, z)=(1,0,1)$.
4. (10) Find the equation of the tangent plane to the surface given by $z=x^{2}+3 x y^{3}-1$ at $(x, y, z)=(1,0,0)$.
5. (20) For the function $f(x, y)=x^{3}-6 x y+y^{3}$, find and classify all relative maxima, minima, and saddle points.
6. (20) For the function $f(x, y)=x+2 x y+y^{2}$, find the points in the rectangle $\{(x, y):-1 \leq x \leq 1,0 \leq y \leq 2\}$ where f has its absolute maximum and absolute minimum.
7. (20) Use the linear approximation at $(1,0)$ to estimate $f(x, y)=x+\ln \left(x^{2}+\tan y\right)$ at $(x, y)=(3 / 4,1 / 4)$. Do not estimate the error.
