Math 174 Exam III

 Name:1. (20) Use the method of Lagrange multipliers to find the points on the ellipse $x^{2}+4 y^{2}=8$ which minimize $f(x, y)=x y$.
2. i) (20) Evaluate the integral $\int_{0}^{1} \int_{y}^{1} e^{x^{2}} d x d y$.
ii) (10) Express the integral of i) above in polar form but do not evaluate.
3. (10) Evaluate the integral $\int_{1}^{e} \int_{1}^{e} \int_{1}^{e} \frac{1}{x y z} d x d y d z$.
4. (20) Set up, but do not evaluate, a triple integral for the volume of the solid bounded above by $z=4-y^{2}$, below by $y+z=2$, and on the sides by $x=0$ and $x=3$. Be sure to carefully sketch the region of integration.
5. (20) Express the integral $\int_{0}^{2} \int_{z^{2}}^{4} \int_{-\sqrt{z^{2}-y}}^{\sqrt{z^{2}-y}} x^{2} e^{z} d x d y d z$. Be sure to carefully sketch the region of integration.
