MA 174 Final Exam May 2, 1988
Name:
(10 points) Find the directional derivative of the function $F(x, y, z)=e^{x} \sin (y z)$ at the point $(0,1, \pi)$ in the direction of most rapid increase.
(15 points)
(a) Write an equation for the line passing through the points $(1,2,3)$ and $(-1,1,0)$.
(b) Write an equation for the plane containing the points $(1,-1,2),(2,1,1)$, and $(0,1,2)$.
(c) Find the angle between the planes given by the equations $2 x-y=-2$ and $x-2 z=1$.
(10 points) Let $\mathbf{r}(t)=\left(e^{t} \sin t, e^{t} \cos t\right)$ for $0 \leq t \leq 2$. What is the length of this curve?
(15 points) Consider the graph $y=\ln x$ for $x>0$. Recall that the curvature $k(x)$ of the curve $y=f(x)$ is given by the formula

$$
k(x)=\frac{\left|y^{\prime \prime}(x)\right|}{\left[1+\left(y^{\prime}(x)\right)^{2}\right]^{3 / 2}} .
$$

(a) Show that $k(x)=x /\left(1+x^{2}\right)^{3 / 2}$.
(b) Find the point on the curve for which the curvature is maximal. What is the curvature there?
(10 points) Find the tangent plane to the surface given by the formula

$$
x^{2} y^{2}+e^{y z}=2
$$

at the point $(1,1,0)$.
(15 points) Show that for any two vectors \mathbf{a} and \mathbf{b},

$$
\|\mathbf{a}+\mathbf{b}\|^{2}-\|\mathbf{a}-\mathbf{b}\|^{2}=4 \mathbf{a} \cdot \mathbf{b} .
$$

(Hint: $\|\mathbf{v}\|^{2}=\mathbf{v} \cdot \mathbf{v}$.)
(20 points) Find the critical points of the function $f(x, y)=\left(x^{3}-3 x\right)\left(1+y^{2}\right)$ and classify each critical point as a maximum, minimum, or saddle point.
(15 points) Let U be the sphere $x^{2}+y^{2}+z^{2} \leq 1$, let S be the boundary surface of U, and let \mathbf{n} be the outward normal to S. Let $\mathbf{v}(x, y, z)=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$. Evaluate $\iint_{S} \mathbf{v} \cdot \mathbf{n} d \sigma$.
(10 points) Let T be the region bounded by the planes $x=0, y=0, z=0$, and $x+2 y+3 z=6$.
(a) Carefully sketch the region T below.
(b) Fill in the boxes; do not evaluate the integral.

(20 points) Find the centroid of the solid bounded above by the surface $z-\left(x^{2}+y^{2}\right)=0$, below by the plane $z=0$, and at the sides by the cylinder $x^{2}+y^{2}=1$. Is the centroid inside the solid? Justify your answer. (Hint: Sketching the solid may help reduce the computation.)
(15 points) An object travels along the ellipse $x=a \cos t, y=b \sin t$ for $0 \leq t \leq 2 \pi$ subject to a force $\mathbf{F}(x, y)=-\frac{1}{2}[y \mathbf{i}-x \mathbf{j}]$.
(a) Write the work done by the force as a line integral.
(b) Express the work done by the force in terms of the area of the ellipse.
(20 points) Calculate the line integral of the vector field

$$
\mathbf{F}(x, y)=\frac{x}{\left(x^{2}+y^{3}\right)^{1 / 2}} \mathbf{i}+\frac{3 y^{2}}{2\left(x^{2}+y^{3}\right)^{1 / 2}} \mathbf{j}
$$

along the circular arc $x^{2}+y^{2}=2$ from the point $(1,1)$ counter-clockwise to the point ($0, \sqrt{2}$).
(25 points) Let the surface S be the upper hemisphere given by the formula $x^{2}+y^{2}+z^{2}=$ 4 for $z \geq 0$. Let \mathbf{n} be the upper unit normal of S, and let the curve C be the boundary of S. Let $\mathbf{v}(x, y, z)=-y \mathbf{i}+x \mathbf{j}$. Calculate

$$
\iint_{S} \operatorname{curl} \mathbf{v} \cdot \mathbf{n} d \sigma
$$

(a) as a surface integral.
(b) as a line integral using Stokes' theorem.

