MA 261
Alternate Test 1

Note: Be neat, be organized, and show all your work.
Formulas:

$$
a_{\mathbf{T}}=\frac{\mathbf{R}^{\prime} \cdot \mathbf{R}^{\prime \prime}}{\left|\mathbf{R}^{\prime}\right|}, \quad a_{\mathbf{N}}=\frac{\left|\mathbf{R}^{\prime} \times \mathbf{R}^{\prime \prime}\right|}{\left|\mathbf{R}^{\prime}\right|}, \quad \kappa=\frac{\left|\mathbf{R}^{\prime} \times \mathbf{R}^{\prime \prime}\right|}{\left|\mathbf{R}^{\prime}\right|^{3}}, \quad\left|\mathbf{R}^{\prime \prime}\right|^{2}=a_{\mathbf{T}}^{2}+a_{\mathbf{N}}^{2} .
$$

(1) (15 points) Parameterize by arclength the curve

$$
\mathbf{R}(t)=t \mathbf{i}+\cos t \mathbf{j}+\sin t \mathbf{k}, \quad 0 \leq t \leq \pi
$$

(2) An object moves along a path given by

$$
\mathbf{R}(t)=2 \sin t \mathbf{i}+2 \cos t \mathbf{j}+\sin 2 t \mathbf{k}, \quad 0 \leq t \leq 20
$$

(a) (15 points) For which values of t does this object experience the greatest acceleration? the least acceleration? (b) (5 points) Is this curve closed? (Yes or no.) (c) (5 points) Is it simple?
(3) (5 points) Find $\mathbf{T}(t)$ for the curve

$$
\mathbf{R}(t)=t \mathbf{i}+t^{2} \mathbf{j}+2 t \mathbf{k}, \quad-\infty<t<\infty
$$

(10 points) Find the line tangent to the curve at the point $\mathbf{R}(1)$, i.e., when $t=1$. (10 points) Calculate the curvature of the curve at the point $\mathbf{R}(1)$. (5 points) This curve lies in a plane. Find an equation for that plane. (Note: if you're finding the plane with a long calculation, then work another problem for 5 points-the equation for the plane can be found with almost no calculation.)
(4) (10 points) In the region $-2 \leq x \leq 2$, graph the curves

$$
\begin{array}{ll}
\mathbf{R}(t)=t \mathbf{i}+\left(t^{2}-1\right) \mathbf{j}, & -\infty<t<\infty, \text { and } \\
\mathbf{R}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}, & 0 \leq t \leq 2 \pi
\end{array}
$$

(10 points) Find the cosines of the angles between these curves at the points $(x, y)=(0,-1)$ and $(x, y)=(1,0)$.
(5) (10 points) Find the plane perpendicular to the curve

$$
\mathbf{R}(t)=e^{t} \mathbf{i}+t^{2} \mathbf{j}+\frac{1}{1+t^{2}} \mathbf{k}, \quad-\infty<t<\infty
$$

at the point $\mathbf{R}(1)$, i.e., when $t=1$.

