TEST 1

MA 261
(1) (20 points) Assume that M, m, and G are positive numbers. (One can think of M as the mass of the sun, m as the mass of a satellite (planet, asteroid, etc.) about the sun, and G as the gravitational constant.) Show that the vector function

$$
\mathbf{r}(t)=(a \cos b t) \mathbf{i}+(a \sin b t) \mathbf{j}
$$

satisfies Newton's law of gravitation,

$$
m \mathbf{r}^{\prime \prime}(t)=-\frac{G m M}{|\mathbf{r}(t)|^{2}} \frac{\mathbf{r}(t)}{|\mathbf{r}(t)|}
$$

if and only if Kepler's law holds:

$$
a^{3} b^{2}=G M
$$

(2) (30 points) Find the unit tangent $\mathbf{T}(t)$, the principal unit normal $\mathbf{N}(t)$, and the curvature $\kappa(t)$ of the curve

$$
\mathbf{r}(t)=(\ln \sec t) \mathbf{i}+t \mathbf{j}, \quad-\frac{\pi}{2}<t<\frac{\pi}{2}
$$

(Note: $\sec t=1 / \cos t$.)
(3) (15 points) Assume that two parents are putting together a saving plan for their children to go to college, and that they will put dollars per year in a savings account that will earn interest at a rate of $100 I$ percent a year. Then after t years they can expect a total amount of

$$
T(I, d, t)=\frac{d}{I}\left(e^{I t}-1\right)
$$

dollars in the account. Derive an expression that will estimate the change in the total after 10 years if I is decreased by 0.02 (i.e., 2%) and d is decreased by $\$ 100$.
(4) (15 points) Graph the surface given by the equation

$$
x^{2}-y^{2}+z^{2}=1
$$

(5) (20 points) Parametrize the curve given by the intersection of the two surfaces

$$
x^{2}+y^{2}-2 z-5=0 \quad \text { and } \quad x^{2}+y^{2}+z^{2}=4
$$

