TEST 2

MA 261
October 29, 1991
MWF 2:30 PM
(1) Any electric potential (voltage) $V(x, y)$ in a vacuum satisfies

$$
\begin{equation*}
\frac{\partial^{2} V}{\partial x^{2}}(x, y)+\frac{\partial^{2} V}{\partial y^{2}}(x, y)=0 \tag{1}
\end{equation*}
$$

and if a function satisfies (1) then it is an electric potential.
(a) (10 points) Show that the function $V(x, y)=x^{2}-y^{2}$ satisfies (1), and hence is a valid electric potential
(b) (10 points) The electric field $\mathbf{E}(x, y)$ (which is a vector field) associated with a potential $V(x, y)$ is given by

$$
\mathbf{E}(x, y)=\nabla V(x, y) .
$$

Graph $\mathbf{E}(x, y)$ for $-1 \leq x \leq 1,-4 \leq y \leq 4$, when $V(x, y)=x^{2}-y^{2}$.
(c) (10 points) Assume that $V(x, y)=x^{2}-y^{2}$ is the electric potential in a strip $-1 \leq x \leq 1$ and $-\infty<y<\infty$. Assume that a charged particle with mass m and charge e is put into the strip. Then the location $\mathbf{r}(t)=\left(r_{1}(t), r_{2}(t)\right)$ of the charged particle satisfies the equation

$$
m \mathbf{r}^{\prime \prime}(t)=e \mathbf{E}\left(r_{1}(t), r_{2}(t)\right)
$$

Assuming that $m>0$ and $e>0$, where will a particle initially placed at the point $(1 / 2,0)$ hit the boundary $x=1$? (Hint: Look where the electric field \mathbf{E} will push the particle.)
(d) (10 points) Under the assumptions of Part (c), is there any point $\mathbf{r}(0)=$ $\left(r_{1}(0), r_{2}(0)\right)$ in the strip where one can place a charged particle and it will not move, i.e., where $\mathbf{E}\left(r_{1}(0), r_{2}(0)\right)=\mathbf{0}$?
(e) (10 points) Any point (x, y) where $\mathbf{E}(x, y)=\mathbf{0}$ is a critical point of the function V. Find all critical points of $V(x, y)=x^{2}-y^{2}$ in the strip $-1<x<1$ and $-\infty<y<\infty$. Classify these critical points as maxima, minima, or saddle points.
(2) (25 points) Find all maxima and minima of the function $f(x, y)=e^{x y}$ subject to the constraint $x^{2}+y^{2} \leq 1$.
(3) (15 points) Evaluate

$$
\lim _{(x, y) \rightarrow 0} \frac{x^{2}+x^{2} y^{2}+y^{2}}{x^{2}+y^{2}}
$$

(4) (20 points) Graph the level curves of the function $f(x, y)=\left(x^{2}+y^{2}\right) / x$. Why do the level curves show you that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist?

