MA 271 Vector Calculus Fall 1999, Test One
 Instructor: Yip

- This test booklet has SIX QUESTIONS, totaling 60 points for the whole test. You have 50 minutes to do this test. Plan your time well. Read the questions carefully.
- This test is closed book and closed notes.
- (Any kind of) calculator is allowed. But you should not use it whenever it is possible (from the point of view of this class), i.e. your answers should be as analytical as possible.
- In order to get full credits, you need to give correct and simplified answers and explain in a comprehensible way how you arrive at them.
- You can use both sides of the papers to write your answers. But please indicate so if you do.
Name:

$\frac{\text { Question }}{\frac{1 .(10 \mathrm{pts})}{\frac{2 .(10 \mathrm{pts})}{3 .(10 \mathrm{pts})}}}$| $\frac{4 .(10 \mathrm{pts})}{\frac{5 .(10 \mathrm{pts})}{6 .(10 \mathrm{pts})}}$ |
| :--- |
| $\frac{\text { Total }(60 \mathrm{pts})}{}$ |

1. Find the area of the triangle with vertices:

$$
A=(2,-1,5), \quad B=(3,2,-1), \quad C=(-1,2,2)
$$

2. Given the point $P_{0}=(5,0,12)$ and the plane $\Pi: x-2 y+5 z=5$. Find the point P_{1} on Π such that $\left|P_{0} P_{1}\right|$ is the shortest distance between P_{0} and Π.
3. Given the following two lines:

$$
\begin{aligned}
L_{1}:\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =\left(\begin{array}{c}
4 \\
-4 \\
4
\end{array}\right)+t\left(\begin{array}{l}
3 \\
1 \\
1
\end{array}\right) \\
L_{2}:\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =\left(\begin{array}{l}
-3 \\
-1 \\
-3
\end{array}\right)+s\left(\begin{array}{l}
3 \\
2 \\
3
\end{array}\right)
\end{aligned}
$$

Find the point Q_{1} on L_{1} and Q_{2} on L_{2} such that $\left|Q_{1} Q_{2}\right|$ gives the shortest distance between the two given lines.
4. Determine the convergence/divergence of the following series. Clearly indicate your reasons.
(a) $\quad \sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$
(b) $\quad \sum_{n=1}^{\infty} \frac{n+2^{n}}{n^{2} 2^{n}}$
(c) $\quad \sum_{n=1}^{\infty}(-1)^{n}\left(\sqrt{n^{2}+n}-n\right)$
5. Given the following power series:

$$
P(x)=1-\frac{x}{(1!)^{2}}+\frac{x^{2}}{(2!)^{2}}-\frac{x^{3}}{(3!)^{2}}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{(n!)^{2}}
$$

(a) Determine the region of convergence for $P(x)$.
(b) What is the value of $P(1)$ up to 4 decimal places?
6. Given the following series:

$$
Q(x)=\sum_{n=0}^{\infty}\left(\frac{x^{2}+1}{3}\right)^{n}
$$

(a) Determine the region of convergence for $Q(x)$.
(b) Find $Q(x)$, i.e. express $Q(x)$ as an explicit function.

