NAME _____

Page 1	/10
Page 2	/20
D	(2.2
Page 3	/26
Page 4	/16
D *	/20
Page 5	/28
TOTAL	/100

(10) 1. Find the equation of the tangent plane to the graph of $f(x,y) = (x^2 + y^2)^2$ at the point (1, 1, 4).

MA 271	Exam 3	Fall 2005	Name:	Page 2/5
--------	----------	-----------	-------	----------

(10) 2. Express as a double integral the volume of region in the first octant bounded by the planes x + z = 1, x = 0, y = 0, z = 0, and x + 2y = 1. Show work but do not evaluate the integral.

$$ANSWER = \int \int dx \, dy$$

(10) 3. Convert the following integral into cylindrical coordinates. Show work but do not evaluate the integral.

$$\int_{-2}^{2} \int_{0}^{\sqrt{4-x^2}} \int_{x}^{3+x^2+y^2} 10y \, dz \, dy \, dx$$

$$ANSWER = \int \int \int dz \, dr \, d\theta$$

MA 271	Exam 3	Fall 2005	Name:	Page 3/5
--------	----------	-----------	-------	----------

(12) 4. Let $f(x, y) = x^3 y$. Find the value of the directional derivative at (1,2) in the direction in which f increases most rapidly.

ANSWER =

(14) 5. Compute $\int_C \vec{F} \cdot d\vec{r}$ where C is the curve parametrized by $\vec{r}(t) = t\vec{i} + t\vec{j} + 2t\vec{k}$ for $0 \le t \le 1$, and $\vec{F}(x, y, z) = e^x\vec{i} + 3xy\vec{j} + xyz\vec{k}$.

ANSWER =

(16) 6. The function $f(x, y) = x^3/3 - 2xy + 2y^2 - 6x$ has two critical points. Find each one and determine if it is a relative maximum, minimum, or saddle point.

 $CRITICAL \ POINT \ (\ , \) \ IS \ A$

 $CRITICAL \ POINT \ (\quad , \quad) \ IS \ A$

- (28) 7. Let *D* be the region bounded below by the cone $z = \sqrt{x^2 + y^2}$ and above by the sphere $x^2 + y^2 + z^2 = 9$. If F(x, y, z) = xz, express the integral $\iiint_D F \, dV$ as a triple integral in (a) rectangular coordinates, (b) cylindrical coordinates, and (c) spherical coordinates. Do not evaluate the integrals.
 - (a) Rectangular coordinates

(c) Spherical coordinates

