NAME

Page 1	$/ 10$
Page 2	$/ 20$
Page 3	$/ 26$
Page 4	$/ 16$
Page 5	$/ 28$
	$/ 100$

(10) 1. Find the equation of the tangent plane to the graph of $f(x, y)=\left(x^{2}+y^{2}\right)^{2}$ at the point (1, 1, 4).
(10) 2. Express as a double integral the volume of region in the first octant bounded by the planes $x+z=1, x=0, y=0, z=0$, and $x+2 y=1$. Show work but do not evaluate the integral.

$$
A N S W E R=\quad \int \quad d x d y
$$

(10) 3. Convert the following integral into cylindrical coordinates. Show work but do not evaluate the integral.

$$
\int_{-2}^{2} \int_{0}^{\sqrt{4-x^{2}}} \int_{x}^{3+x^{2}+y^{2}} 10 y d z d y d x
$$

$$
A N S W E R=\quad \int \quad d z d r d \theta
$$

\qquad
(12) 4. Let $f(x, y)=x^{3} y$. Find the value of the directional derivative at $(1,2)$ in the direction in which f increases most rapidly.
$A N S W E R=$
(14) 5. Compute $\int_{C} \vec{F} \cdot d \vec{r}$ where C is the curve parametrized by $\vec{r}(t)=t \vec{i}+t \vec{j}+2 t \vec{k}$ for $0 \leq t \leq 1$, and $\vec{F}(x, y, z)=e^{x} \vec{i}+3 x y \vec{j}+x y z \vec{k}$.
(16) 6. The function $f(x, y)=x^{3} / 3-2 x y+2 y^{2}-6 x$ has two critical points. Find each one and determine if it is a relative maximum, minimum, or saddle point.

CRITICAL POINT (,) IS A

CRITICAL POINT (,) IS A
(28) 7. Let D be the region bounded below by the cone $z=\sqrt{x^{2}+y^{2}}$ and above by the sphere $x^{2}+y^{2}+z^{2}=9$. If $F(x, y, z)=x z$, express the integral $\iiint_{D} F d V$ as a triple integral in (a) rectangular coordinates, (b) cylindrical coordinates, and (c) spherical coordinates. Do not evaluate the integrals.
(a) Rectangular coordinates
(b) Cylindrical coordinates
\square
(c) Spherical coordinates

