MA 271 FINAL EXAM INSTRUCTIONS Dec. 10, 2007

NAME _____ INSTRUCTOR _____

- 1. You must use a $\underline{\#2 \text{ pencil}}$ on the mark–sense sheet (answer sheet).
- 2. On the mark-sense sheet, fill in the <u>instructor's</u> name (<u>Min Chen</u> or <u>Adrian Jenkins</u>) and the <u>course number</u> which is <u>MA271</u>.
- **3.** Fill in your <u>NAME</u> and blacken in the appropriate spaces.
- 4. Fill in the <u>SECTION NUMBER</u> boxes with the division and section number of your class and blacken in the appropriate spaces.
 - 0101 if your class meets during: 9:30am-10:20am
 - $\underline{0201}$ if your class meets during: 10:30 am-11:20 am
 - $\underline{0301}$ if your class meets during: 11:30am-12:20pm
 - 0401 if your class meets during: 12:30 pm-1:20 pm
- 5. Leave the TEST/QUIZ NUMBER blank.
- 6. Fill in the <u>10-DIGIT PURDUE ID</u> and blacken in the appropriate spaces.
- 7. Sign the mark–sense sheet.
- 8. Fill in your name and your instructor's name on the question sheets (above).
- 9. There are 20 questions, each worth 5 points. Blacken in your choice of the correct answer in the spaces provided for questions 1–20 in the answer sheet. Do all your work on the question sheets. <u>Turn in both the mark–sense sheets and the question sheets when you are finished</u>.
- 10. <u>Show your work</u> on the question sheets. Although no partial credit will be given, any disputes about grades or grading will be settled by examining your written work on the question sheets.
- **11.** NO CALCULATORS, BOOKS, OR PAPERS ARE ALLOWED. Use the back of the test pages for scrap paper.

1. The series

$$\sum_{n=1}^{\infty} (-1)^n \frac{(n+1)(2x+7)^n}{n^2}$$

converges on an interval of the form

A.
$$a < x < b$$

B. $a < x \le b$
C. $a \le x < b$
D. $a \le x \le b$
E. $-\infty < x < \infty$

2. The limit as $n \to \infty$ of the sequence

$$a_n = \left(1 + \frac{1}{\sqrt{n}}\right)^n$$

is

A. 0

B. 1

C. e

- D. \sqrt{e}
- E. ∞

- **3.** What is the magnitude of the projection of the vector (1, -2, 7) onto the vector (3, 4, 0)?
 - A. $\frac{2}{3}$ B. $\frac{11}{13}$ C. 1 D. $\frac{7}{5}$
 - E. 4

4. The position of an object is given by

$$\mathbf{r}(t) = \left(3t, \frac{3}{\sqrt{2}}t^2, t^3\right)$$

with length scale in meters. At what time t has the object traveled 14 meters? (The object started traveling at t = 0)

- A. 1
- B. 2
- C. 3
- D. 6
- E. 11

5. The position of an object is given by

$$\mathbf{r}(t) = (e^t \cos(t), e^t \sin(t), 2).$$

Find the unit tangent vector \mathbf{T} at $t = \pi$.

A.
$$\mathbf{T} = \frac{1}{\sqrt{2}}(1, 1, 2)$$

B. $\mathbf{T} = \frac{1}{\sqrt{2}}(1, -1, 0)$
C. $\mathbf{T} = \frac{1}{\sqrt{2}}(-1, -1, 0)$
D. $\mathbf{T} = \frac{1}{\sqrt{2}}(-1, 1, 0)$
E. $\mathbf{T} = \frac{1}{\sqrt{2}}(-1, 1, 2)$

6. Let

$$f(x,y) = \begin{cases} 2x + 3y + 1, & xy \neq 0, \\ 0, & xy = 0. \end{cases}$$

Find $f_x(0,0)$ and $f_x(0,1)$.

A. $f_x(0,0) = 0$ and $f_x(0,1) = 2$ B. $f_x(0,0) = 0$ and $f_x(0,1)$ is not defined C. $f_x(0,0) = 2$ and $f_x(0,1) = 2$ D. $f_x(0,0) = 2$ and $f_x(0,1)$ is not defined E. $f_x(0,0)$ is not defined and $f_x(0,1) = 2$

7. The linearization of the function

$$f(x, y, z) = x\sin(yz) + e^z\sin(y^2)$$

at the point $P(1,\sqrt{\pi},0)$ is given by

A.
$$2\pi - \sqrt{\pi}(x + 2y + 3z)$$

B. $\pi - \sqrt{\pi}(x - 2z)$
C. $\sqrt{\pi} + 2y - 3z$
D. $2\pi + \sqrt{\pi}(2x + y - z)$
E. $2\pi - \sqrt{\pi}(2y - z)$

- 8. For what values of the constant k will the Second Derivative Test guarantee that $f(x, y) = x^2 + kxy + y^2$ has a minimum at (0, 0)?
 - A. There is no such k
 - B. $|k| < \infty$
 - C. k < 2
 - D. |k| < 2
 - E. |k| > 2

9. Find the maximum distance from the sphere

$$x^2 + y^2 + z^2 = 12$$

to the point
$$(1, -1, 1)$$
.

A. 1 B. 3 C. $\sqrt{8}$ D. $\sqrt{27}$ E. 6

10. Evaluate

$$\int_0^1 \int_{\sqrt{x}}^1 9\sqrt{3+y^3} \, dy dx.$$

A.
$$2(8 - 3\sqrt{3})$$

B. $2(8 - 3\sqrt{5})$
C. $2(5 - 3\sqrt{3})$
D. $3\sqrt{3}$
E. $5\sqrt{5}$

11. Find the volume of the region enclosed by the ellipsoid

 $x^{2} + (y/2)^{2} + (z/3)^{2} = 1.$

- A. 2π
- B. 4π
- C. 8π
- D. 10π
- E. 16π

12. Find the Jacobian J(r, t, u) of the transformation

$$x = 2r\cos(t), \quad y = 3r\sin(t), \quad z = 4u.$$

A. 24rB. rC. r^2 D. $12r^2u$ E. $6r\sin(t)$ 13. Let $\mathbf{F}(x, y, z) = x^2 y z \mathbf{i} + (x^2 + y^2 + z^2) \mathbf{j} + xy^2 z \mathbf{k}$, evaluate $\nabla \cdot (\nabla \times \mathbf{F})$ at (x, y, z) = (2, -1, 3).

- A. -8
- В. –4
- C. 0
- <u>-</u>
- D. 1
- E. 16

- 14. Let $\mathbf{F} = f(x, y, z) \mathbf{i} + g(x, y, z) \mathbf{j} + h(x, y, z) \mathbf{k}$ and $\nabla = \partial_x \mathbf{i} + \partial_y \mathbf{j} + \partial_z \mathbf{k}$, which of the following is (are) NOT defined?
 - I. $\nabla(\nabla \cdot \mathbf{F})$
 - II. $\nabla \times (\nabla \times \mathbf{F})$
 - III. $\nabla \cdot (\nabla \times \mathbf{F})$
 - IV. $\nabla \times (\nabla \cdot \mathbf{F})$
 - A. I only
 - B. II only
 - C. III only
 - D. IV only
 - E. III and IV

15. Evaluate

$$\oint_C (2y+x)dx + (4x-y^2)dy$$

where C is the boundary of the triangle with vertices (0,0), (1,1) and (2,1) oriented counter clockwise.

- A. 1
- B. 2
- C. 3
- D. 6
- E. $\sqrt{2}$

16. Find the work done by

$$\mathbf{F}(x,y,z) = (2x+yz)\mathbf{i} + (-3y^2+xz)\mathbf{j} + (\frac{1}{z}+xy)\mathbf{k}$$

over the curve

$$\mathbf{r}(t) = t\mathbf{i} + 2t^2\mathbf{j} + \mathbf{k}$$

from the point (0, 0, 1) to point (1, 2, 1).

A. -5B. 2 C. 3 D. 6 E. $\sqrt{2}$ 17. Find the flux of

$$\mathbf{F} = x\mathbf{i} + y\mathbf{j} + (3 - 2z)\mathbf{k}$$

upward through the surface S which is the part of the paraboloid $z = 1 - x^2 - y^2$ lying above the plane z = 0.

- A. -2π
- B. 0
- C. 3π
- D. 4π
- E. 15π

18. Let S be the surface (lateral, top, and bottom) of the cylinder

 $x^2 + y^2 \le 5, \quad 0 \le z \le 3.$

Calculate the outward flux of the vector field

$$F(x, y, z) = y\mathbf{i} + x\mathbf{j} + z^2\mathbf{k}$$

through S.

A. 6π

- B. 15π
- C. 22π
- D. 45π
- E. 90π

19. Let $\mathbf{F}(x, y, z) = -y \sin(z)\mathbf{i} + x \sin(z)\mathbf{j} + xy \cos(z)\mathbf{k}$, evaluate

$$\oint_C \mathbf{F} \cdot d\mathbf{r}$$

where C is the circle cut from the sphere $x^2 + y^2 + z^2 = 5$ by the plane z = -1, counter clockwise as viewed from above.

A. $-8\pi \sin(1)$

B. $-8\pi\cos(1)$

- C. $8\pi\cos(3)$
- D. 15π
- E. 6π

20. Compute the area of the surface defined by parametric equations

$$x = u + v, y = u - v, z = 1 - u$$

where $0 \le u \le 1$ and $0 \le v \le u$.

A. $\frac{1}{3}$ B. $\sqrt{6}/3$ C. $\sqrt{6}/2$ D. $\sqrt{5}$ E. $\sqrt{6}$