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ON THE DEVELOPMENT OF THE GENUS OF QUADRATIC FORMS
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- -
RESWME

La théorie du genre des formes quadratiques, des groupes nilpotents, des
corps algébriques et encore d'autres concepts est essentiellement une théorie lo-

1 cale-globale qui a comme objectif 1'étude de 1la question suivante: Dans quelle

mesure des données locales d8terminent-elles des objets globaux (principe de Hasse)?
La notion du genre fut intreoduite par Gauss en 1801 mais ce fut Hasse qui en 1923

en reconniit son caractére local-global.

A 1'origine du développement, on trouve un théoréme de Fermat &€noncé dans une
lettrs adressée & Mersenne (1640): un nombre premier impair p est la somme uni-
que de deux carrés si et seulement si =1 modulo 4 . La démonstration fut

donnée par Euler, 114 ans plus tard, et Euler zinsi que Lagrange et Legendre trou-

vérent d'autres théordmes de ce type. Motivé par ces travaux sporadiques, Gauss

en 1801, &tudie d'une fagon systématique la représentabilité d'un entier par une

forme quadratique binaire quelconque & coefficients entiers. Dans ce but, Gauss

ajoute aux th8orsmes sur l'Equivalence, sur les classes et sur le discriminant,

d8j8 obtenus par Lagrange en 1773, les notions de genre et de composition des for-

mes sur lesquelles il démontre des théorgmes de grande profondeur et d'une haute
portde. La th8orie des formes & 3 variables, initiBe par Gauss et appliquée par
lui-mdme au genre des formes binaires, est poursuivie par Seeber, et est &tendue
aux formes quadratiques I un nombre quelconque de variables par Eisenstein, Smith,

Poincaré et Minkowski. Dans une annonce des travaux de Seeber, Gauss (1831) donne
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aussl une interprétation géomdtrique de sa thBorie des formes quadratiques binaires

positives. Cette théorie est &tendue aux formes quadratiques positives 4 un nom-
bre quelconque de variables par Minkowski (1891). Elle conduit Finalement 3 une
théorie des formes quadratiques ratiomnelles en termes d'espaces quadratiques d&-
velopp8s par Witt (1937), ainsi qu'd une th8orie des formes quadratiques entigéres
en termes de modules quadratiques développés systématiquement par Eichler (1952).
Dans son livre, Eichler développe d'abord la thdorie locale des complétés p—adique%
des modules quadratiques afin d'obtenir des résultats globaux pour ceux-ci. Il ob-%
tient ainsi une thiorie analogue mais beaucoup plus compliquée que la thdorie ra-
tionnelle de Hasse, dans laquelle les nombres ‘p-adiques, présentés par Hensel en
1899, sont appliqués pour la premidre fois avec grand succds, en leur assurant
ainsi une place importante en math8matique. Fn s'appuyant sur l'interprétation du
genre que donne Hasse en termes de nombres p-adiques, Kneser et Borel ont pu ca-
ractériser le genre d'une forme quadratique entilre en termes d'addles du groupe
orthogonal associ&. Cette caractdrisation a préparg le chemin 3 1'&tude du genre
d'objets encore plus généraux, tels que par exemple le genre des groupes algébri-
ques ou le genre des modules. Ce sont ces généralisations qui ont conduit i la

définition du genre des groupes nilpotents donnde par Pickel et Mislin.

La théorie du genre de Gauss a encore jou un rfle trés important dans un do-
maine trés différent. Dedekind {1894) transposa la théorie de Gauss sur les for-
mes quadratiques binaires de discriminant d en langage d'id€aux d'un corps qua-
dratique de méme discriminant. Les thdorémes fondamentaux de Gauss sur le genre,
reformul&s maintenant bour les corps quadratiques et généralisés aux corps de nom-
bres cycliques de degré premier jouaient alors un r8le clé dans 1'&dification de
la théorie des corps de classes par Hilbert, Takagi et Hasse. Plus tard (1951),
Hasse donna une interprétation de la thdorie du genre des corps quadratiques en
termes de la théorie des corps de classes qui fut génfralisée aux corps ab&liens

par Leopoldt (1953) et aux corps de nombres quelconques par Fr&hlich (1959).
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0. INTRODUCTION
Recently, P. Pickel [Pi-1971] and G. Mislin [Mis-1971] independently and

Hilton-Mislin [H-M-1875] introduced the notion of a éenus for nilpotent groups and
p. Hilton gave an account of this theory within the fast growing theory of loca-
lization of nilpotent groups lately [Hi-1975] (see also [H-M~R-1975])., It might
therefore be of some interest to trace back this notion of a genus to its origin
and to look at some of its many interesting facets that developed during the last
175 years in fields closely related as quadratic forms, class field theory, alge-

braic groups and nilpotent groups.

1. THE GENUS OF QUADRATIC FORMS

1.1 Fermat [Fe-1640] stated in a letter to Mersenne that

Thegrem 1.7. An odd prime mmber p is the sum of two (unique) squares (of

positive integers), p = x2 +y2 {x,yeN) if and only if p =1 (mod. 4).

The first proof of this theorem appeared more than a century later and was
given by Euler [Eu-1754]. Whether or not p is decomposable into a sum of two

squares depends therefore only on the congruence class of p modulo 4 .

1.2 Gauss in his findamental treatise 'Disquisitiones arithmeticae" [Ga-18017

solved completely the general problem:

What are the congruence conditions for an {nfegral binary quadratio fonm
f= {a,b,c) = ax2 + 2bxy + cy2 to represent an integer =n , i.e., when does

axz + 2bxy + cy2 = n with integers a , b , ¢ have integer solutions x , y .

He also found explicit formulae for the number of sclutions in the case
where the genus of f (see definition 2.5) contains only one equivalence class of

forms (see below).

Let T = (o,B,v,8) be the substitution x = ax' + 8y' , vy = yx' + §y!

where o , B, y, § are integers. Then
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ax2 + Zbxy + cy2 = a‘x‘z + 2bTx'y' + c'y'2

2

where a' = aou2 + Zbay + ¢y , b' = aoB + b(ad+by) + cy§ ,

¢! = 382 + 2bB6 + c52 Gauss called the two forms £ = (a,b,c) and

£ = (a',b',c") equivafent, we shall write f o~ f' , if the substitution

T = (®,8,v,8) satisfies

if of - By = +1 [Ga-1801, Art, 157]

ad - By = #1 , and properly eguivalent, we write £ = f',

In modern matrix notation (not yet employed by Gauss; it was only introduced
by Sylvester and Cayley around 1855) this can be formulated in the following way.
Associate to £ = {a,b,¢) the symmetric integral square matrix Mf = (; 2) and

to T = (o,B,Y,8) the integral square matrix T = ($ g). 1f

T = (g E) denotes the transpose of T and det T = a8 - 8y the determinant of

T then we have

Proposition 2.7. £ e f' (respectively f = f') if and only if

M. = T"M.T with det T = *1

£ £ {respectively det T = +1)

We also note that if X = (;) then ax2 + 2bxy + cy2 = XthX . This yields

immediately

Proposition 2.2, If f o~ f' then det Mg = det Mg, , and f and f' re-

present the same integers =n .

One has only to note that the inverse of T is also an integer square matrix

if det T = #1 ,

2

Ganss calls d& = b° - ac = -det Mg the deferminant of £ = (a,b,c)

[Ga-~1801, Art. 154] . He showed that the number of proper equivalence classes
of forms with the same determinant is finite [Ga-1801, Art. 22371 , a result that
goes already back to Lagrange [Lag-1773] . The same holds true for equivalence
classes, and more generally for equivalence classes of mn-ary (see 1.5) quadratic

forms (see [Eis-1847, p. 118-9] and also [Eic-1952, Satz 12.71).

Next, Gauss considers the conditions for an integer n to be represented

by the form £ . He defines f = (a,b,¢) to be primitive if the greatest common
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% § is primitive and f= £

¢ of £

i

divisor (g.c.d.) of a,b and ¢ 1is one [Ga-1801, Art., 2267 . Of course, if

then also f' is primitive. The equivalence class

is then said to be primitive also. The same applies toc proper equivalence

classes, Then Gauss proves the following remarkable property [Ga-1801, Art. 2297 .

Let £ = (a,b,¢) 4 prime dividing
pld,

f(z2) = {m::aszPbey—rcyzf {x,¥) e Zz} the set of integers represented by £ .

Theorem £.3. be a primitive form and p

the determinant: d = b” - ac . Let further denote by

Then the m ¢ f(Zz) not divisible by p are all either quadratic residues

medulo p or quadratic non-residues modulo p .

Proog. Suppose that m , m' e f(Zz] and that m and m' are not divisi-

ble by p, i.e. m= ax® + 2bxy + c.y2 and m' = ax'’ 4 Zbhx'y' + cy'z for some

xy,x',y' e Z and p [ mm' . Then

me'! = (axx' +b{xy'+yx') +cy')r')2 d{xy! ~yx')2 .

Hence mm' is a quadratic residue modulo d and hence module p and m and '

are either both quadratic residues or quadratic non-residues modulo p .
Remark 2.4,

a) If 4|d then the same argument shows that mm' = 1 {mod 4), i.e. the

me £(2°) ave all either =1 (mod 4) or= 3 (mod 4) . If B8|d then

mn' =1 (mod 8) and the m ¢ f[Zz} are all either =1 or=3 or=5 or =7

(mod 8) .

b) The odd primes not dividing the determinant do not furnish a characteri-

zation of the set f(ZZJ but the two powers of the even prime p =2, 4 =2

and 8§ = 23 . do characterize it in the following way (see [Ga-1801, Art. 22971)

NPT 2
£ = (a,b,c) is still supposed to be primitive and d = b° - ac .

bl) If d 23 (mod 4) then the odd m ¢ f(Zz) are all either 5 1 or = 3

(mod 4y ,
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b2) If d 22 (mod 8) then the odd m e £{z8) are all either

=1,7
or = 3,5 (mod 8) .

b3) If d=6 (mod 8) then the odd m e £(Z°) are all either = 1,3
or £ 5,7 (mod 8)

One verifies, still by the same argument, that in the case bl) one must have the

condition mm' = 1 (mod 4) because of the hypothesis that m and m' are odd.

In case b2) one i1s led to the condition mm'

1 (med 8) and in the

case b3) to the condition mm' = 1,3 (mod 8)

The equivalence class (and hence also the proper equivalence class) of a pri-
mitive form f is therefore characterized by t odd charaaters {as Gauss called

them) Sp seeesE , where ¢

is the number of odd prime divisors of d , which
1 t

indicate whether the m ¢ f(Zz) with P { m are quadratic residues modulo Py

(i=1,...,t) or not, and a character £, Telated to the prime p = 2 (if

d 21 medulo 4) which expresses a relation modulo 4 (if 4 = 0,3 modulo 4) or

modulo 8 (if d = 0,2,6 modulo 8)

In Dirichlet's notation [Di-1839, §3] one puts

{ ¢ 2
€ fzwn-l—)z(i):—-—)=ﬂ £ . odd and if £(Z°) but p, does
pi[ ) (pi P, \pi or  p; Id and if @ ¢ £(Z7) hu P;

- . 1
not divide m , a and ¢ , where (5-) is the Legendre symbol{ ) Notice that

i

not both a and ¢ can be divisible by B; if f is to be primitive, bacause

of By I[b2 -ac) , and that a and ¢ are always represented by f .,
(1) . m\ . . . . m oy _ .
i.e. 5] = +1 Aif m s a quadriatic residue mod p; and o -1 i

i i

n 44 a non-residue.,

Ginthest Frei . 1

As far as the characters related to the prime 2 are concerned one puts
2

m-1 m-=1
e (H) = (-1) 2 if d= 0,3,4,7 (mod 8) , = (-1) 2 if 45 0,2 (mod 8) and
2
m-1 + mz—l
= (1) 2 8 if d =6 (mod B) Notice that in the case d = 0 (med 8)

we have split the character‘ £, whicg takes four values, into two characters
m-1 mo-1

e, (9 = (-1) 2 and €, () = (-1 8
l .

each taking on the two values *1 inde-

PendentIY-

Again m can be replaced by either a or < if we suppose that a and ¢

are not both even. Gauss calls such a form paoperly primitive {Ga-1801, Art, 226] .

Gauss also remarks [Ga-1801, Art. 225] , that if the determinant d of a form

is negative then a and c¢ are both either positive or negative.

f = {a:byc)

In the first case f represents only non-negative numbers. £ is then said to be

positive. In the second case where 2 and c¢ are both negative f represents

non-positive mumbers only. f is then called negative. For forms with negative

determinant one has therefore an analogue to theorem 2.3 with respect to the ab-

solute value sign.
For forms with negative determinant d we can hence put

+1 if f 1is positive
Eulf) =

-1 if f is negative

where o« is said to be the infinife ptime.

We can now define Gauss' genus [Ga-1801, Art. 231] .

Defdnition 2.5. Two properly primitive forms fl and f, of the same de-

temminant d are in the same genusd, in symbols f1 ~ f2 , if Ep(fl) = ep(fz)

for a1l odd primes p dividing 4 for p =2 (if d% 1 mod 4) and for

Pp=xw (if d < 0)

f1 = £, implies fl e f2 which implies fl r~ f2 Thus (the equivalence

2

classes and) the proper equivalence classes of forms are distributed inte at most
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ts genera, where t is the number of odd prime divisors of the determinant d

and s = 0,1,2 depending on whether d = 1,5 (mod 8 , d= 2,3,4,6,7 (mod 8) ,
d 20 (mod 8) , and the number of equivalence classes as well as the number of

proper equivalence classes in the same génus is therefore finite.

The form f{J = {1,0,-d) of determinant d is called the prlncipal form

its class the principal ofass and its genus the praineipal genus. Clearly one has ¢

€p{f0} = +1 for all p|d , for p=2 and p = ® so that the principal genus is

characterized by the fact that all its characters are +1 .

1,3 Let us recall that a primitive form £ = (a,b,c) is called properly primitive ;

if a and ¢ are not both even. All forms equivalent to a properly primitive
form f are also properiy primitive [Ba-1801, Art. 1611 and the whole equivalence
class of f is then said to be properly primitive. Gauss showed further that
each non-empty genus contains the same number of properly primitive equivalence
classes for a given determinant d [Ga-1801, Art. 2521, that half of the possible
character values in {il}t+s (where s = 0,1,2}) correspond tc an empty genus
(those are determined by means of the reciprocity law [Ga-1801, Art. 263-47, which
vields essentially one linear relation among the characters, explicitely

I Sp(f] = +1 , where p 7runs through the odd primes pld , 2 (if dZ1 med 4)
gnd @ (if d < 0) (see Section 3.3, in particular Theorem 3.7)), and that the
other half of the possible character values do correspond to non-empty properly
primitive gemera [Ga-1801, Art. 287]. To prove this last result Gauss initiates

the theory of ternary quadratic fomms.
1.4 The analogeous study of fernary integhal quadratic §orms

f = a,.x.x., ® f(x,,x,,X;) to which one can associate the symmetric integral
p 11 1’72’73

i by

i:
matrix M. = (a,.) (Gauss writes |21t %22 33) = see [Ga-1801, Art, 2671) is

£ 1] 823 831 8y :

much more complicated, mainly because the set £(Z7) of integers represented by %

f 1is more difficult to describe. Eisenstein [Eis-1847] and Smith [ Sm-1867-1]

showed that f(ZS) not only depends on (quadratic residue) characters of the

SR
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ternary form f but also on those of the adjoint ternary form F of f which

corresponds +o the adjoint matrix adj Mf = MF of Mf .

Let £ be a primitive ternary form {i.e. the g.c.d. of all the coefficiénts
in Mf is one) and denote by { the greatest common divisor of the coefficients
in the adjoint matrix MF , i.e. © is the g.c.d. of the minor determinants of
M . We put further d = -det Mf = -RZA and F = Qg where d is again the
detenminant of f [Ga-1801, Art. 267].and where g is said to be the primifive
adjoint form of f_. Notice that A is an integer and that —QAZ , G =Af and
¢ are the determinant, the adjoint and the primitive adjoint form of g respec-
tively, so that the relation between f and g is entirely reciprocal

[Sm-1867-1, Art. 2] and [Eis-1847].

Two forms f and f£' are again said to be in the same genus [Sm-1867-1,
Art. 8] if they have the same characters (and same d and same € ) ., Equivalent

forms (defined as in propositiom 2.1) have equivalent adjoint forms [Ga-1801%,

Art. 2691 and hence the same ! and A and the same characters, that is two

equivalent forms belong to the same genus.
Smith now shows [Sm-1867-1, Art, 12]

Theowem 4.1. Two primitive ternary quadratic forms f. and £' have the
same determinant, the same invariants @ and A and the same characters, i.e. f
and f' are in the same genus, if and only if thére exists a transformation
T = (tij) with rational coefficients whose denominators are prime to 20A and

t
with determinant det T = 1 such that Mf1 =T MfT .

Later, Speiser proved the analogeous theorem for binary quadratic forms

[Sp-19121.

1.5 Eisenstein, Smith, Poincaré and Minkowski arrived at simiiar criteria in the
case of two infegral n-ary quadratic forms £ and ' thereby making use of zll
the k-th adjoint forms (Smith also uses the term comitant of the k-th species,

see [5m-18641) of f . These are the quadratic forms corresponding to the k-th
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adjoint (k=1,...,n-1} of the matrix Mg = (aij} belonging to the {ntegral
n :
n-ary quadtatic form f = Z &ijxixj The k-th adjoint or k-th derived matrix
i,j=1 :

of Mf is the (i)—square matrix whose entries are the k-rowed minors of Mf .

Poincarg [Po-1882] and Minkowski [Min-1886] define the genus in this general case

as follows.

Definition 5.1, Two n-ary quadratic forms £ and g lie in the same genus,
in symbols f~ g, if
(1) there exists a real matrix T such that Mg = TthT > l.e, £ and g

have the same Sylvester-index, in symbels i(f) = i(g) ,

(i1} there exists for each integer m an integral matrix Tm such that

M= TS T

s e T (modulo m) identically for all coefficients, and det Tm = 1 (modulo m);

Then Minkowski states [Min-1886],

Theorem 5.2, Two mn-ary quadratic forms f and g belong to the same

genus, f~ g , if and only if

(i) 106 = i(g) ,

(ii) det M, = det Moo= d,

(idi) o, = T™MT {mod 2d)

£ and det T=1 (mod 2d) for an integer matrix T ..

This follows from a theorem of Smith [Sm-1867-2, P. 5161 which generalizes theorem

4.1 to the case of n-ary quadratic forms. Smith [Sm-1867-2, Chap. 1] and

Minkowski [Min-1884, Kap. XI] also describe the genera by means of characters

similar to the cases n = 2 and 3 For their work they were jointly awarded

the Grand Prix of the French Academy in Paris in 1884.

The definition 5.1 of the genus by Poincaré and Minkowski invelves infinitely

many conditions, namely congruence conditions modulo all prime powers pS for all

primes p . By virtue of theorem 5.2 only finitely many conditions are essentially
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ded, namely the congruence conditions module the prime powers dividing 24 .
nee ]

Moreover one can dispense with the condition det Tm =1 (mod m) by virtue

of the following:

Proposdition 5.3. If £ and g are two quadratic forms with matrices Mg

and Mg and with the same determinant det Mf = det Mg = d such that for every
. . : R S
prime power ps there exists an integer matrix T with Mg =T MfT (mod p7)
. . . = mt S
then there exists an integer matrix T0 satisfying Mg = TOMfTO (mod p.} and

det TO =1 (mod ps) for all prime powers pS

Proof. Let p° be the highest power of p dividing 2d . By hypothesis

= b r+s
= Tle?l

- 2
Taking determinants we get d = (det Tl) d (mod p

there exists an integer matrix TI so that Mg (mod p~ ") for any

Ir+s

h
s el . ) , hence

Trs det T, = I (mod p°) . If

1:_

1 (mod ps) we put T1 = TO and we are done. In the opposite case,

d{det Tl-l}(det T1+1) = {0 (mod p° 7) and therefore

det TI =

we use the fact that there always exists an integer matrix A such that

Mg = AthA (mod ps) and det = -1 (mod psj for any prime power pS and any

n-ary quadratic form f . This last fact is easily verified for the standard

form f' = xi + oot xﬁ_l + axi (where a 1is either one if d 1is a square, or

a non-square modulo ps if d is not a square). Simply take A : Xy ¥ Xy

X, +x, for i=2,.. If f is any other n-ary form, then f is equivalent

S
i i

to such a standard form f' modulo ps [Se-1973, prop. 5, Chap. IV, 117, i.e.

s - pt 5
there exists an integral matrix B with Mf, =B MfB (mod p~} We remark that

- 5
B is invertiblie modulo pS , hence det B is a unit modulo p~ and therefore

p does not divide det B =b . If C is an integral matrix with

-1
Mg, = CthlC (mod p°) and det C = -1 (mod p°) then we take A = BC{agqB ")

where q is chosen such that qB_1 is an integral matrix and q is prime to p

(we can take for example gq = b = det B) and a is a number with the property

that aq = 1 (mod p°) . Then A has the required properties with respect to™ f

= T.A .

and we can put T0 1

The genus can now be characterized in the following way:
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i . _ k+
Theonem 5.4, Two n-ary quadratic forms f and g belong to the same genus 3 ;£ and only if (&)k = (b)k {mod p

if and only if

(1Y 1(f) = i(g) , i.e. there exists a real matrix T such that

t,
Moo= TOHT

(ii) for every prime p and every prime power p° there exists an integral |

matrix TpS such that Mg E: T;s fTPS (modulo p°) .

1.6 Hensel [Hen-1913] in the case n = 2 and 3 and Hasse [Ha-1923-1-2] in the
general case applied the p-adic numbers introduced by Hensel [Hen-1913] to qua-
dratic forms, whereby Hasse discovered the Local-global-prineipfe (which says
that a property holds in Q if-and only if it holds in all a{p) for all primes
p and for p = =, see below) first for the representability of a rational
number by a rational quadratic form [(Ha-1923-17 and then for the rational equi-
valence of two rational quadratic forms [Ha-1923-2], a principle which turned out

to be very important in mumber theory,

Hensel called a rational number r = %- (a,be Z) Locally infeghal at the

prime number p , if p does not divide b, and he said that r = %- is a Local
5 2- are locally integral at p ,i.e. if p does not

divide a mnor b .

unit if r = 2 and %-:

The p-adic numbers Q(p) » where p is an integer prime number, consists
of the set of formal power series in p with rational coefficients which are

locally integral at p and with only finitely many terms of negative exponent:

- b.

_ -5 -1 2 _ i ;
Q{PJ = {a_p ta..ta P tagtapianp +...fai_c—i-e Q and pfc;} . Two
p-adic numbers as formal power series in p are said to be equal if they are
congruent modulo all powers of p . If for example (a) and (b) are p-adic

00 n e
mumbers, i.e. (a) = J ap and (b) = ] bnpn {some or all of the coeffi-
n=-s =-3

cients can he zero) and (a)k and (b)k are their approximations modulo pk+1

>

ie. (), =a p R akpk and  (b), = b_sp-S Foae. 4 bkpk then (a) = (b)
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l) for all k e N .

In a( 3 one defines an addition and a multiplication which is ordinary
P

: ddition and meltiplication of power series and also ordinary addition and multi-

; plicaticn modulo all powers of p . If for example
- _ -5 -
(@) = a_sp 5o+ ag t APt ..., (b) = b_sp + ...t bG + blp .. € Q(P)
: then

(a) + ®) = () = (a_#b_Jp™ ...+ (agrby) + (aj+bp + ...

and

-25
(a) « (b) = (&) = (a_sb_s}p + ...t (a_sbs+a_s+lbs_1+...+aob0+...+asb_s)

+ (a b

_qPeppteet Jp + ...

a5+1b-5

are their p-adic sum and product respectively and one verifies that

(63, = (@), *+ (b) (mod Pl and (@) = (@) ¢+ ®), (mod p*'Y) for anl k .

The coefficients 5; in the p-adic development of a p-adic number (a)

? can be so determined that ‘0 < Eg < p with E; € Z . We then call

5 _ —

(@) =a_p~ +...+a,+tap+ ... the zeduced representation or the reduced
-5

* development of (a) .

Every p-adic number (a) admits a unique reduced representation, i.e.

its reduced coefficients E% {Of§5£-<p) s E& € Z are uniquely determined and

: they can be found successively by congruence relations modulo all powers of p .

- -5 . -
The formal power series (a) = a_ Pt ... taytapt ... is not conver

{ gent in the ordinary semse (absolute value topology) but in the p-adic sense

(p-adic topology) which expresses simply the fact that a p-adic number indicates
T

t a congruence behaviour modulo all powers of p . If (a) = 5¥p + ... is a
: ; . : T ;
+ p-adic number given by its reduced representation, i.e. if p~ is the highest

© power of p dividing (a) then the p-adic value | |p of (a) is

|(a)!P =L , S0 that the p-adic value of (a) is small if (a) is divisible
Tr
P

£
|:
I
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alnthor Fred

by @ high pover of P . Two mumbers {a) and (b} are close in the pradic ' bsolute value topology. We just mention en passant that Q( 3 is locally
al

topology if the p-adic value of their difference is small, that is if they are . ompact and that z[ ) and U(P) are compact subgroups of Q(P) with respect
£ €

congruent module a high power of P the p-adic tepology.
i o -

The subring of Q(P} of all formal power series with no coefficients of In the language of p-adic numbers the following defintion of the genus can

negative index is called the ring of p-adie Aintegers and is denoted hy ; .
b i now be given

-~

Z(p) = {a0+ Pt ...t arpTJr co | a; = -&—iw € Q, p,{ci} . The multiplicative sub- ) zi .
- inition 6.1, Two n-ary quadratic forms £ = a,.x,x, an
group of Z( ) of elements whose constant coefficient 2, is not divisible by Defintti 74 i,j=1 11112
n
P is called the group of p-adic um& and shall be denoted by g = 2‘ b. ‘xixj with associated symmetric matrices Mf = (aij) and
~ : . 1]
= =% ; s . i,j=1
U{pJﬁ[aO+alp+...+anp +...|ai— leQ p/{c > 85 a local unitl . It is h . .
: = .) are in the same genus ~g , i
the group of invertible elements in Z(p) . : Mg UJJ'-J) 4 ’ #
a i (i) M_= ™M, T for a real invertible matrix T ;
All rational numbers of the form ~, » where a and n are natura! numbers g £
~ P
and p is a fixed prime, belong to Q( 3 and they are characterized by the fact (i1) Mg - P fT for an integrally invertible matrix Tp with integer

that their p-adic development is finite. But also all negative and all ratiomal p-adic coefficients for all primes p .

numbers belong to Q(P) as every rational number admits a unique reduced p-adic

701 nnection with the reduction theory of quadratic n-ary forms
development. The reduced 7-adic development of % , for instance, can be found 1.7 Inco Y q

- * Minkowski [Min-18911 associates with a positive (definite) quadratic form
in the following manner. Put %— = a, + a17 + a272 + ... and determine the Minkowski tHL P 4
. . . , B : n
coefficients a; successively modulo all powers of 7, i.e. 3a0 =1 (med 7) f o= Z aijxixj a lattice Lf in R® in the following way, an idea that
] ! 3=t
hence 3 = 5, 3+54+ 3. al7 =1 (med 72} hence 2 ¢ 3&1 =0 (mod 7) and 1]
. tal eady goes back to Gauss [Ga-1831] in the case of binary and ternary positive
therefore 3y = 4, 3«5 +3 474 3‘51272 =1 (mod 73J implies cAalresty g
¢ quadratic forms.
2+ 33,20 (mod 7) thus a, = 4 , and so on, and we get £ 4
2 2
}_-5 4« T+ 4 . 72 ) ' . .. . . . . .
37 t * o ‘ : As f 1is a positive definite form there exists an (invertible) substitution

. . .- . . T with real coefficients such that
Q is therefore contained in Q( ) for all primes p in mach the same way

; n
as is contained in the redl numbers R which are often denoted b . : = = = x12 2 e 'y = f7 (k!
Q Y Q( ) .f[X) = f(xl,__,’xn) = ) :Ei::l aij}(ixj = Xl +ole. Xn = f (xl, -,Xn) £r{x'}
In brief, Q( ) is the completion of Q with respect to the p-adic topology in ’
. jwhere x = Tx' and where x = (k5% Y, x' = (x),...,x!) . In other words
the same way as IR = Q{w) is the completion of Q with respect to the ordinary 1 n n

can be diagonalized orthonormally over R, I = Mf, = TthT

the matrix M 0

f

j' where In is the unit mn-square matrix. Interprete now £'(x') as being the

(1) Another (non-reduced) develogment of ‘i‘ 48 the following "geometric senies” ¢ C¥clidean metric in the real vector space R" with the natural base
- ‘e = -1 I
%—:%: ——g-: -2 :lljz _2(1+7+72+-.-) = -2 - 2 . 7 -2 . 72 - e}. = (1’0’.‘_’0) 3 eea . Bn = {0,,..,0,1) . Put T ei = bi € R for

is= l,...,n and Lf = {xlb1+...+xnbnfxigz} . Lf is called the fattice in ®R"
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associated with the positive definite form £ . It is unique up to equivalence
{see definition 11.1) that is up to an orthogonal transformation, and one has

<bi,bj> = aij » where < , > stands for the ordinary scalar product (euclidean

metric) in R™ Moreover
n n :
Elxpsennxy) = g 4oy MY T 32‘1 DPyaDyPXg Xy = byt b X by s X b >
»J= EIN

The base bl"" bn of Lf spans a4 n-parallelohedron P = IRn/Lf of volume
1 1

3
1 -
2z2det T~ =

vol P = (det Mf) Tt T

1.8 Witt [Wi-1937] considers generally any n-ary quadratic form

n
f = f(x) = f(xl,...,xn) = )

over a field k (i.e. a; ;€ k} of
i,j=1 J

a,.X.x,
13717

characteristic not 2 as being a (generalized) metric over the vector space X" s

and he calls the pair (k,f) or (kn,f} a medrie veetorn space over k . If

£ aij s where (, )f

denotes the symmetric bilinear form (inmer preduct) associated with £, i.e.

bl""’bn is any basis over k" he defines (bi’hj)

=1 :
(Bt tr By By ety B D e = SLE Gy X by ) = (g, 00 x ) - Ey eyl :

A change of basis c; = Tb; (i=1,...,n) corresponds to taking an equivalent

i
n
[ 1 Tyt = = ! xSt i
form f' = ; §_1 aifxixj as follows. If v xlbl+ +xnbn X)Cyte.bxic s
,3=
an arbitrary vector represented with respect to the two bases bl""’bn and

Clsranst and c, = Tbi is a change of basis from the bi to the e s i.e.

n
_ - _ t _ '
c; = jzl tjibj , where T = (tij) = {tji) ., then X = TX' where
X = (xl,...,xn)t and X' = (xi,...,xﬁ)t are the coordinates of v with respect -
to the bi and e

We require now that

n n
(rvlg = £0) = £00 = ;1 (bobdens®y = §1 (cjs) g Xx!
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v . . _ mt - -
¢ gnd this condition yields Mf, =T MfT where Mf = ((bi,bj)f) = (aij} and

; i =((ci’cj)f'J: (aij) so that f£' 1is equivalent to f over k (which means
- Mg

. ¢that the coefficients of the transformation matrix T = (t..) lie in k).

1]

Conversely, equivalent forms £ and f' over k , i.e. those satisfying

M. = TthT for an invertible matrix T = (tij) with coefficients in k , cor-
fl

respond to the same metric space with respect to two different bases bl,...,bn

n
where ¢; = j§1 tjibj

2
Furthermore det M., = det Mf (det T)™ .

and C]_""'cn £
1.9 The group of automorphisms of k" preserving the metric £ in the vector
space K 1is called the onthogonal group of (K",f) associated with £, We

n
shall denote it by O = {Te Aut(k",f) | £(Tv) = £(v) for all vek"} .

We can suppose that bl""’bn is the natural basis of (kn,f) . Then
vexb b s (xi,...,xn) =x and 0, = {T e GL(n,k) ITthT==Mf} . We

keep in mind that det T = 41 if T ¢ O . T is called proper if det T =+1 .,

1.10 The definitions and notations of 1.8 and 1.9 can be extended to the case
sk n .
where k 1is a {commutative unitary) ring of characteristic not 2 . (k,f) is
then said to be a mefric module of dimension n . If T is a change of basis
~1

then det T has to be a unit in k,as T is also a matrix over k . We

shall ¢all such a matrix urnimodufan.

L.11 Following Eichler [Eic-19527 the theory of integral quadratic forms (over
the integers of an algebraic number field) k , in which every ideal is a princi-
pal ideal, can be transiated into the language of lattices in the following ;

vay ()

: —

1

£ (X') = £1{v) = (V’V)f'

o The genenal case of any algebraic number field also theated by Eichfer is

mich more complicated,
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Let V = (kn,f) be a metric vector space over the algebraic number field

n
k with respect to the quadratic ferm f = aijxixj over k and let
i,i=1
1
bl,...,bn be the natural basis of k" . Denote by g the integers in &k )

o" = {x.b +...+xnhn |xi egl is a lattice in k" . In general we call any module

~ 171

. . n
L= {xldl+...+xndn ,XiE.Q: where d .,dn is a basis of k'} = [dl,...,dn] a

12+
Lattice in K" .

Definition 11,1, Two lattices L = [dl,...,dn] and X = [c "’Cn] in

1%

k" are called equivalent, in symbols L = K , if there exists an orthogonal

transformation S ¢ Gf such that L = SK .

Similarly, the two lattices L and K are called properly equivalent, in

symbols L = K, if there exists a proper orthegenal transformation

Se0p=1{Sc0,|det S=+1} such that L = SK .

One can associate with L = [dl,...,dn] the matrix ML = ((di’dj)f) and

with K = [¢ .,cn] the matrix MK = {(ci,cj)f) ef course,

17
Mcn = ((bi,bj)f) = (aij) = Mf . The matrices ML

and M, determine (rational)

K

quadratic forms fL and fK with coefficients in k (in the sense of 1.2 or

1.5). Clearly N%n determines f .

I

Definition 11.2. fy, is defined to be equivalent to fy (overg) , in
symbols fL o fK s if there exists an integral unimodular matrix T (i.e. with

coefficients in g and with det T a unit in g) such that MK = TtMLT .

Similarly, £ 1is properfy equivalent to £, (over g) , we write

L K
fL = fK » if there exists a proper integral unimodular matrix T (whose determi-
nant is a positive unit in ¢) such that Me = TtMLT .

) The coefficients a;; may £ie dn k , but we are concerned with fhe case

where the indeterminates X5 and xj Lake values in g.
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This definition is in accordance with 1.8 and 1.10 and generalizes the

k=Q, g=Z and n =2 . Clearly fL does not

. definition in 1.2 where

f dePend onn the basis bl,...,bn chosen for f , but it does depend on the basis

of L . However, it follows from 1.8 and 1,10 that the equivalence

d1"“’dn
More

. class of fL is independent of the basis dI""’dn chosen for L .

é generally we have

Proposdition 11.3, L = K if and only if £, =~ f, . Similarly, L = K if

. —_ Qs ~ 2 : ,\_:'
and only if f; = £ . In particular L= ()¢ if and only if £ o= (3)f .

Let L =[d

Proof. .,dn] s

10 -

If L =~ K then there exists an orthogonal transformation

K= [cl,...,cn] s ML = ((di,dj)f) ,

) MK = ((Ci,cj)f)

1 8e 0, so that L = SK , Put Sey = tlidl+...+tnidn and T = (tki)

: Scl,,..,Scn is a basis of L as well as dl,...,dn . Hence T must be integral
and integrally invertible hence unimodular. Furthermore
n n non
(ejse5)g = (8c4,8¢5), = \kzl tkidk’£§1 tesdels = kzl gl tri Godpd e Tpy

¢ hence M, = TtMLT .
Conversely, suppose that MK = TtMLT for an integral unimodular matrix

: T . Then the linear transformation § defined by Sc; = Z tkidk is well

; determined and

n n i+ n
(ce,edes § ) t.(d,d) . t,. =] t.d, T ot,.d = (Sc,,8¢.} ,
itvif 10 kivTkPTRf A k=1 ki'k 251 £i k£ i*7rj

] Hence S5 ¢ 0. .

f

The proof for proper equivalence runs similarly.

We call again f£(L) = {f(x) | xe L} the set of (algebraic) numbers repre-

. sented by L. and det M. the determinant of L .

L

Equivalent lattices, - L o~ XK , represent the same numbers, f(L) = £(X) and

- have the same determinant up to a square of a unit. In particular
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£(L) = £,(0") if Leg

If pcg is aprime ideal in g then kJE’, stands for the p-adic numbers

-

over k (g-adic completion of k) with respect to L . Again kﬂ can be

defined as the field of formal power series

_ -5 m=-1
((:L)—or._S +...+ou_1 +u0+oti+

T lying in p but not in )32 and where the coefficients are locally integral at

in a so called uniformizing element

£, that is a, = with integers Bi and Y; €8 and p not dividing Y; -

I

One can easily show that k

izing parameter ¥ « B - ,[.12 (see for instance [Wey-19401), The h-adic integers

g, and the unit group U
) p

R
has, of course, that kJE?. = Q(P] R E‘E = Z(p) and U.E =
(p)

is the ideal generated by the prime number ]

are defined in the same way as for k = Q and one
E] if k= and
®) ¢

2= (p) , where

We remark that Hensel introduced the p-adic numbers for algebraic number
fields as analcga of Puiseux-series already 1899 in a short notice in

Jahresbericht der Deut, Math, Ver. Bd. 6, 83-88.

. n . .
If L=gal+...+gan=[a1,...,an] with a; ek (i=1,...,n) isa

. n T - -~ - .
lattice in k* then wedemoteby L =ga + ...+0a =gl the p-adie
B %1 “g’n = % o
extension of L which is a so called local lattice in RE One has (see

{Bic-1952, Satz 12.171)

Proposition 11,4, L = [al, . ..,an] is the intersection

I = n - “n
L.n L n ... of kK and of all local lattices L and L =g¢
L B R’ £ B

for almost all prime ideals P (the exceptions being the prime ideals dividing

L:knn

the denominators of the components of IR and those prime ideals dividing

of the

at the same time all the numerators of the wv-th compenents al\)’ . "’anv

basis C ERRTTL N of L ; the components taken with respect to the natural basis
It n

bl""’bn of k° or of kﬂ)

On £he Development of the Genus of Quadratic Forms

thus defined does not depend upon the chosen uniform-

R R
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-~

. i . N 1 _on
conversely, if the L.E are (local} lattices in kB so that LE S,E

n 7 . N
3 i L=k nlL nLl, n ... is a unique lobal)
zlmost all prime ideals p then ‘0, ‘2, q (g

-~

for

-~

. n H = .
lattice in k  with the property Ll LE

Definition 11.5. Two lattices L and K in (kn,f) belong to the same

~

: ~ K if L «;:R for ali » 1.e. if there exists for
genis, in symbols L > 1 ‘D ® 0 B

. . - = N h.

each prime ideal p a (local) orthogonfl transformatloil E‘:E ehofg {automorp isms

- n

n £f(8 v} = £(v) for all vek_ } such that 1L =8 K .
of (g ©) | £6550) 4 e~ %

- - - ~n
hat L~K, i.e. L = 8K for ali and K = g and
We note tha * P P JA w - %o

-~

L= ot for almost ail p implies that §

o = 9 ) € GL(H’Q’E) for almost all B .

If we generalize the definition 6.1 to algebraic number fields as follows

Definition 11.6. Two quadratic forms f, and f, over g are in the same

genuws, we write fLN fK , if fL and fK are equivalent over all local integers

- t . . . . .
hich means that M, = T M T  for an integrally invertible matrix T  with

g. s Whi K EML RA R

integer p-adic coefficients (in E‘E) for 211 prime ideals P, then we get the

following characterization of a genus,

Proposition 11.7. L~ K if and only if £~ fe -

In particular L~ gn if and only if fL ~ £,

if and only if ff. o f'f( for a prime

J4 R

ideal p is similar to the proof of proposition 11.3.

The proof that f. :;«E over ¢
P ) %

1.12 Chevalley {Ch-1936] introduced the {multiplicative) 4d&fes in connection
with the multiplicative class field theory [Ch-1940] and Artin-Whaples [A-W-1945)
introduced the additive adéfes (or valuation vectors as they called them). The

adéles A = 4

Q

over Q can be defined in the following way.

Let Ez stand for the p-adic numbers and Z for the p-adic integers,
(p} m

-~

then é(p) =Q + E(P) We put a(m) = Z(m) =R the real numbers,




26 On the Development of the Genus of Quadiatic Foums

p
places p = «,2,3,5,.,. and aP € Z(P) for almost all p} are called the

adéles of Q .

Defdnition 12,1, A = AQ = {(af,az,as,as,...,a seedd ] a,e Q(P) for all

Addition and multiplication in A is defined component-wise.

Deginition 12,2, A" = Ag = R x Zigy * Zegy X Zigy * oon X Zepy X e S A

Q can be imbedded intoc A in the following way, We view a ¢ Q as a

p-adic number in Q(p] for all primes p and as a real number in Q(m) =R

Then p(a) = (a,a,a,...,a,...) is an addle called a prineipal adile. We identify '

Q with the field of principal adiles o(Q) < A .

Q= p(Q is discrete in A and A is locally compact (with respect to the

product topolegy, where the p-adic topelogy is taken in Q(p)) Furthermore

~ -~ -~

(Z)XZ(S)xZ(S}x...xz(P)x...) +Q = ([D’l)xZ(ZJXZ(s)X'"xz(p)x"'J @Q

A = (RXZ

where ® denotes the divect sum and [0,1) = {xeR|0sx<1}

-~ -~

AJQ ~[0,1) x Z(z) x 2{3) x Z(S) X ,..0x Z(P) X ... = F is called the fundamental

domain of A .

The id#les IQ = I are the units in A . They can also be defined as

follows,

Definition 12.3. I = {(qm,az,as,as,...,ap,...] ape Q(P} for all places

pP=<2,35,... and ap € U(p) = Z(P) - pZ(p) = units in Q(p) , for almost

all »p} .

1.13 Weil {Wei-1961] generalized the notion of addles to arbitrary linear alge-

braic groups over Q , i.e. to Zariski closed subgroups of GL(n,Q) These are

groups of rational n x n matrices satisfying certain algebraic {or polynomial)

relations R . If G = GQ is a linear algebraic group over Q with relations

R, then G2

, G2 and G°
Q(p)

Z 0 are the corresponding matrix groups with the
(p)

(p)

same relations R but with matrices of p-adic numbers, p-adic integers and

. 27
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its (whose inverses are also matrices with p-adic integers).
_adic unl

p . .

%R is the corresponding matrix group with real matrices.
GA =
%)

it = (T, T, T, Tes e s T 0} | T e Gl for all places

’Dgﬁ,{,Wﬂ. 13.1. GA {( w77 370G P p Q(P}
d T e G5 for almost all pl is called the adile group of G .

P :00’2,3,--- an P Z(p)

. . . . iolica-
If 6 is the additive group Q then G, = A, and if G is the multiplic

vive group Q* then Gy =1

Addition and multiplication in GA are again defined component-wise.
(r) = (T,T,T,...,T,...) with TeG 1isa prineipal adéfe and G and
pLL) = H
(G} =G, can be identified as before. Again p{G) is discrete in GA and GA
p = A
is locally compact (with Tespect to the product topology).
initio > = - . G, X ...<G, .
inition 13.2. G, = X G x G X ... % G < 6,
Deg A = R 2oy " s -
1.14 Ono [On-1957] defined the iddle group (and the G-genus of lattices with
respect to G) for an arbitrary algebraic group G (over an algebraic number
field k) and Kneser [Xn-1961] applied the adZle group of the orthogonal group

n .
0, of a (non-degenerate) quadratic form £ over @  to obtain and extend results

f .
by Siegel 1Si-1935] on the number of representations of a ¢ Q by f over Z in

i ener-
terms of the number of representations of a e Q by f over Z(p) (more g
ally Kneser considers an algebraic number field k instead of Q and an

. T
g-module of rank n over the integers g of k instead of 27) .

Kneser [Kn-1961] and Borel [Bo-1963) show for the proper and ordinary ortho-
i ver
gonal group G = G; . Of of a non-degenerate quadratic form £ o Q

{compare also Takahashi [Tak-1957, theorem 53):

o . i ~to-one
Theorem 14.1, The double cosets Gy = T GQ {TeG,) are in one-to
correspondence with the proper equivalence classes or with the equivalence classes

in the genus of f .
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Procg. Let T = (Tm’TZ’TS""’Tp"") € GA . This means that TP € Ga(p)

for all places p = «,2,3,... and TP € GE = Ga
(pl (p)

define an action of T on lattices (applied only to the standard lattice Zn)

for almost all p . We

in Qn in the foliowing Tanner. Put Tp(z?p)) = L(P} which isAa local lattice
in Q?p] . Then LfP) = Z?p) for almost all p , hence L = g L{P) f Qn is a

uniquely determined lattice in Qn (proposition 11.4}). r

We now put L = TZ

By the definition 11.5 1L 1lies in the same genus as 2" . The stabilizer of A

in GA is:

n n n
stab. 27 = {TeG, | T2"=7"}

on on
T T, Teee, T, ) |T20 =7 £
(T, Ty, Ty poe ) 1T (@) = Zpy forall pi

{(T Ty Tys e neb T

ad
P,...) ITPE G; for all p} = G,

p)

Hence the cosets d: - T with T« G, are in one-to-ome correspondence with the

lattices L 4in the genus of z? » and by the definition 11.1 are the double

cosets G: « T » GQ in one-to-one correspondence with the proper or ordinary

. N n
equivalence classes in the genus of Z

equivalence classes of the genus of £ by virtue of the proposition 11.3 and 11.7.?

2, THE GENUS OF A NILPOTENT GROUP

2.1 Various generallzations of the motion of a genus as defined in 1.11.5 have

been introduced by variocus authors. We only mention Ono [On-1857], where the locaI{

orthogonal group OfE is replaced by the loczl algebraic group Gf of any alge-

braic group G over a number field k » Takahashi [Tah-1959], where the genus is

defined for T-lattices, where I' denotes the group ring glG] of a finite group

G over the integers g of an algebraic number field k , and Jacobinski [Ja-1968] -

where the genus is defined for so called R-lattices,

{unital)} R-modules which are torsion free as g-modules, where R is a subring

of & semi-simple finite dimensional algebra A over the quotient field k of a

and hence alsa with the proper or ordinary;

These are finitely generated :

28
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i y kKR =A and 1 ¢ R and that R is
i i ¢ with the property that
pedekind TiRE

erated as an g-module (see also [Sw-1970], p. 106). These definitions
finitely gem o
i i introduced by Mislin
he notion of a genus of a nilpotent group im
the way for t
paved

and Pickel.

ccall that a group G is called nilpatent if its lower central series
2.2 WerT

-1 -1 b = G]: TOUu
y.G=6, Y,6=LGG]= group {Tx,yl =3y xy [y e 6he Y4446 = (G761 = group
1

-1.-1 is finite, i.e. Y.G =1 for some ne N .
{txyl=xy xy | xeG,yey;6h,... is R X

tent group G (the operation in G will be multiplication) admits a unique
A nilpote

(up to isomorphism) group Gp for every prime number p , called the p-focaliza-
up to

£ § G ([Ma-1949] and [Laz-19541) satisfying the following properties.
ign 0

very X as a unique n T in G_ for all integers n
(i) E € Gp has e -th root 1 D or a g

prime to P »

i : other homomorphism
(ii) there is a homomorphism e : G > GP 50 that for any
£:¢+ K, where K has the property (i) that all its elements admit unique
th roots in K for n prime to p , there exists a unique homomorphism
n-.

ho: Gp + K with £f=h= e .

. . . _ . for all
6. is the corresponding group having unique n-th roots in G0 oT

0

i { { ion of G or else the Malcev-
integers n . G, is called the rafioralization

completion of G [Ma-1949,21. It is again unique up to isomorphism. 1f G is

i ivisi containing G For more
torsion free then G0 is the smallest divisible group g

details see [Ri1-19753 or [H-M-R-1875].

{ G rine number p
We also introduce the p-completion G(P) of G for ap

P . . ¢ for
[8u-1970]. This is the set of infinite sequences {ai} with elements in ,

-1 Pi- Pi h GPi is the group generated by the
which a ;"a, e G = gpix® |xe Gl , where

3 : . identified
pr-th power of elements in G . Two sequences {ai} and {b;} are

i

i ipli i in G is defined
lbi e 6P for all i > 0 . The multiplicatien in G(P) is

if a,
i

. . p
coordinate-wise. If G is a finitely generated nilipotent group then also (®)
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is finitely generated nilpotent and if G is torsion free then so is G(PJ

[Pi-197117.

2.3 In connection with the study and classification of H-spaces Mislin defined

the genus GM(N) of a nilpotent group N as follows ([Mis-19717 and Mis-19747),

Definition 3.1, The Mislin-gepmus GM(N) of the finitely generated nilpotent
group N 1is the set of all isomorphism classes of finitely generated nilpotent

groups K with KP isomorphic to Np {in symboils KP Qpr} for all primes P

If X ¢ GM(N) » We also write K ﬁ N .

Pickel was concerned with the isomorphism problem for finitely generated
nilpotent groups. He showed that if F(G)

of finite quotients of the group G and if G and H are finitely generated

-

nilpotent groups, then F(G) =,E(H) if and only if G(PJ r~ H(P) for all primes

P [Pi-1971, lemma 1.2](1J - This result gave rise to the following definition

(given inde endently of Mislin's definition 3.1).
P

Definition 3.7, The Pickel-gemus G p{N)  of the finitely generated nilpotent

group N is the set of ail isomorphism classes of finitely generated nilpotent

oups K with K 2 N for all primes ad K =~ N
grolp ® " Y P Poa

¢ 0

Pickel showed that GP(N) is finite [P1-1971, Section 37 a result that holds

all the way through, starting with Gauss (see (On-19577, [Tah-19591, [Eic~1952],
[ Bo-19637], [Sw-1970, P. 1231}, The same holds for the corplete genus @ (NJ

[Pi-1971, theorenm 3, 6], defined as follows:

Definition 3.3, The complete genus G M) of the finitely generated nilpo-
tent group N is the set of all isomorphism classes of finitely generated nilpo-

tent groups K with K( )= N( ) for all primes p .

.

We shall write K~ N if Ke GP(N) and K~ N if K e GC(N)

P [
—_—

) eq atse (War-1975, Lemma 27 gor a shonter proog.

denotes the set of isomorphism ciasses E
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: War-1975, lemma 3] and in general G, (N)
,.4 One has 6,(N) 2 Gp(M) 2 G, (N) IWar :

(N) properly [B-W-1975, Cor. 4.2]. This follows from a theorem of
contains

[Pi-1970] who associates with a form f (homogeneous of degree d and in
ickel i- .
a = -adic integers
= ={= Z b} or Z = the p-adic integ
u variables) over R =12,9,2, ={y abeZ,p/[b} (p)
tent group N(f) so that two forms £ and g are R-equivalent up to a
a nilpote

n
. _ R
anit in R, i.e. £(A(x)) =u - g(x) with x = (Xys-.0x ) € R A ¢ GL(n,R)
R* = the units of R , if and only if N(f) is R-isomorphic to N(g)
and u € -
now takes the example of Waterhouse (see [B-W-1975, lemma 2.27) of the two
If one
L 32, 2 3 3
forns of degree 3 in two variables f = £(x,y) = 7y ((x+5y)”-2y") and

3 i d
7 y ((xf. y) -2y") then f and g are equivalent over Zp an

g= glx,y) =
imes # 7 Furthermore f and g are equivalent
thus over Z(P) for allAprl P | - -
ts o .
over {Q and also over 2(7) but not over 27 modulo the units 7

N{f} and N(g) are in the same Pickel-genus but not in the same Mislin-genus.

On the other hand Warfield [War-1975, theorem 2 or theorem 4] and Lemaire
{[Lem-1975-1] and [Lem-1975-21} showed independently that GP(N} = GM(N) in the

case where N is a finitely generated nilpotent group with finite commutator

subgroup.

We remark that the set [X;Y1 of homotopy classes of continucus maps
f:X~+Y (relative to a base point), where X is a finite complex and Y a
finite homotopy asscciative H-complex, forms a finitely generated nilpotent

group with finite commutator subgroup.

2.5 Under the same assumption where N 1s a finitely generated nilpotent group
with finite commutator subgroup Mislin and Hilton ([Mis-1974] and [H-M-187517) were
able to introduce a group structure in the genus set Gu(N) = GP{N) which finds
its counterparts in the composition of quadratic forms introduced by Gauss
[Ga-1801, art. 2357 and in the maltiplication of ideals in quadratic number fie;ds

(see 3.2).

To that end we introduce the center ZN of N » the torsion subgroup TIN

of ZN and the free center FZN of N given by
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FIN = {x< ZN|x=y" for some ye2ZN with

n = exp TZN= exponent of TzN} = (zm)" . ;

Then FIN is a free abelian characteristic subgroup of N of rank h = h(N) ,
where h equals the dimension of the rationalization of N0 over Q , and the

quotient group QN = N/FIN is finite. We denote by t(N) the exponent of the

t

abelianization of ON , i,e. t = is the smallest number such that x° = 1

t(N)

ke

for all x e (QN),;, = (QN}/(QN)' , where (QN)' is the comsutator subgroup of QN

IN , FIN , QN , h{¥) and t(N} are ali invariants of the genus

G(N) = Gu(N) = Gp(N) (see [Mis-19747).

There is a surjective map & = §(N) : (Z/tZ)/*{+1} » G{N) of the multiplica-

tive group of congruence classes modulo t which are prime to t , factored by

the classes +1 module t to the genus of N [(Mis-1974], If 2 ¢ (2/t7)*/{+1}

has a representative
h

ae¢Z and if &a = M, then there is a map ¢ of central

extensions of Z° by QN :

£
2P s N~ QN

wl Lo e

n B
Zr———>M—>—>QN

where |a| = |det ¢,| = [coker ¢_| = [F2M : o(FZN)], £(2") = Fow ; g(2 = Fov

Furthermore ¢ is injective and surjective modulo elements of order prime to t

If on the other hand a map ¢ h

of central extensions of Z is given

by QN

so that ¢' is an automorphism of QN and that ¢ is injective and surjective

modulo elements of order prime to t and F(Zh) = FZIN then =§

|coker ¢a! = |det ¢a] = ja| is prime to t and M e G(N) and g(zM = FIM . We

then put 6a = M where & is the congruence class of the order |coker ¢a§ of

coker ¢a modulo t . The (additive) abelian group structure in G(N} is now
defined to be the unique group structure that extends the surjective map & to a
surjective homomorphism of additive abelian groups. We see that N plays the

rGle of a zero-element in G(N)

. 33
ginthen Fred

This construction yields at the same time an upper bound for the cardinality

the genus G(N) {see [H-M-1974] and [{Lem-1975-2] for an improvement) and
of tne

determine the group structure of G{N)} in some special cases. Hilton

allows one to

d Mislin also give a more intrinsic description of the group G(N) by means of
an .

pullbacks and pushouts.

3. THE GENUS IN ALGEBRAIC NUMBER FIELDS

In Chapter 1 we followed the stream leading to the concept of a genus for

ilpotent groups. Here we would like to mention some other ramifications of
ni

Gauss' original genus bringing us te algebraic number fields,
3.1 It was Dedekind [De-1871] who introduced the concept of an ideal in an alge-

braic mumber field thereby replacing the ideal numbers that were created by Kummer
in order to restall the fundamental theorem of arithmetics (uniqueness of factori-

zation) in algebraic number fields. Dedeking also has given a translation of

Gauss' theory of (binary)} quadratic forms into the language of ideals [De-1854,

Art, 182, 186, 187] which runs as follows.

We consider the quadratic number field % = Q(Vd) over @ , where d is the

diserniminant of the field k meaning that d 21 (mod 4} and square free or

d=4d' with d* 22 or 3 (mod 4) and d' square free.

k=qQd) = {r+sVd|r,5eqQ}

d+vid
2

g . Every (non zere) ideal g in k

appears as a vector space of dimension 2 over Q and

the integefs g={a+b |a,beZ} in k form a free ZI-module of rank 2 with

Qi!g:e is again a free
2

the basis 1,8 =

Z-wodule of rank 2 and can be described as &= {xal-%yuz |x,y«sz} with respect

to a certain pair of elements 050y € & - We call « o, 2 basis for g and

1,
write q = fal,az] . An ideal g in k 1is said to be Jdrfeghal if g < g,
otherwise @ is called gractional., If @ is a fractional ideal them there

exists a non-zero integer B € ¢ such that Bg < g .

~3

We let Ik

for the subgroup of principal ideals

stand for the multiplicative group of (fractional) ideals ¢ in

k and Py {(#) = ag generated by a single
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element o ¢ k . Then the quotient Ck = Ikl

1s called the ideaf class ghous

of k . Two ideals g and g' belonging to the same class in Ck are called

equivatent, in symbols @ =~ a' ; in other words 4 ~ g' iff there exists

~ T R ~d T RS

ek

such that g = (o)g' We say that two ideals & and g

in symbols g = g' , if there exists o = a + BWd ¢ k with pos
A=A pesitive norm

N{@) = o& = a° - b%d > 0 (see below) and g = (o)g!

as the narrower group of proper equivalence classes Cg are finite follows from
the finiteness theorem for (proper) equivalence classes of birary quadratic forms

{see 1.2 and below).

3.2 We now take an integral ideal a = [txl,az} cg

~

with a certain basis

are phoperly QQMVCLEP_M

That the group Ck as Weli.' Z::

€ & . We denote by N(g) = [g:g] the (finite) index of 4 in ¢ also

G20y

called the noam of & . If o= r + s/d is an element in k then G = r - sVd

is its conjugate. The norm N(@) = ag = r2 - de and the trace T(a) = o

of o are rational numbers. We shall need the fact that

,Lz—mz—_le (see [Hec-1923, Satz 76, and p. 1151).

N(@) =
basis elements a0, of a so that oclonz - azoz = N{a)Vd is positive or p051t1ve

imaginary we assoclate with the (ordered) ideal &= [0‘1’0"2] the binary quadratic :§
form

) (alxmzy) (m1x+a2y)
B N(a)

ia

or.lal 2 N G'.lOLZ"'CtzOLI 0'.2 2 2

N Y T R@ Y

ax2 + bxy + cy

n

From now on it will be more convenient to replace 2b in Gauss' notation by b -

and to introduce the déisoniminant d of ax® + bxy + cy2 as being d = b2

- 4ac
which equals four times the determinant in Gauss' sense. We let henceforth
f = (a,b,e) stand for the form ax2 + bxy + cy2 and we shall call (a,b,c)
integral if a,b,c are integhal and primifive if the g.c.d. of a,b and c¢ is cmng.

+d =2l

After ordering the f

35

a,b,c in f‘1 are integral rational numbers, for the

~s

The coefficients

first factor (xocl+yu2) represents a number o € ¢ for all x,y ¢ Z , running

elements of a if x and y run independently through all of

through all the

7 , and the second factor (xot1+ya2} represents the conjugate o of o . Hence

the product (xey +ya2) (xa1+ya2) represents all norms N(d) = ax of elements

if x snd y vary in Z . N{a} always divides N(a) for all

aeg i oea,

IN(e) [/N(@) is the index [g:(0)1 of (@) in g . f’%(x,y) is

in fact

2
(x,¥} € 2

therefore a raticnal integer for all , in particular a = fa(l,[))

and hence b are integers. The discriminant

and ¢ = fa((),l} = ff%fl,l) -a-c¢

d(f) is equal to the discriminant of the field %k = Q(Vd) ,
Z
= =2
5 (ulu + Otl) - 4otlouloez 2 {alaz—azcﬁl) )
d(f) = - 4ac = 5 7 =d .
g N(a) N(a)

Furthermore the form fa must be primitive, for if p divides a,b, and ¢

then p2 must divide d which is possible only for p = 2 (d being a field
discriminant) in which case = 4d' and df = 2,3 (mod 4) But then the

integral quadratic form -5&* = (%, 12)-, -cz—) = {a',b',c') has discriminant
0

4! = b'2 - 4a'c' which must be 2 0,1 (mod 4) contradicting the nature of 4a
The primitivity of f implies that N(g) is the g.c.d. of alal = N(a)) ,
a0, + oty = 'I‘{cxloc2) and ouzu N(az}
If d <0 then fa is a positive quadratic form, i.e. fa(Zz) = 0, because
of
- 2 2
) o.lctl - N[oa ) Ty - sld
a a

Il

(where ap =y ¥ sl\/a') If d>0 then £ is a so called .{ndefinite quadra-

tic form, i.e. a form taking positive and negative values,

We finally notice that a change of basis of 4 yields a form f{'1 properly

~r

equivalent to fa

~

(see also [Hib-1897, §301).
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Our construction can be sumnarized by the first part of the following:

Proposition 2.1, To avery (ordered integral) ideal a = [ml,a2] in the

field k = Q(Vd) with discriminant d there corresponds a primitive integral

binary quadratic form fa

~

of discriminant d which is positive if d < ¢ and

indefinite if d » @ .

Conversely, given d there corresponds to every primitive integral binary

quadratic form f = (a,b,c) of discriminant d = b2 - 4ac , positive if d < 0

and indefinite if 4 > ¢ » an integral ideal a= [al,cczj in the field QMWd) so

that f = fg (for a proper choice of ocl,u.z) .

For the proof of the second part one puts a= [a, b-z\/a] if d<0, or if

d>0 and 2>0, Inthe case d> 0 and a >0 ome puts a.*\/"[ b\/—]

In both cases Vd 1is taken positive or positive imaginary {see [Hec- 1923, p. 213])

We have now the following important relation (see [Hec-1923, Satz 154] or
[De-1894, §1871).

Proposdition 2,2, azal <=>f = f

a al”
~ ~J

Hence there is a one-to-one correspondence between the multiplicative group
C](: of proper ideal classes in k = Q(V@) and the set of proper primitive equi-

valénce classes of positive quadratic forms (if d < 0) or indefinite quadratic

forms (if d > 0) of discriminant d + This yields on the one hand that the
proper ideal class group CE (as well as the ordinary class group C } is
finite (see 1, 2) and on the other hand that the set of proper primitive equiva-

lence classes of quadratic forms with given discriminant 4 (positive if d < ¢ R

indefinite if d » 0} can be equipped with a ETOUp structure, the group opera-

tion being nothing else thap Gauss' composition of classes [Ga-1801, Art, 2497,

The same correspondence permits to distribute the proper ideal classes of &

into genera. Take an ideal class [a) with a Tepresentative a4 that can be
~ p ~e

taken integral. Associate to 2 the primitive form fa.

~a

that all forms of the proper class [fa] represent the same set f’G(ZZJ of

- We know (see 1.2)
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m .
i — 11
ong to the same characters, i.e. ( ) has a fixed value for a
integers and belong s
is an odd prime divisor of the discriminant

e fa(zz} prime to P s where P

2 .
By the correspondence ab fa we see that fa(Z )} is also the

& (see 1.2) Z ~ 2 N

. - JN(w)
set of noTms of elements o « & divided by the norm of 4, fﬂ;(z 1= {N(&] [aegg} .
Recall that N(a)/N(4) is always an integer for any o e 4 . By this and theorem
e 5

1.2.3 we infer (see also [Hec-1923, Satz 1391)

Theorem 2,3. Let g be any (integral) ideal‘in the proper ideal class [al

of the quadratic number field Q(Vd) with discriminant d and P a prime
2 .

dividing d . Then the norm N(a)/N(g) « f’%(z ) with non-zero o e 4 and not

divisible by p are all either quadratic residues or non residues modulo P -

it is clear that the construction ar fa works as well for fractional ideals,

~

the fesulting fa. still being an integral primitive quadratic form, Clearly

~

proposition 2.2 and theorem 2.3 then still hold in this larger context.

3.3 Hilbert [Hib-1897, §64] (see also (Hib-1894, 2 p. 28]) introduced the noam
nesddue Aymbol (é-’-i) for an arbitrary integer a , a non-square integer d and
P

any prime p , and he defined

igd) =+1, if a2 = N(o) (mod pe] for an algebraic
P
e

integer o e g in the quadratic field Q( d) for all powers p- ;

Definition 3.7, (

(—"af,d) = -1, otherwise.

The symbol has among other the following properties [Hib-1897, §64].

Propos.ition 3.2,

(1) (3_13@.)”,115 p} ad

(ii) (%):(g—),if pld, p}a and p 2
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a,d 5 d Na),
. ,dy R ,
(iii) ( 5 ) = (-1) , if 5= 35,7 {mod 8) We may write EP(fr%) = (ELL‘I%—-—) for all non-zero o € & with SEZ% prime
at-o1 o p (these o exist because of the primitivity of £, ) . Then EP{fa] is
a,d\ _ 8 d _ ~3 ~3
s (-1) s (mod 8) defined for all prime mumbers, viz. ep(fa_) =1 for all primes p not dividing
ﬂ+ 2-1 d by virtue of proposition 3.2 (i} . We could therefore give the following
adY. 32 2 ir =6 (mod ®) -
5 = ’ 4~ symietric foTT to the foregoing definition.
(iv) ab,d) - (ggi_)(b,d) (1) Definition 3.4. @~ a' iff ep(fa] = ep(f&) for all primes p where
P PP ' ~ ~
N(o) 4
Comparing proposition 3.2 (ii) and (iii) with Section 1.2 we see that Hilbert's i3 € (£) = N(a) *
- 2 P

norm residue symbol coincides with Gauss' characters or else with Dirichlet's

d i a1l non-zero o e & with No) prime to p .
characters Ep(f) in the case where those are defined. Recall that o is Gauss' for ~ N(a)

determinant of £ if d is the discriminant of £ . For the field ¥ = QUVd) There are at most 2t different genera, where t is the number of different

we get t non-trivial characters (—E;-) , where t 1is the mumber of prime divi- prine divisors (2 included, if 4 l d) of the discriminant d . It is clear

sors of the discriminant d of k . Note that in the case 4 | d we have only that the umit ideal =g of all integers in Q(/d) 1ies in the proper

one character corresponding to the prime p = 2 . principal (ideal) class and hence in the principal genus (by proposition 2.2)

- i i terized b = +1 for all primes d¢ and hence for all .
We mow want to define the genus of an ideal a in Q(vd) so that ¢ and which is characterized by Ep( ) or ail P pl P

a' are in the same genus iff fa and f& lie in the same (Gauss-) genus.

~o

The important relations between genera and the norm residue symbol are put
Definition !.2.5 therefore suggests the following together in the following '

Deginition 3.3, Two ideals g and g' or two proper ideal classes Lg] Theotem 3.5. Let @ and g' be ideals in the field Q(Vd) with discrimi-

and [g']l in the fisld Q(/d) with discriminant d belong to the same genits, nant d Then

in symbols g~ &' , if Ep(fﬂ.) = ep{f&) for all odd primes p dividing d and

(1) (M) = 1 for all non-zero a ¢ Q(Vd)

for p=2 if d %1 {(mod 4). p

. . . . N(a) , d) .
1 £f (-—-»v—— =1 £ 11 primes .
Note that the condition for p == (if d < 0) 1is alsc satisfied. (1) g s the principal gemis = P oralt P P

(1) g~ g iff (N@; : d) - (N@-'P) : d) for all primes p .

(1) By vintue of (iv) the symbol ( ) can be extended to hationals a , and one

(iv) @ 4is in the principal genus iff there exists a ¢ Q{Vd) such that

N(a) (mod p¥) for an o ¢ QOVA) M@ Nw)
= (¢

]

has Propesition 3.2 {u} e (%—d—) =1 iff =a
for all prime powers p° . The symbof 46 in fact symmetric in a and d , _
40 that it can be defined gor any non-zero national d , but we shall not need (v) g prime to d is in the principal genus iff there exists o« Q(Vd)

this propenty (see [Ha-19691). © Prime to d such that N(g) = N(e) {mod d) and N(o) > O .
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{(vi) g~ ga' iff there exists o « G(/d} prime to d such that

N(a) EN(&JN(&'J (mod d} where 4 and 4' are prime to d .

Phood.
(i) Follows immediately from definition 3.1 first for integers o and the
for any a = 0 )
Nia )
(ii) Take an integer u.P € & so that T\ffg)— is prime to p . Then
N(o )
Ny , d\ Wy + @ N(O‘p)'d_ . L .
- ? = m = 1. & 1is in the principal genus iff
Mo )
N » d
Ep{fa) = 5 =1 forall p (and certain CLP) which is equivalent to

say that (N P,d) 1 for all p .

(1ii) Is a consequence of (ii), and (vi) follows from (v) To prove (iv)}

and (v) we shall apply Hilbert's nomm theosem ((Hib-1837, Satz 1027 and

[Ha-1969, §26.70) >

Theorem 3.6. If for a non-zero n and d (]—%‘i) =1 holds for all primes

P, then n is the norm n = N{a) for a non-zero a e Q(Vd)

and the teciprocity Law to which Hilbert has given the form {[Hib-1897,

Hilfssatz 143 and [Ha-1869, §5.61),

Theorem 3.7, For any non-zero n and d , not both negative, the product
over all primes II (Epﬂi) = 1.
P

(iv) Now follows from (ii} and theorem 3.6 and from (i), and (v) can be got
from theorem 3.7 as follows. If N{g} = N{a) (mod d) then NQ@} S N{a) (mod p}

for all primes p dividing ¢ which means that N{g) = x2 - dy2 = xz {mod p)

(1) By means of the mubiiplicativity of the nowm and Hilbert's noam symbol
(proposition 3.7 (iv)).

, 4]
linther Frel
tvable for an integer x mod p . It is well known that then
is s¢
@ = x2 (mod p°) is solvable for all powers pe of p [8e-1973, TI-2,
N(a) =

N(a) , d
. =1 for all 2 2 . By theorem 3.7
Corollary 2] if p = 2 , hence ( - ) v .

. . N{g) , d\ _ (Nggg!d .
and proposition 3.2 (i) also ( s =1, so that D 1

The necessity is clear from (iv). ~

for ail
primes P -

We now state Gausd' fundamenial theomem for genera of quadratic number fields
k = Q/d) with discriminant d , proven by Gauss for quadratic forms
[Ga-1801, Art. 247, 261/2, 286/77 , which can be interpreted today as being the
- ¥

main theorem of class field theory for quadratic number fields.

Theonem 3.5,

1

(i) There are precisely Zt" different genera, where t is the mmber

of prime divisors of d .

(i1) The square of any proper ideal class lies in the principal genus, and

conversely

{iii) every proper ideal class in the principal genus is the square of a

proper ideal class.

(ii) follows immediately from the multiplicativity of the norm and of

Proo{.
N(g®) , dY _ (NG , d\? .
Hilbert's norm residue symbol: (—Lg-—%—;) = ( 7 ) = +1 for all. primes p .

t-1

That among the possible 2t genera there exist at most 2 follows from the

. -1 :
Teciprocity law (theorem 3.7). That there really exist 2 genera is a deep
lying fact that Gauss was able to deduce via (11i) from the representation theory

of binary quadratic forms by termary quadratic forms.

3.4 The generalization of the theory of genera for quadratic algebraic mmber
fields to cyclic algebraic extension fields of prime degree played an important
19le in erecting the edifice of classical class field theory by Hilbert, Takagi

and Hagse,
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Suppose that k is anp algebraic number fielq and that K is a cyclic alge.
braic extension of k , iq symbols K|k , whose degree is a prime number £ .
Then the relative discriminant 4 of K|k is given by d = ’ﬁgnl » where 4
is called the econduoton of K|k and where 4 and £ are integral ideals in

(see [Hib-1897, Satz. 791 or [Wey-1940, Chap. III, 1273,

First we introduce the Aay medulo 4 in x , Rk,ﬁ s [Web~1897]
or [Ha-1926, I, §21 as the miltiplicative group of principal ideals {w) = gg

in & pgenerated by an element o & k satisfying

(i) az21 med 4 s meaning that o = 5’— where £ and ¥ €. g are integer

numbers in % Prime to £ and congruent modulo 4

(i1) o> 0, ie. g is totally positive, which means that all real conju- f;{:

gates of o are positive.

Rk‘ﬁ' ={(@} |aeck, az1 mod’é, a>> 0} is a subgroup of the group of
principal ideals Pk 4 in k prime to § which is itself a subgroup of the
K} ~
multiplicative group Ik'Ji of ideals in & prime to ﬁ . Sk = Ik’lil Rk,’ﬁ' s

called the Ady ofass group of k , is finite [Ha-1967, P. 721, We denote by

Hk.ii the group of ray classes in % containing relative norms from K to k of o
3

ideals A ¢ I, { lying in K and prime to § and by Qe 4 the group of ray
sl > ~s F}
classes in % containing relative norms of pfincipal ideals (A} = AQ € PK

lying in K and pPrime to ,15_. . Qk ,é is contained in H and the norm mapping

k,
N from ¥ to % induces a surjective (multiplicative) homomorphism
N, : IK,i ! PK’i{, + Hk’ii | Q¢ whose kernel Ep = ker N, is called the principal
genus in X . It consists of ideal classes [A]{i in X oprime to £ whose norm

lie in Qk’fﬁ, , i.e,

EK=H£MAEK,M@EWQM mwi}fwanAeKwﬁhNMP>M.(n

—_—
() We see that B coincides with the prineipal genus in quadietic numben fields,

when k =g , K= qd) , £ =4 lsee theorenm 3.5 (v)),
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= : = [H :Q :l
in K . Its order g= 1[I E 3 =L k4 %,
g | B 15 the genent group Kg T g g
K:f,
js finite.

i i g p Prim
ermore T stand for a generato: of 1t [[e cyelic Ga f
et furth b4 01LSs TOUu Q e

A
1- s i - (see
2 of K over k, and let A T symbolize the quotient G (
order ° ~

1897, §541) called the symbolic (1-7)-power of A .
_ [Hib-1897, .

Then Takagi proved [Tak-1920, S#tze 16, 17, 19, 20, 22]
en

Theorem 4.1.
(i) The symbolic {l-T)-power of any proper ideal class [Al e € lies
i 7 )

in the principal genus EK .

S X i i = -p er of
("} Every proper ideal class ’\AJ £ yl]lh 1 ( ) oW
il E LS E]e oY olic
a PIOPET ideal class prime to fd in CK .
I
k,

(iii) The number g of genera is given by g = z

:Qk ]

{ i X if
Hereby A and E are placed in the same proper ideal class in

{ 1
A= B(A} with N(A) »>> 0 It is clear that theorem 4.1 generalizes Gauss
= .

theorem 3.8 to Cycllc exten51ons, if we Ieﬂialk that in the quadratlc case

7T9=1, hence T =-1 and 1 -1 =2,

[Ik : ]

Q
: = —-—A—ilﬂé— implies that
We also note that g = [Hk,’ﬁ'qk,,ﬁ] = [Ik,,é:Hk,rﬁ] p

[1, ,:H ,1=2£ , a fact that will be used in the next definition 4.2.
k,d " kof ’

. . o
Takagi applied this theorem 4.1 on the way to establish the existenc

theorem of class field theory, whereby he defined

i n
Definition 4,7, A relative normal field K over k of relative degree

{ H
is said to be class field to a group of ray classes K 6

~

modulo an integral

ideal { in k , if
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(1) Hk'é is the group of ray classes in % containing relative norms from
3

K to k of ideals Ac IK.ﬁ lying in X and which are prime to ¢ .
(ii) EIkﬂé:Hkuﬁ] =n .

The main theorems of class field theory for a given mumber field k then

comprise (ses £ TFak-1920] and [Ha-19267)
Theorem 4.3,

(i) To evéry group of ray classes Hk { medulo an integral ideal ,ﬁ in k

there exists a unique class field K over k .
(ii) K is abelian over k .
iii) I is isomorphic to the Galeis group of K over k .
(iii) k:_ﬁ/H"»ﬁ, isomorp group e

(iv) Every abelian field K aver k is class field to a group of ray

classes Hk,ﬁ modulo an integral ideal ‘i in k ,
L)

Class field theory therefore establishes a one to one correspondence between

abelian extensions of k and certain Congruence groups in k

3.5 Going in the opposite direction Hasse gave an elegant treatment of the
theory of genera in the quadratic mumber field k = Q(/d) over Q with discri-

minant d by means of class field theory [Ha-19517,

Let X be the class field over k belonging to the group of principal
ideals (o) generated by o ¢ k whose norms in Q are positive N() > 0 .
K is then the so called absolute or Hifbert olass t4iefd in the narrower (o prop-
er) sense. This means that K is abelian over k and unramified over k , i.e,
its relative discriminant ’g from K to k 1is one and the conductor ,é is one
also. Moreover K is the maximal unramified abelian extension over % . Hasse

now defines [Ha-1951]

Gllnthen Fred
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Definition 5.1, The maximal unramified abelian extension KG over k which

is also abelian over Q 1is called the genus field of %k .

K. is a subfield of K and it turns out that the group of ray classes
G .

H ,i Lé: 1) corresponding to it (i.e. to which KG is class field over k)
k,

is the principal genus E,  in the classical sense, say in the sense of theorem 3.5,

'Theorem 4,3 (iii) infers that Ik’i |Ek is isomorphic to the Galois group of

K, over k . Furthermore Hasse regains the fundamental theorem 3.8, viz. the
G

t-1 . .
pumber of genera is g = {Ik,ﬁ:Ek] =2 being also the degree {KG.k] of K,
over k . More explicitely Hasse determines the genus field KG as being the
composition of independent quadratic fields Q(Vﬁ?) whose discriminants p; are

related to the primes By dividing d in the following way

Theorem 5.2, Ko = QCVﬁf)(Vﬁ%)...(Vﬁi) , where d = pfpg...pg is the unique

decomposition of the discriminant d into so called prime discriminants of the

form
p=l
p* = (-1) 2 for p=2
p* = -4,18 for p=2
if pld.,
t-1
K; is of degree 2% aver Q and of degree 2 over k = Q(/d)

3.6 Based on Hasse's quadratic theory of genera Leopoldt [Leo-19531 developed

the more general genus theory for abelian number {ields.

Let k be an abelian number field over Q and K, its genus field as
defined in definition 5.1. The prineipal genua Ek is again defined te be the
group of ray classes corresponding to KG as class field over k , and Ik |Ek (1)
is called the gemus group of k . With the help of the description of the

—————

™) Recatt that §=1 .

~o
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arithmetic in abelian number fields by means of characters and Gauss sums

[Leo-1962] Leopoldt £ave an explicite description of K; and he obtained the

following fundamental theoren.

Theorem 6.1,

(i) The Principal genus Ek in k is generated by all symbolic

(1-T}-powers of proper (i.e. narrower) ideal classes fal e ¢ where T rims
p Dbrop ~ k

through all automorphisms in the Galois group of k over Q .

Te

(ii) g = [Ik:Ek] = quii the product taken over aii prime numbers and

where ep' is the ramification order of a prime ideal B dividing P in k .

To define the ramification order e_ of the prime mumber p in k we

consider the factorization of the prime ideal (p) = pZ in Q¢ into prime
e e . )
Pg =B < B7 « It is easy to see that in a Galois

(i.e. nermal) extension 8y = ... = e, (see [Hec-1923, §291, as all the primes

ideals ﬁh"'-aﬁs in k

Eh""%es hust be conjugate. We call this nunber the ramification oider of p

in k and denote it by e

A Theorem of Dedelind (CHib-1897, Satz 317 and [De-18821) states that ep # 1

if and only if P divides the discriminant 4 of k over q ,

Furthermore sep is always a divisor of the field degree [k:q] .

If we apply these remarks to quadratic fields k = Q) , we get ep =2

for all primes p that divide the discriminant d and Ep =1 for all the other

primes. As 7 = [k:Ql =2, we get in fact from theorem 6.1 g = Zt_l-, where t

is the number of Prime divisors of d . Moreover there are oenly the two automor-

phisms 1 = identity and 7t = 1 with T2 =1 ; hence T = -1 and 1 - T = 2
By putting everything together we get as a special case of theorem 6.1 Gauss'

theorem 3.8.
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ther hand the specialization of theorem 6.1 (i) to cyclic extensions
On the ©
. s s . 1
kagi's theorem 4.1 (i) and (ii) and the specialization of theorem 6

jelds Takag
' 1ic extensions gives an expression of the genus mumber already found
‘s cli
(ii) to ¥ . .

~-T-1951] in this cyclic case.

and Tamagawa [I

by Iyandaga

F na[ Hasse Ha—19681 gave a descriptiﬂn Of the principal genus if] an abe—
e i 1] the Hilbert
f' d w i‘EC]l is identi with corem .5 (J L) W ereby
i it er tica th T 3 h
lian U.T[Ib >
d
3

idue symbol ( for the quadratic field Q(Vd) is replaced by
norm residue

- 1 ield k (see [Ha-1933]).
- ——=— ] for the abelian fiel
Hasse's general norm symhol ( 5 )

7 That there is a more general gemus theorem for normal number fields over Q
?; indicated by the following theorem of Tschebotardw. Recall that the inertia
;roup T of a prime ideal p in a normal algebraic extension k over @ is the
subgroupfbf the Galois group 6Gal(k,Q) of k over Q consisting ?f al?
automorphisms leaving all the congruence classes modulo jp in k 1nvarlaft' |
[Hib-1894-11. If k is abelian then all TR for the prime ideals p dividing
a given prime number p in 2 coincide. We then put TE = TP . Hilbert showed

p P flxed
the or de 1 [ ) f k
th&t e 1s r of T and that tl e Su;] field k 0 Wh (:l] s

l i i i 'fied
under T is the maximal subfield of k over Q in which p 1is unrami

[Hib-1894-11.

. " . e
The theorem of Tschebotarlw that can be interpreted as being an arithmeti
analogue of the monodromy theorem in complex function fields now states

[Tsch-1929]

Theorem 7.1 If k is a normal number field over @ , then the composition
of all inertia groups T  is the full automorphism group of k over
L

cas 1 ime ideals in k,
Q: T, = Gal(k,Q) the composition I taken over all prim R

and where the composition I T, is the smallest group containing all the

. k
groups
P2

i i £
If L 1is the subfield of k whose elements are fixed under the operation o

. . in k.
TT then L is the maximal unramified extension over Q contained in
p £
LAt
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Theorem 7.1 implies that L = Q . This yields a theorem of Minkowski [Min—iagll

Theorem 7.2, Tor any algebraic number field k = G over Q there is at

least one prime number P that is ramified in s 1.e. that is divided by a

power of a prime ideal ;Ee s e# 1 ,4n k.

The

the Weienstnasy monodromy theorem that brings us back to topology.

Theorem 7.3. For any algebraic function field k = C(x)} over the field of

complex rational fumetions there is at legst one prime (x-a) , ac¢ C that is
ramified in k

Or in topological language:

Any not one-sheeted Riemann surface over C has at least one ramification

point, or else:

A Riemann surface over ¢ having no ramification points is one-sheeted
over C .,

3.8 One of the main motivations to study the genus group of an abelian number
field k was to gain information about the structure of the class group of k

as the former is a special quotient of the latter. In order to extend this

program to arbitrary number fields %

(of finite degree over Q) Fr¥hlich

introduced the following generalization of the genus field [Fry-19597,

Definition 8.1, Let & be an arbitrary number field of finite degree,

Then
the genus field K. of k

is the maximai non-ramified (abelian) extension of %k

of form k + L ywhere L is an abelian number field over Q.

If KA is the maximal abelian subfield of KG (or else the maximal abelian

subfield of the Proper (i,e. narrower) Hilbert class field K of k)

then KG is the composition of k and KA,K =k K

G A

corresponding theorem for complex algebraic function fields is precisely

_ nant dM s then we denote by e
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) ) F K -1
£ield over k , and Ik/Ek is the genus group o ¥) »

as class . E

© KG ified over k) . The genus number g is the order of Ik/ k

is non-ram . PR

“ o [K~:k] B, is the least ideal group in k containing

the degree G’
or else

i inci i : hich can be
{i.e. totally positive} principal ideals Pk W

the group of PropeT

o : - norm map from
by rational congruence conditions with the help of the P
rized ba
characte

In £ i Y tendin
act Fr&hlich first establishes this propert of B by exte g
Q )

k to . k

ion Df E jn the Cyclic case (see 3' .I'
. characteri zatl k
the

i Fr#-1959, Theorem 37.
after Ey with Ko [ s

hen applies the theory to determine the genus group for a normal non-

-He ;ield k of degree 6 over Q as well as for the splitting field k over
abel:ajhe polynomial x" - a . Inhis second paper of the same volume he studies
Q lotions between the genus group of a number field and the genus group of one of
ze asubfields allowing him to compute the genus group also in :he tvo non-normal
c::es whére k 1is a non-cyclic cubic field and where k = Qea/;) with e an odd

- d 6].
rime and a = +1 and e power free integer [Frd- 1959, II, Theorem 5 an
P i

Explicitely the structures are as follews,

Theorem §.2.

(i} If k 1is a normal non-abelian number field of degree 6 {over Q)
) :
R . R iserimi-
k discriminant dk and if M 1is its unique quadratic subfield with disc
with discr N

the number of prime divisors of dM and by e,
M

ivi i rime to d,, and for which
the number of prime divisors p of dk which are p M

(d_u,)=1.

I]le genus g]'(ﬂll! ()l k 1s t]le]l tile dlIeCt Ioduct Of -1 groups
P eM
p

e -1 &
. = 2 M z

. In particular g = .
of order 2 and of &, &roups of oxrder 3 P

2

& imi = here d
(i1} If k is a non-cyclic cubic field of discriminant dp df° , w

is the discriminant of QCVH;) and if e denotes the number of prime divisors
is- i t of e
P of f with (i) = 1, then the gemus group of k is the direct produc
r .

e
groups of order 3. In particular g= 3~ .
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'[iii) If k 1is the splitting field of the polynomial x" - a over Z s thep

its genus group is the direct product of cyclic groups of order (n,p-1) , where

p is running through all prime divisors of a not dividing 1n . Hence
g= I (n,p-1)
§ a
Pita,n)

o7
(iv) The genus group of k = Q L//;) » where € is an odd prime and a = +1
an e -power free integer, is the direct product of cyclic groups of order

(en,p—l) » P rumning through the prime divisors of a . Hence g= 1 ﬂen,p-t
pla
As g divides the proper (i.e. narrower) class number h of k we get in each

case a lower bound for h .

3.9 In order to comstruct the genus field KG of a normal number field Butts

[Bu~1973] builds on an idea in Speiser's proof [Sp-1519] of Kronocker's theonem:

Bvery abelian extension of Q is contained im a cyclotomic field Q(En) »

1 being a primitive n-th root of unity.
We shall begin with the easier abelian case.

Theorem 9.7, Let X be an abelian mumber field with the distinct ramified

primes Pys---p, (dividing the discriminant of k) having ramification orders

o

. - 1]
s (in k over Q). Put e; = eip;

[ s 1 owith e prime to

1

P (i=1,...,8) . Let Mi be the subfield of the cyclotomic field Q(CP } of
i

12

the p.-th roots of unity whose degree over Q is e! , and N. be the subfield
i i i

[+ 28

i

i

Qg a +l] or the maximal real subfield of Qg L MiNi is the compo-
i

o,+2 | C L
1
i Pi

sition of Mi and Ni . Then the genus field K, of k is the composition of

s
all the abelian fields Li s X.= T L

1 s . N . B
Qz uiﬂ) of degree p.,” over Q if p, = 2 ; or if P; =2 then N, is either
P
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Hencé one has Leopoldts formula
s
s .H ®3
.07 = d _ =1
[KG.Q] = T e; and g % :q
i=1
Now the normal case.
Let k be 2 normal mumber field with the distinct ramified primes
- Le
P having ramification orders CIFRREPL in k, i.e.
Pl""’ 5
e, )
L) 1 jis the factorizatiom of p; in k, or else
pi6 = Bi17° rBir
e. ‘ . -
. = (p..) & is the factorization of p. in any of the completiors koo )
Pip..) T Bij i i
1]

o i i ification order of . in
(j=1,...,T) OVET Q(Pi} N T also the ramifica Py

& j the integers in k and
k{ ) for any j = 1,...,r . As usual g denotes the integ
Bij
- i in K ider the maximal abelian sub-
stands for the integers in k N Consi

i k i=1,...,r) over and
field A( ) of any of the completions k( R (j=1, ) Q(pi]
P ij
s . . . FLiaation o
call the vramification order e; of p; in A(pi) the abelian &am&ﬂ&g {
v/
i i . be the
P; in k . Put e} = e;pil with e; prime to Py - As before let Ml
subfield of Q(g ) of degree el over Q and Ni be the subfield of
¥
o

: - R _ . th
Qlt , 4| of degree pil over Q f{or if p, = 2, either Qf¢ a;tl or the
Pil Py
maximal real subfield of Q(C ai+2 » and Li = MiNi
Py

. . - i th
Theorem 9.7. Then the genus field Kq of % is the composition of k wi

I =
[

s
all the abelian fields Ly, Kg= k+ T L =k L where L=

e! and

Hence [L:Q] = 1

i

n = w

1
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. i field was
jon of the genus field KG for any algebraic mumber

5

i e{
k] = T _ [L:Q) _ i=l
G.k] = EL.kG] = ERO:Q] = [kU:Q] .

A descript . _
10 Let p be a prime that factors in k into the
g =LK

syen bY ghaskaran [Bh-19761.
gr . . 1 . with ramification orders efse ey s i
distinct prime ideals Pgs-++aBsg

where kO is the maximal abelian subfield of k over Q , e e, consider the maximal abelian subfield A{P) over QfP) of the
pg =R *Bs
The equality [Kq:k] = [Lik,] stems from the fact that ky= Lok and . rs] 2 ' of all the completions of k with respect to the p. Ip .
tion .
5= KL . meersection 1 Kepy)

-

denote by €3 the ramification order of p in A(p) with respect to Q(p)

TG

e following consequences are noteworthy. We de P R R
i Por,p shall be the conductor of A(p) over Q{P) . - TherF:‘. e q

. P,
Theorem 9.3. over Q of degree el’; and with conductor p

eyclic field I

. : ition of k with all
Theoran 10.1. The genus field Kg of k is the composition

i i ich e*>1:%¥.=k+*TL
the cyclic fields Lp for whic 5 a ; o

(i) If k= Q{gn} is a cyclotomic field (of the n-th reots of unity),

then KG=k and g =1,

(ii) If k = Q(%,;nj is a Kummer extension, n > 2, a = %I square free Moreover the foliowing relations hold.

and odd, and if p.,... are the prime factors of -—o—r then we take fo
2 1?2 Pg P (a,n) ~’ T Propusition 10.2.

Li the subfield of Q(Cp> over Q of degree (n,p-1) . Then
. i (i) 6% = (8,800 0se ,@[pap}} is the greatest common divisor of all the
. f s p L2 s o -1
K.=k+« T L.=k(8,,...,0_} where 8, is a primitive element of L. over : & * = 2 or
’ =1 ' o A ! : * ¢ ramification orders of p and of o(p Py = pP (p-1) , except when ep
]
Moreover one gets Fr¥hlich's formula g = It (n,p-1) . pP=8.

a
Pl

-~

(ii) e; = {[U(p) : N U{BI)],...,[U(P) T N U{Rs)]) H

ji.e. e* is the
P

(iii) If k = Q¥a) with (a,n) =1, a # %1 square free and odd, then

indi mits U
greatest common divisor of ail the indices of the norm group of the u cRi}
s
K = k . " = “ e ) . R . ) .
6 i=1 b k(el’ ’65) : vhere Ll and ei are determined for of the completion k within the unit group U(p] of the p-adic numbers (the
(p;}
Q(“\/E,z:n) according te (ii) . Again g = m (n,p-1) . -

B X a = e N
2 notm taken from k ) to Q (p}) , except when p = 2 and -1¢ (p,)
Jrewy (2;

which case e; = 2.
Another interesting result obtained by Butts is the following [Bu-1973, p. 5¢

3,11 Furuta extended the notion of the genus field to relative algebraic normal
Theorem 9.4, Every finite abelian group A is isomorphic to the penus grou

group P gonus grodp extensions [Fu-19671.
Ik/Ek = Gal(KG,k} of infinitely many number fields k .
Definition 11.1. Let M be an algebraic number field and %k a normzl ex-

, ; ot
tension of M of finite degree. Then the genus fietd KG,M of k with respe
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Xo M is the maximal unramified (abelian) extension of k of form kL whare |, :

is an abelian extension of M .

If K is the maximal abelian subfield of over M then
A,M G, M
Koow =0 Ky -
The degree LK, KD = gy 1s called the nefative genus number of k with
respect fo o M,

For the relative genus number Furuta discovered the following formula,

{see also [Gu~15771).

Theorem 17,2,
hM Ie!
B2

Y .
By [kO:MJ[UM:U&]

where hM is the proper (or narrow} class number of M s €' is the ramification

order of the prime ideal P of M in the maximal abelian subfield A of

(p)
kCB) over MﬁEJ , where Pek and -EI.R , and kO is the maximal abelian sub-

field of k over M. UM is the group of totally positive units in M , and

Uy 1s its subgroup of totally positive units being also local norms in all the

P-adic extensions k

-

with ect to M £ 11 ime ideals P in
®) ( resp Q%J) or all prime ideals P
k, d.e. if u e U& then there exists for every prime ideal P e k an element

O € k(R) such that u = Nk

~a

cg)!&cg} ?R .

Finally Gold succeded in giving a characterization of the principal genus for

these relative normal extensions by means of Hasse's general norm residue symbols

[Go-1976] so generalizing Hasse's characterization in the case of abelian extensions

over the rationals ¢ .
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0. INTRODUCTION
e i

Les aines fangenis TX(X) (o8 xeX)} & un sous-ensemble convexe fermé non
vide X d'um espace de Hilbert U 3jouent un rBle crucial pour démontrer 1'exis-
tence des points critiques % d'une correspondance S , pour montrer que L + 8

est surjective et pour démontrer 1'existence de trajectoires invariantes monctones

d'équations différemtielles multivoques.

Ceci justifie la présentation "int&grée" des principales propriétés de ces

cBnes tangents et des moyens de les caractériser.

Aprds avoir défini les cBnes tangents et normaux, mous montrons que
Tx{x) < TY{.x) si xe XcY , que TmT(AX} = Wf)_ ., que
Txxy(x’Y) = Tx(x) X TY(y) s que sz,(x) = Tz(x) n TY(x) (lorsgque 0e Int (Z-Y))
et plus généralement, que TZnL‘l(Y) (x) = TZ(X) - L—‘lTY{Lx) (lorsque
0eInt (LZ-Y)) . On montre de méme que si X = {yeY tels que q{y)sil,
alors Tx(x) = TY(x) n 3p(x)” ol 3p(x} est le cOne polaire négatif du sous-

différentiel d'une fonction convexe semi-continue inférieurement ¢ .

Ces formules permettent de caractériser les cGnes tangents 4 de nombreux en-
sembles; on "calcule'" ainsi les cBnes tangents Z une boule, un cube, un simplexe

et un cbne.

* Apnexe & B'anticle "Analyse fonctionnelle non Linfaire et applications" paru
dans Le Vol, 2, No 1 des Annales.




