
Kronecker-Jacobi symbol and Quadratic Reciprocity

Let Q be the field of rational numbers, and let b ∈ Q, b 6= 0. For a (positive) prime
integer p, the Artin symbol

(

Q
(
√

b
)

/Q

p

)

has the value 1 if Q
(
√

b
)

is the splitting field of p in Q
(
√

b
)

, 0 if p is ramified in Q
(
√

b
)

,

and −1 otherwise (i.e., if Q
(
√

b
)

6= Q and p is inertial). Here we have identified the Galois

group Aut
(

Q
(
√

b
))

with a subgroup of the multiplicative group {±1}.
For arbitrary positive rational a =

∏m

i=1 pni

i , we set

(

Q
(
√

b
)

/Q

a

)

:=

m
∏

i=1

(

Q
(
√

b
)

/Q

pi

)ni

( := 1 if m = 0, i.e., a = 1).

This gives rise to a homomorphism (reciprocity map) from the multiplicative group of

non–zero rational numbers a > 0 relatively prime to the discriminant d(b) of Q
(
√

b
)

/Q,

into the Galois group of Q
(
√

b
)

/Q.

Exercise. If div(a) is the norm of a divisor of Q
(
√

b
)

, and (a, d(b)) = 1, then a lies in the
kernel of the reciprocity map.

For any 0 6= x ∈ Q, the sign of x is

sgn(x) := x/|x| = (−1)ε(x) where ε(x) := (sgn(x) − 1)/2.

The number x can be written uniquely in the form

x = x′y2, where x′ = (−1)ε(x)p1p2 . . . pm

with m ≥ 0 distinct primes pi .

For nonzero rational b, a, define the Kronecker symbol

(

b

a

)

:= (−1)ε(a)ε(b)

(

Q
(
√

b
)

/Q

|a′|

)
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One checks that:

(i)

(

b

1

)

=

(

1

a

)

= 1;

(

b

−1

)

= (−1)ε(b) = sgn(b).

(ii)

(

b

a

)

=

(

b′

a′

)

=

(

d(b)

d(a)

)

.

(

Recall: d(b) =

{

b′ if b′ ≡ 1 (mod 4)

4b′ otherwise

)

(iii)

(

b

a

)

6= 0 iff a′ and d(b) are relatively prime.

(iv)

(

b

a1a2

)

=

(

b

a1

)(

b

a2

)

as long as the right hand member does not vanish.

Well–known facts about behavior of primes in quadratic number fields give, further:

(v) If p is an odd prime and b is an integer then

(

b

p

)

is just the usual Legendre symbol.

(vi) If 2 does not divide d(b) (i.e., d(b) = b′ ≡ 1 (mod 4)), then

(

b

2

)

= (−1)
b′−1

4 = (−1)
b′2−1

8 = ±1 according as b′ is or is not a square mod d(2) = 8.

Now (iv), (v), (vi) allow us to define

(

b

a

)

solely in terms of Legendre symbols, to wit:

(

b

a

)

= (−1)ε(a)ε(b)
∏

p prime
p|a′

(

d(b)

p

)

(This is how it was done originally). From this definition, one gets at once:

(vii)

(

b1b2

a

)

=

(

b1

a

)(

b2

a

)

as long as the right hand member does not vanish.

(viii) If a > 0 and b1, b2 are integers with b1 ≡ b2 (mod d(a)), then

(

b1

a

)

=

(

b2

a

)

(If a is an odd positive integer, it is even sufficient that b1 ≡ b2 (mod a))
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The heart of the reciprocity law lies in the following fact.

Theorem. The mapping a 7→
(

b

a

)

induces a homomorphism χb from the multiplica-

tive group
(

Z/d(b)Z
)∗

of units in Z/d(b)Z onto the Galois group Aut
(

Q
(
√

b
))

. This χb ,

called the quadratic character of Q
(
√

b
)

/Q when Q
(
√

b
)

6= Q (i.e., b′ 6= 1), is the unique

homomorphism taking any odd prime p not dividing b to the Legendre symbol

(

b′

p

)

.

In other words:

(∗) if a′
1 ≡ a′

2 (mod d(b)) then

(

b

a1

)

=

(

b

a2

)

.

Moreover, if Q
(
√

b
)

6= Q then there exists a with

(

b

a

)

= −1 .

Proof. Uniqueness is shown by replacing a by a[n] := a′ + nd(b) where n is such that
a[n] is positive and odd, and then factoring a[n] into primes. (Such an n clearly exists if a′

is odd or if a′ is even and relatively prime to d(b)—so that d(b) is odd.)

It is an exercise to show that the unique quadratic number field with discriminant d
(namely Q

(
√

d
)

) is a subfield of the cyclotomic field Q(ζd), where ζd is a primitive |d|-th
root of unity. [Start with the facts that Q

(√
±2
)

⊂ Q(ζ8) and that for an odd prime p,

Q
(√

p∗
)

⊂ Q(ζp).]

For any prime p,
(

b
p

)

is the image of p under the Artin map into Q
(
√

b
)

, hence

the restriction of the image of p under the Artin map into Q(ζd) (d := d(b)), i.e., the

automorphism taking ζd to ζp

d . Here, in view of (iv), we can replace p by any positive

integer a; and furthermore, to do the same for negative a, it will suffice to do it for −1, i.e.,

to show that the automorphism θ taking ζd to ζ−1
d takes

√
b to

(

b
−1

)√
b = sgn(b)

√
b. But

this follows at once from the fact that the fixed field of θ is Q
(

ζd

)

∩ R whenever |d| > 1.

Surjectivity of χb results from its factorization as

(

Z/d(b)Z
)∗ −→∼ Aut

(

Q(ζd)
)

։ Aut
(

Q
(
√

b
))

.

Q.E.D.

Corollary 1. For any odd integer a,
(−1

a

)

= sgn(a).(−1)
|a|−1

2 = (−1)
a−1

2

(

= ±1 according as a is or is not a square mod d(−1) = −4
)

.

Proof. Since d(−1) = −4, the Theorem (with b = −1) reduces the problem to the two
simple cases a = 1, a = 3.
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Corollary 2. For any odd integer a,

(

2

a

)

= (−1)
a2−1

8

(

= ±1 according as a is or is not a square mod d(2) = 8
)

.

Proof. Since d(2) = 8, the Theorem (with b = 2) reduces the problem to the simple
cases a = 1, 3, 5, 7.

Corollary 3. If q is an odd prime, q∗ = (−1)
q−1

2 q, and a 6= 0 is an integer, then

(

q∗

a

)

=

(

a

q

)

Proof. Note that d(q∗) = q. So for variable a with (a, q) = 1,

(

q∗

a

)

and

(

a

q

)

are

both homomorphisms of the (cyclic) group of units in Z/qZ onto a group of order 2. But

there is only one such homomorphism, hence the assertion holds in this case.

Corollary 4. Let b be any odd integer, set b∗ := (−1)
b−1

2 b (so that d(b∗) = b∗), and

let a 6= 0 be an integer. Then
(

b∗

a

)

=

(

a

|b|

)

Proof. We may assume that b is square–free, and (a, b) = 1; and then use b∗1b
∗
2 = (b1b2)

∗

and b∗ = |b|∗ to reduce, via (iv) and (vii), to Corollary 3.

Combining these corollaries we obtain the reciprocity law for the Kronecker symbol:

If (a, d(b)) = (b, d(a)) = 1, then, with a′ = 2ma0, b
′ = 2nb0, (a0 and b0 odd ), it holds that

(

a

b

)(

b

a

)

= (−1)
a0−1

2
· b0−1

2
+ε(a)ε(b)

Proof. We can replace a by a′ and b by b′ (see (ii)), i.e., we may assume that a and b
are squarefree integers. Then at least one of a, b must be odd; we may assume b odd.

Now if b ≡ 1 (mod 4) then b0−1
2 is even, b0 = b = b∗, and by Corollary 4,

(

b

a

)

=

(

b∗

a

)

=

(

a

|b|

)

= (−1)ε(a)ε(b)
(a

b

)

,

whence the assertion in this case.
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If b ≡ 3 (mod 4) then b0 = b = −b∗, a = a0 (since 1 = (a, d(b) = (a, 4b)), and by (vii),
(vi) and Corollary 4,

(

b

a

)

=

(−1

a

)(

b∗

a

)

= (−1)
a0−1

2

(

a

|b|

)

= (−1)
a0−1

2
· b0−1

2 (−1)ε(a)ε(b)
(a

b

)

,

whence the assertion in this case too. Q.E.D.

Remark. The kernel of χb consists of all residue classes in Z/d(b)Z of norms of ideals

in the ring of integers of Q
(
√

b
)

which are relatively prime to d(b).

Sufficiency follows from the exercise on page 1. When p is prime, and χb(p) :=
(

b
p

)

= 1

then p splits in Q
(
√

b
)

, so p is a norm. Then use Dirichlet’s theorem on primes in
arithmetic progressions to see that for any integer a with (a, d(b)) = 1, there exists a
prime p such that p ≡ a (mod d(b)).

Example. 4177 is a prime number. Is 2819 a quadratic residue or non–residue?

(2819/4177) = (4177/2819) = (1358/2819)

= (2/2819)(679/2819) = −(679/2819)

= (2819/679) = (103/679) = −(679/103)

= −(61/103) = −(103/61) = −(42/61)

= −(2/61)(21/61) = (61/21) = (19/21)

= (21/19) = (2/19) = −1 (nonresidue).

Exercises.

1. Check that
(

5
6

)

= 1, and that 5 is not a square (mod 6).

2. Show that (50009/129061) = −1. (129061 is prime.)

3. Try to show, without using the Theorem, that for integers a, b with 0 < a < d(b),

(

b

−a

)

=

(

b

d(b) − a

)

Remarks. 1. The key to the above approach to reciprocity was the fact that any quadratic
extension of Q is contained in a cyclotomic field. An important theorem (Kronecker–
Weber) states that any abelian extension of Q is contained in a cyclotomic field. It follows,

as in the above proof, that if K/Q is an abelian extension, with, say K ⊆ Q
(

n
√

1
)

then the
splitting field of a prime p which does not ramify in K depends only on the residue class
of p in Z/nZ. Similar simple decomposition laws hold for abelian extensions of arbitrary
number fields; this is a basic fact of class field theory.

2. In more sophisticated treatments of reciprocity, sign complications are dealt with
more elegantly in terms of behavior at the “infinite prime.”
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