Kronecker-Jacobi symbol and Quadratic Reciprocity

Let \mathbb{Q} be the field of rational numbers, and let $b \in \mathbb{Q}, b \neq 0$. For a (positive) prime integer p, the Artin symbol

$$
\left(\frac{\mathbb{Q}(\sqrt{b}) / \mathbb{Q}}{p}\right)
$$

has the value 1 if $\mathbb{Q}(\sqrt{b})$ is the splitting field of p in $\mathbb{Q}(\sqrt{b}), 0$ if p is ramified in $\mathbb{Q}(\sqrt{b})$, and -1 otherwise (i.e., if $\mathbb{Q}(\sqrt{b}) \neq \mathbb{Q}$ and p is inertial). Here we have identified the Galois $\operatorname{group} \operatorname{Aut}(\mathbb{Q}(\sqrt{b}))$ with a subgroup of the multiplicative group $\{ \pm 1\}$.

For arbitrary positive rational $a=\prod_{i=1}^{m} p_{i}^{n_{i}}$, we set

$$
\left(\frac{\mathbb{Q}(\sqrt{b}) / \mathbb{Q}}{a}\right):=\prod_{i=1}^{m}\left(\frac{\mathbb{Q}(\sqrt{b}) / \mathbb{Q}}{p_{i}}\right)^{n_{i}} \quad(:=1 \text { if } m=0 \text {, i.e., } a=1) .
$$

This gives rise to a homomorphism (reciprocity map) from the multiplicative group of non-zero rational numbers $a>0$ relatively prime to the discriminant $d(b)$ of $\mathbb{Q}(\sqrt{b}) / \mathbb{Q}$, into the Galois group of $\mathbb{Q}(\sqrt{b}) / \mathbb{Q}$.

Exercise. If $\operatorname{div}(a)$ is the norm of a divisor of $\mathbb{Q}(\sqrt{b})$, and $(a, d(b))=1$, then a lies in the kernel of the reciprocity map.

For any $0 \neq x \in \mathbb{Q}$, the sign of x is

$$
\operatorname{sgn}(x):=x /|x|=(-1)^{\varepsilon(x)} \quad \text { where } \quad \varepsilon(x):=(\operatorname{sgn}(x)-1) / 2
$$

The number x can be written uniquely in the form

$$
x=x^{\prime} y^{2}, \quad \text { where } \quad x^{\prime}=(-1)^{\varepsilon(x)} p_{1} p_{2} \ldots p_{m}
$$

with $m \geq 0$ distinct primes p_{i}.
For nonzero rational b, a, define the Kronecker symbol

$$
\left(\frac{b}{a}\right):=(-1)^{\varepsilon(a) \varepsilon(b)}\left(\frac{\mathbb{Q}(\sqrt{b}) / \mathbb{Q}}{\left|a^{\prime}\right|}\right)
$$

One checks that:

$$
\begin{equation*}
\left(\frac{b}{1}\right)=\left(\frac{1}{a}\right)=1 ; \quad\left(\frac{b}{-1}\right)=(-1)^{\varepsilon(b)}=\operatorname{sgn}(b) \tag{i}
\end{equation*}
$$

$$
\left(\frac{b}{a}\right)=\left(\frac{b^{\prime}}{a^{\prime}}\right)=\left(\frac{d(b)}{d(a)}\right) . \quad\left(\text { Recall: } d(b)=\left\{\begin{array}{ll}
b^{\prime} & \text { if } b^{\prime} \equiv 1(\bmod 4) \\
4 b^{\prime} & \text { otherwise }
\end{array}\right)\right.
$$

(iii) $\quad\left(\frac{b}{a}\right) \neq 0$ iff a^{\prime} and $d(b)$ are relatively prime.
(iv) $\left(\frac{b}{a_{1} a_{2}}\right)=\left(\frac{b}{a_{1}}\right)\left(\frac{b}{a_{2}}\right)$ as long as the right hand member does not vanish.

Well-known facts about behavior of primes in quadratic number fields give, further:
(v) If p is an odd prime and b is an integer then $\left(\frac{b}{p}\right)$ is just the usual Legendre symbol.
(vi) If 2 does not divide $d(b)$ (i.e., $d(b)=b^{\prime} \equiv 1(\bmod 4)$), then

$$
\left(\frac{b}{2}\right)=(-1)^{\frac{b^{\prime}-1}{4}}=(-1)^{\frac{b^{\prime 2}-1}{8}}= \pm 1 \text { according as } b^{\prime} \text { is or is not a square } \bmod d(2)=8
$$

Now (iv), (v), (vi) allow us to define $\left(\frac{b}{a}\right)$ solely in terms of Legendre symbols, to wit:

$$
\left(\frac{b}{a}\right)=(-1)^{\varepsilon(a) \varepsilon(b)} \prod_{\substack{p \text { prime } \\ p \mid a^{\prime}}}\left(\frac{d(b)}{p}\right)
$$

(This is how it was done originally). From this definition, one gets at once:
(vii) $\left(\frac{b_{1} b_{2}}{a}\right)=\left(\frac{b_{1}}{a}\right)\left(\frac{b_{2}}{a}\right)$ as long as the right hand member does not vanish.
(viii) If $a>0$ and b_{1}, b_{2} are integers with $b_{1} \equiv b_{2}(\bmod d(a))$, then

$$
\left(\frac{b_{1}}{a}\right)=\left(\frac{b_{2}}{a}\right)
$$

(If a is an odd positive integer, it is even sufficient that $b_{1} \equiv b_{2}(\bmod a)$)

The heart of the reciprocity law lies in the following fact.
Theorem. The mapping $a \mapsto\left(\frac{b}{a}\right)$ induces a homomorphism χ_{b} from the multiplicative group $(\mathbb{Z} / d(b) \mathbb{Z})^{*}$ of units in $\mathbb{Z} / d(b) \mathbb{Z}$ onto the Galois group $\operatorname{Aut}(\mathbb{Q}(\sqrt{b}))$. This χ_{b}, called the quadratic character of $\mathbb{Q}(\sqrt{b}) / \mathbb{Q}$ when $\mathbb{Q}(\sqrt{b}) \neq \mathbb{Q}\left(\right.$ i.e., $\left.b^{\prime} \neq 1\right)$, is the unique homomorphism taking any odd prime p not dividing b to the Legendre symbol $\left(\frac{b^{\prime}}{p}\right)$.

In other words:
$(*)$ if $a_{1}^{\prime} \equiv a_{2}^{\prime}(\bmod d(b))$ then $\left(\frac{b}{a_{1}}\right)=\left(\frac{b}{a_{2}}\right)$.
Moreover, if $\mathbb{Q}(\sqrt{b}) \neq \mathbb{Q}$ then there exists a with $\left(\frac{b}{a}\right)=-1$.
Proof. Uniqueness is shown by replacing a by $a_{[n]}:=a^{\prime}+n d(b)$ where n is such that $a_{[n]}$ is positive and odd, and then factoring $a_{[n]}$ into primes. (Such an n clearly exists if a^{\prime} is odd or if a^{\prime} is even and relatively prime to $d(b)$-so that $d(b)$ is odd.)

It is an exercise to show that the unique quadratic number field with discriminant d (namely $\mathbb{Q}(\sqrt{d}))$ is a subfield of the cyclotomic field $\mathbb{Q}\left(\zeta_{d}\right)$, where ζ_{d} is a primitive $|d|$-th root of unity. [Start with the facts that $\mathbb{Q}(\sqrt{ \pm 2}) \subset \mathbb{Q}\left(\zeta_{8}\right)$ and that for an odd prime p, $\left.\mathbb{Q}\left(\sqrt{p^{*}}\right) \subset \mathbb{Q}\left(\zeta_{p}\right).\right]$

For any prime $p,\left(\frac{b}{p}\right)$ is the image of p under the Artin map into $\mathbb{Q}(\sqrt{b})$, hence the restriction of the image of p under the Artin map into $\mathbb{Q}\left(\zeta_{d}\right)(d:=d(b))$, i.e., the automorphism taking ζ_{d} to ζ_{d}^{p}. Here, in view of (iv), we can replace p by any positive integer a; and furthermore, to do the same for negative a, it will suffice to do it for -1 , i.e., to show that the automorphism θ taking ζ_{d} to ζ_{d}^{-1} takes \sqrt{b} to $\left(\frac{b}{-1}\right) \sqrt{b}=\operatorname{sgn}(b) \sqrt{b}$. But this follows at once from the fact that the fixed field of θ is $\mathbb{Q}\left(\zeta_{d}\right) \cap \mathbb{R}$ whenever $|d|>1$.

Surjectivity of χ_{b} results from its factorization as

$$
(\mathbb{Z} / d(b) \mathbb{Z})^{*} \xrightarrow{\sim} \operatorname{Aut}\left(\mathbb{Q}\left(\zeta_{d}\right)\right) \rightarrow \operatorname{Aut}(\mathbb{Q}(\sqrt{b})) .
$$

Q.E.D.

Corollary 1. For any odd integer a,

$$
\left(\frac{-1}{a}\right)=\operatorname{sgn}(a) \cdot(-1)^{\frac{|a|-1}{2}}=(-1)^{\frac{a-1}{2}}
$$

$(= \pm 1$ according as a is or is not a square $\bmod d(-1)=-4)$.
Proof. Since $d(-1)=-4$, the Theorem (with $b=-1$) reduces the problem to the two simple cases $a=1, a=3$.

Corollary 2. For any odd integer a,

$$
\left(\frac{2}{a}\right)=(-1)^{\frac{a^{2}-1}{8}}
$$

$(= \pm 1$ according as a is or is not a square $\bmod d(2)=8)$.
Proof. Since $d(2)=8$, the Theorem (with $b=2$) reduces the problem to the simple cases $a=1,3,5,7$.

Corollary 3. If q is an odd prime, $q^{*}=(-1)^{\frac{q-1}{2}} q$, and $a \neq 0$ is an integer, then

$$
\left(\frac{q^{*}}{a}\right)=\left(\frac{a}{q}\right)
$$

Proof. Note that $d\left(q^{*}\right)=q$. So for variable a with $(a, q)=1,\left(\frac{q^{*}}{a}\right)$ and $\left(\frac{a}{q}\right)$ are both homomorphisms of the (cyclic) group of units in $\mathbb{Z} / q \mathbb{Z}$ onto a group of order 2 . But there is only one such homomorphism, hence the assertion holds in this case.

Corollary 4. Let b be any odd integer, set $b^{*}:=(-1)^{\frac{b-1}{2}} b\left(\right.$ so that $\left.d\left(b^{*}\right)=b^{*}\right)$, and let $a \neq 0$ be an integer. Then

$$
\left(\frac{b^{*}}{a}\right)=\left(\frac{a}{|b|}\right)
$$

Proof. We may assume that b is square-free, and $(a, b)=1$; and then use $b_{1}^{*} b_{2}^{*}=\left(b_{1} b_{2}\right)^{*}$ and $b^{*}=|b|^{*}$ to reduce, via (iv) and (vii), to Corollary 3.

Combining these corollaries we obtain the reciprocity law for the Kronecker symbol: If $(a, d(b))=(b, d(a))=1$, then, with $a^{\prime}=2^{m} a_{0}, b^{\prime}=2^{n} b_{0},\left(a_{0}\right.$ and b_{0} odd $)$, it holds that

$$
\left(\frac{a}{b}\right)\left(\frac{b}{a}\right)=(-1)^{\frac{a_{0}-1}{2} \cdot \frac{b_{0}-1}{2}+\varepsilon(a) \varepsilon(b)}
$$

Proof. We can replace a by a^{\prime} and b by b^{\prime} (see (ii)), i.e., we may assume that a and b are squarefree integers. Then at least one of a, b must be odd; we may assume b odd.

Now if $b \equiv 1(\bmod 4)$ then $\frac{b_{0}-1}{2}$ is even, $b_{0}=b=b^{*}$, and by Corollary 4 ,

$$
\left(\frac{b}{a}\right)=\left(\frac{b^{*}}{a}\right)=\left(\frac{a}{|b|}\right)=(-1)^{\varepsilon(a) \varepsilon(b)}\left(\frac{a}{b}\right)
$$

whence the assertion in this case.

If $b \equiv 3(\bmod 4)$ then $b_{0}=b=-b^{*}, a=a_{0}($ since $1=(a, d(b)=(a, 4 b))$, and by (vii), (vi) and Corollary 4,

$$
\left(\frac{b}{a}\right)=\left(\frac{-1}{a}\right)\left(\frac{b^{*}}{a}\right)=(-1)^{\frac{a_{0}-1}{2}}\left(\frac{a}{|b|}\right)=(-1)^{\frac{a_{0}-1}{2} \cdot \frac{b_{0}-1}{2}}(-1)^{\varepsilon(a) \varepsilon(b)}\left(\frac{a}{b}\right),
$$

whence the assertion in this case too.
Q.E.D.

Remark. The kernel of χ_{b} consists of all residue classes in $\mathbb{Z} / d(b) \mathbb{Z}$ of norms of ideals in the ring of integers of $\mathbb{Q}(\sqrt{b})$ which are relatively prime to $d(b)$.

Sufficiency follows from the exercise on page 1 . When p is prime, and $\chi_{b}(p):=\left(\frac{b}{p}\right)=1$ then p splits in $\mathbb{Q}(\sqrt{b})$, so p is a norm. Then use Dirichlet's theorem on primes in arithmetic progressions to see that for any integer a with $(a, d(b))=1$, there exists a prime p such that $p \equiv a(\bmod d(b))$.

Example. 4177 is a prime number. Is 2819 a quadratic residue or non-residue?

$$
\begin{aligned}
(2819 / 4177) & =(4177 / 2819)=(1358 / 2819) \\
& =(2 / 2819)(679 / 2819)=-(679 / 2819) \\
& =(2819 / 679)=(103 / 679)=-(679 / 103) \\
& =-(61 / 103)=-(103 / 61)=-(42 / 61) \\
& =-(2 / 61)(21 / 61)=(61 / 21)=(19 / 21) \\
& =(21 / 19)=(2 / 19)=-1 \quad \text { (nonresidue }) .
\end{aligned}
$$

Exercises.

1. Check that $\left(\frac{5}{6}\right)=1$, and that 5 is not a square $(\bmod 6)$.
2. Show that $(50009 / 129061)=-1$. (129061 is prime.)
3. Try to show, without using the Theorem, that for integers a, b with $0<a<d(b)$,

$$
\left(\frac{b}{-a}\right)=\left(\frac{b}{d(b)-a}\right)
$$

Remarks. 1. The key to the above approach to reciprocity was the fact that any quadratic extension of \mathbb{Q} is contained in a cyclotomic field. An important theorem (KroneckerWeber) states that any abelian extension of \mathbb{Q} is contained in a cyclotomic field. It follows, as in the above proof, that if K / \mathbb{Q} is an abelian extension, with, say $K \subseteq \mathbb{Q}(\sqrt[n]{1})$ then the splitting field of a prime p which does not ramify in K depends only on the residue class of p in $\mathbb{Z} / n \mathbb{Z}$. Similar simple decomposition laws hold for abelian extensions of arbitrary number fields; this is a basic fact of class field theory.
2. In more sophisticated treatments of reciprocity, sign complications are dealt with more elegantly in terms of behavior at the "infinite prime."

